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1 Introduction
Recent research on microwave reflectometers in electncal engmeenng [1] led naturally
to the following geometne extremum problem. A reflectometer can be desenbed by the

equation

(1) y=a+
ß X

1 -7 X
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where x denotes the reflection coefficient of the measured device, y is the value read off
the reflectometer, and a, ß and 7 represent the imperfections of the measuring instrument.
All these quantities are complex numbers.

Equation (1) expresses the fact that the actual and the measured parameters usually differ
due to the imperfections in the reflectometer. Consequently, the parameters a, ß and 7
have to be determined before the measurement. This step is carried out using (three)
devices whose reflection coefficients xx, i 1,2,3 are assumed to be known, and who
yield values yx, i 1,2,3. Thus, the pairs (xx, yx), i 1,2,3 can be used to eliminate

a,ß and 7 of (1). We easily obtain

(2) y-yi. V3-y2 x-xi X3-X2

y-y2 y3-yx x-x2 x3-xx
In practice the reflection coefficients of the above mentioned known devices may differ
slightly from the assumed values, resulting in a measurement ercor. One possibihty for
reducing this effect is to keep the sensitivities expressed by (3a -c) small. The equations
(3a - c) are derived from equation (2):

(3a)

Ob)

(3c)

dxx

dx
dx2

dx
dx3

x -x2 x --x3
xx-x3 X\ -x2
x-x3 x --xx
x2-xx x2 -x3
x — xx x --x2

x3-xxx3-x2
A possible way of minimizing the sensitivities is to make them equal and then to find
the minimum:

(4)
dx
dxx

dx
dx2

dx
dx3

The same minimum can be achieved by minimizing the sum ofthe sensitivities of (3a-c).
Thus, the equations (3a - c) and (4) yield

(5)
x -xx x-x2 x -x3
x2-x3 x3 -xx xx -x2

After a change in the notation and by using planar vectors instead of complex numbers we
can formulate our result about the Euler line of triangles as follows. In the forthcoming
discussion XY denotes the closed line segment determined by the points X and Y of
the (Euchdean) plane and also the length of this segment.

Theorem Let ABC be a triangle with vertices A,B and C. IfP is a point in the plane
of ABC with the property that |^ ^ ^, then P is colhnear with the centroid,
the orthocenter and the center of the circumscribed circle of ABC; that is, P lies on
the Euler line of ABC. Moreover, the number of points P with ^ j^ ^ is 2

or 1 or 0 according to whether AB C is, respectively, an acute triangle different from
a regulär triangle, a regulär triangle or a right triangle, or an obtuse triangle. Finally,

^§ > -75 w/fA equality only if ABC is a regulär triangle.IA
BC

PB
AC
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2 Proof of the Theorem
We choose the origin to be at the orthocenter of ABC. However, we remark here that an

analogue of the following argument also works in the case that the origin is the center
of the circumscribed circle of ABC.
As usual the position vector of the point X is denoted by x. Moreover, the inner product
of the vectors x_ and y is denoted by xy.
By the choice of the origin we have

(6) a(b-gj b(c-a) c(a-b)

that is

(7) ab bc ca

Let P be a point of the plane such that f^ ^ §F \[P for some /x > 0. This
implies that

(8a) (P~a)2 ß-(b-c)2
(%b) (p-b)2 ß(c-a)2
(Sc) (l-c)2 p(b-a)2

(Sa), (Sb) and c(a - b) 0 easily yield

(9a) p ^'(a+b) + Xi'C

for some real Ai.

By symmetry we get

(9b) p ^(b+c) + \2-a

for some real X2.

From (9a) and (9b) it follows that (*—¦ ~^2) • o_- (Uj- - Xx V c 0. Hence, since a

and c are linearly independent,

(10) A!=A2 ^.
Thus, (9a) can be written in the form

(11) p ~^(a+b + c).

It is easy to check that the position vectors of the orthocenter, the centroid and the center

| -(a+b + c) and \of the circumscribed circle of the triangle AB C are 0, \ - (a+b + c) and \ • (a_ + b + c).
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Hence, because of (11), p is colhnear with the above points; that is, it lies on the Euler
line of the triangle ABC.
Now we determine the number of points P for which f^ ^ ^F \[ß with some

p > 0. Let s q2 + b2 + c2 and k ab - bc ca. Using (6), (7), (Sa) and (11) a rather
simple computation shows that p satisfies the equation

(12) (s + 6k) • p2 + 2 • (6k -s) ¦ p + (s - 2k) 0

If s + 6k 0, then s + 6k (a + b + c)2 implies that the orthocenter and the centroid of
the triangle ABC coincide. That is, ABC is a regulär triangle and we get p | from
(12). Thus, we assume that s +6k * 0, hence that ABC is not a regulär triangle. The
discriminant D of (12) is

(13) D -32k ((a - b)2 + (b- c)2 + (c -a)2)

Hence, (12) has respectively two, one and no real Solutions for acute (non-regular), right
and obtuse triangles. However, we have to show that any Solution of (12) is non-negative.
We prove this by showing that the minimum value of the Solutions of (12) is ^. Namely,
from (12) we get

(14) ß
s-6k±^/-l6k(s-3k)

s + 6k

A simple computation shows that p > | is equivalent to s + 6k > 0. As we have seen

above, equality is attained here only if the triangle ABC is regulär. This completes the

proof of the Theorem. D
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