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"Paradoxe" Zerlegung Euklidischer Räume

Walter A. Deuber

Walter Deuber studierte Mathematik und Physik an der ETH Zunch, wo er 1973 bei
Ernst Specker mit einer Dissertation uber Ramsey-Theone promovierte Es folgten
Assistententatigkeit und Habilitation an der Technischen Universität Hannover Seit
1976 ist er Professor an der Universität Bielefeld Neben seiner mathematischen

Forschung, die sich vor allem mit der Kombmatonk von grossen endlichen oder
abzahlbaren Strukturen beschäftigt, hat Walter Deuber auch anspruchsvolle Pflichten

in der Wissenschaftsorganisation übernommen So war er zweimal Dekan der
Fakultät fur Mathematik, ferner Grundungssprecher des Sonder-Forschungsbereiches
"Diskrete Strukturen in der Mathematik" und ist Direktor am Zentrum fur
interdisziplinäre Forschung

1 Einleitung
Seit der Antike ist das Problem bekannt, mit Zirkel und Lineal zu einem Kreis ein
Quadrat gleicher Fläche zu konstruieren. Gegeben sei also der Radius r als Strecke und

Dass mm einer Pnnktmenge in der Ebene und im Raum einen Inhalt zuordnen kamt,
galt in dar Geschichte der Mathematik lange Zeit als evident So erachtete mm m
teeiehnendeiweise erst gegen die Mtte des letzten Jatatanderts als notwendig» den

Begriff des l^itnmten Integrals genauer m fassen: A* Canohy» JJM3L Dirichlet und
natürlich B. Riemann gaben \ßm nacheinander formale Definitionen dieses BegriÄM»
wobei sie bt der uns heute gellnigen Weise QxmsamMt von Summen hmmmgm.
Anschliessende Verfeinerungen des Inhal^begrÄes (C Jordan, & Borel* u,*,) Ür
allgemeinere Pnnktmengen führten schliesslich aeur Ij&hesgu^schen Masstheorie (ü Le*
besgtie* 1902). Im Lattfe der weiteren Entwicklung wi0& sich %bmm&hmdwmi&%
auch die EMsteni wn sogenannten nichtoessteen MenfM» also wn Ptmkteengm»
denen in keiner vemiinfligen Weise ein Inhalt m^mdmt werden kam, Solche Algen

besten natMfcii äusserst setaatne, Um *%tgtei#öebew Eigenschaften, IM spek-
laknllies Beispiel veriffaatlidhtei 1924 St Banach md A* TteM: Sie mi0Btk, dm
eine Kugel mit RaÄtes f fa endlich viele nMtmmbm Teilmengen mfeyf mzdm
kann, die sich zu zwei Kugeln vom selben Radius r zusammensetzen lassen. Derarti-

mmm Ita-dfite* um
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zu konstruieren ist eine Strecke s mit
s2 wr2 d.h.

r
Da die Geradengleichung linear und die Kreisgleichung quadratisch ist, ist diese Aufgabe

nur dann lösbar, falls ir selbst als ein endlicher algebraischer Ausdruck geschrieben
werden kann, in welchem schlimmstenfalls Quadratwurzeln auftreten. Schon im letzten
Jahrhundert wurde gezeigt, daß n transzendent ist, also nicht algebraisch dargestellt werden

kann. Somit ist die Quadratur des Kreises mit Zirkel und Lineal nicht durchführbar.
Dies heißt, daß — wie auch in ähnlich gelagerten Fällen (Unmöglichkeit der
Würfelverdoppelung, Dreiteilung des Winkels) — ein mathematischer Beweis vorliegt, daß dieses

Problem mit Zirkel und Lineal im allgemeinen nicht lösbar ist!

Wenn nun der Kreis mit Zirkel und Lineal nicht quadrierbar ist, so könnte es ja vielleicht
auf andere Weise geschehen. Um Ideen zu fixieren betrachten wir ein einfaches Problem:
Das 4x1 Rechteck R sowie das 2x2 Quadrat Q können zunächst unter Vernachlässigung
von Rändern in je vier kongruente Quadrate zerlegt werden.

Definition Sei S eine Gruppe von Isometrien (Kongruenzabbildungen). Zwei Mengen
X9Y heißen S-zerlegungsgleich, falls disjunkte Zerlegungen von X und Y in gleich
viele Teile existieren, mit der Eigenschaft, daß jedes Xt isometrisch ist zu Yt mittels einer
Bijektion ipt e S.

Die Zerlegungsgleichheit ist offenbar eine Äquivalenzrelation. Obiges Beispiel besagt
nun — unter Berücksichtigung des Randes —, daß

[0,2)x[0,2)und[0,4)x[0,l)
zerlegungsgleich bezüglich Translationen sind. Auf diesem Hintergrund erhebt sich die

Frage, ob Kreis und Quadrat zerlegungsgleich sein können. Erstaunlicherweise konnte
Laczkovich dies beweisen:

Satz 1.1 [La 90] Kreis und Quadrat gleichen Flächeninhalts sind zerlegungsgleich
bezüglich der Gruppe der Translationen in der Ebene.

Etwas allgemeiner konnte er beweisen :

Satz 1.2 [La 91] Sind A,B C Ud konvexe beschränkte Mengen gleichen Maßes, dann
sind A und B zerlegungsgleich bezüglich der Gruppe der Translationen.

Bitte versuchen Sie jetzt nicht, mit Schere und Papier die Zerlegungen nachzuvollziehen.
Laczkovich zeigt mit seinem Beweis nur, daß Zerlegungen mit etwa 1050 Stücken das

Gewünschte leisten. Diese Zerlegung ist also praktisch nicht durchführbar. Sie kann mit
der Schere und Papier auch theoretisch nicht erfolgen, denn:
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Satz 1.3 Kreis und Quadrat gleichen Flächeninhalts sind nicht zerlegungsgleich bezüglich
Zerlegungen in Jordan-Gebiete, d.h. topologische Scheiben.

Zur Zeit ist unbekannt, ob die Zerlegungsgleichheit von Kreis und Quadrat mit meßbaren
Stücken realisiert werden kann. Bei einer solch verzwickten Situation erhebt sich sofort
die Frage, wie die Quadratur des Kreises denn überhaupt bewiesen werden kann, wenn
doch so exotische Stücke betrachtet werden. Die prinzipielle Antwort geht dahin, daß,
statt nur endliche Konstruktionen mit Zirkel und Lineal zuzulassen, viel mächtigere
Instrumente, wie z.B. das Auswahlaxiom d.h. die Auswahl unendlicher Mengen mit erlaubt
sein müssen. Das Auswahlaxiom ist bekanntlicherweise unabhängig von der Zermelo-
Fraenkel-Mengenlehre. Es steht also frei, dieses zu verwenden oder auch nicht. In der
Mathematik wird das Auswahlaxiom des öfteren verwendet, um recht nützliche Sätze

zu beweisen, oder aber um die Existenz von Exoten nachzuweisen. Eine der nützlichen
Konsequenzen ist offenbar:

Bemerkung: Jeder Vektorraum hat eine Basis.

Für endlichdimensionale Vektorräume kommt man ja noch mit dem Steinitzschen
Austauschsatz aus. Für unendlichdimensionale Räume jedoch — z.B. die reellen Zahlen
als Vektorraum über den rationalen Zahlen mit der Hamel-Basis — braucht man das

Auswahlaxiom. Kürzlich wurde gezeigt, daß der Basissatz für Vektorräume und das

Auswahlaxiom äquivalent sind [Bl 84].

Verläßt man die Ebene, so erlebt man weitere paradoxe Situationen, nämlich das berühmte

Banach-Tarski-Paradoxon [BT 24, Wa 85].

Satz 1.4 Sei ßcR3 die Einheitskugel. Dann gibt es eine Zerlegung in 2 Teile B B1UB2,

so daß alle drei Mengen Bi,B2 und B zerlegungsgleich sind.

Im dreidimensionalen Raum ist es also möglich, die Einheitskugel zu verdoppeln!

2 Das Banach-Tarski-Paradoxon
Zur Einstimmung beweisen wir einige Lemmata.

Lemma 2.1 Sei N die Menge der positiven natürlichen Zahlen und a e N. Dann sind N
und N\{a} zerlegungsgleich.

Beweis: Man betrachte die Menge aN aller Vielfachen von a. Zerlege N in Ni
aN und dessen Komplement N2 N\aN. Dann ist N\{a} - (Nx\{a})UN2. Mittels
einer Translation r um a lässt sich Nx in Ni\{fl} überführen. Wenn dies hier auch

offensichtlich ist, so ist doch wesentlich, daß a £ {r(a),r2(a),73(a)...}.

Lemma 2.1 besagt, daß das Weglassen von einem Element — und damit wegen der
Transitivität der Zerlegungsgleichheit von endlich vielen Elementen — von N eine Menge
ergibt, welche immer noch zerlegungsgleich zu N ist. Wickeln wir nun die natürlichen
Zahlen an der Einheitskreislinie Sl auf, wobei wir ein fest vorgegebenes a e N mit einem
Punkt p e Sl identifizieren, so treten wegen der Transzendenz von 7r keine Doppeldeutigkeiten

auf. Translationen r von N gehen nun in Drehungen 6 der Einheitskreislinie
über. Man erhält so:
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Korollar 2.2 Sei Sl die Einheitskreislinie in der Ebene und p e Sl. Dann sind Sl und

Sl\{p} zerlegungsgleich.

Bezüglich der von der Translation um a in Lemma 2.1 herkommenden Drehung 6

notieren wir die für später nützliche Aussage

(*) pe {ö(p),ö2(p),ö3(p)...}.

Betrachtet man nun die Einheitskreisscheibe B2 und schneidet einen Radius ohne
Zentrum heraus, so kann man den Beweis von Korollar 2.2 übertragen und erhält:

Korollar 2.3 Sei B 2 der abgeschlossene Einheitskreis in der Ebene, p ein Einheitsvektor

und R {Ap |A e (0,1]} der Radius von B2 in Richtung p ohne das Zentrum. Dann
sind B2 und B2\R zerlegungsgleich.

Nun wollen wir aus dem Einheitskreis noch das Zentrum ausstechen:

Lemma 2.4 B2 und B2\{Zentrum} sind zerlegungsgleich.

Beweis: Aus B2\Zentrum schneide man einen Radius heraus und stecke ihn umgekehrt
wieder hinein. Damit fehlt nun ein Punkt p auf der Einheitskreislinie. Wie in Korollar
2.2 und 2.3 stellt man fest, daß B2 und B2\{p} zerlegungsgleich sind.

Bis jetzt haben wir gezeigt, daß aus dem Einheitskreis ein Radius und das Zentrum
herausgenommen werden können, und die Restmenge immer noch zerlegungsgleich zum
Einheitskreis ist. Wegen der Transitivität der Zerlegungsgleichheit können wir diese

chirurgischen Operationen endlich oft durchführen und z.B. endlich viele Durchmesser
aus B2 herausnehmen, ohne die Zerlegungsgleichheit mit B2 zu verlieren. Wir brauchen
aber etwas mehr, nämlich, daß man sogar "abzählbar oft" weglassen kann, ohne die

Zerlegungsgleichheit zu verlieren.

Satz 2.5 Sei Sl die Einheitskreislinie und DcS1 eine beliebige abzählbare Punktmenge.
Dann sind Sl und S l\D zerlegungsgleich.

Beweis: Wir betrachten Drehungen 6^ von S1 um den Winkel (p. Sei

<D :={<p e [0,27r)|3p e D 3ne N önip(p) e D}.

D und N sind abzählbar, also auch 4>. Daher gibt es a e (0,27r)\<_>. Damit haben wir
erreicht, daß für alle p,q e D gilt:

(**) q * {öa(p),ö2a(p),ö3a(p)...},

welches die angekündigte Verallgemeinerung von (*) ist.
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Wegen (**) ist öna(D) DD 0 für alle neN; insbesondere gilt für m > n die
Relation ö(nx-n)a(D) fl D 0, welche zu öna(D) n öma(D) 0 für m * n führt. Die
Mengen D,öa(D),62a(D)..., sind also alle paarweise disjunkt. Wir zerlegen nun S1 in
Ni U öna(D) und dessen Komplement N2 Sl\Nx. Ebenso wird Sl\D zerlegt in

n>\
die beiden Mengen 6a(N\) und N2.

Soweit für die Ebene. Die Verallgemeinerung auf den dreidimensionalen Raum ist
offensichtlich. Wir notieren

Korollar 2.6 Sei S2 C R3 die Einheitssphäre und DcS2 eine abzählbare Menge. Dann
sind S2 und S2\D zerlegungsgleich.

Beweis: Da D abzählbar ist, gibt es eine Gerade g durch das Zentrum, welche mit D
leeren Schnitt hat. Eine solche Gerade g verwenden wir als Drehachse und übertragen
den Beweis von Satz 2.5 Wort für Wort.

Korollar 2.7 Sei B3 c R3 die abgeschlossene Einheitskugel und Dcß3 eine abzählbare
Menge von Durchmessern. Dann sind B3 und B3\D zerlegungsgleich.

Um dem Beweis des Banach-Tarski Paradoxons näherzukommen, betrachten wir den
Einheitsball B3 mit der Nordsüdachse g\9 sowie einer zu gx um 45° geneigten Geraden

g2 durch das Zentrum. Sei

- / die Drehung um gx um 180°, also f2 1,

- g die Drehung um g2 um 120°, sowie g g2, also g3 g3 1.

Sei nun G die von / und g erzeugte Kongruenzgruppe. Da das Produkt von zwei
Drehungen wieder eine Drehung ist, gibt es zu jedem Element von G eine Drehachse. Da
G abzählbar ist, ist die Menge D aller Durchmesser von B3, welche als Drehachsen von
Drehungen in G fungieren, abzählbar. Dies wollen wir uns für später auch im Kontext
von Korollar 2.7 merken.

Abgesehen von der geometrischen Interpretation als Drehung, kann formal jedes Element
von G als ein Wort VV mit Buchstaben aus dem Alphabet {f,g,g} aufgefaßt werden,
wobei die folgenden "grammatikalischen Regeln" zu beachten sind:

- keine zwei gleichen Buchstaben dürfen nebeneinander stehen, da ja

f2 1, g2 g und g2 g wäre,

- g,g dürfen nicht direkt nebeneinander stehen.

Es ist nun eine Frage des Nachrechnens, z.B. mit Drehmatrizen, daß zwei f,g,g-Wörter
mit obigen Nebenbedingungen die gleiche Drehung aus G darstellen, genau wenn sie
als Wörter gleich sind, d.h., daß sich G als Gruppe von Kongruenzen und G als Gruppe
von Wörtern unzweideutig entsprechen. Insbesondere ist 1 e G das leere Wort. Dem
Spezialisten ist an dieser Stelle klar, daß G isomorph zum freien Produkt Z2*Z3 ist.
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Mit Hilfe der Darstellung durch Wörter wollen wir nun G zerlegen als G XuYuZ
mit

t fX=YöZ,gX=Y9 gX=Z.
Um dies zu bewerkstelligen, gehen wir rekursiv vor und fangen trivial an mit UX.
Betrachten wir nun ein Wort zvlN mit Anfangsbuchstaben w e {f,g,g}, Endstück W
und unterscheiden zwei Fälle:

(i) zv W ist nach den grammatikalischen Regeln ein unzulässiges Wort. Dies heißt aber,
daß zv W verkürzbar ist, und nach Induktionsannahme ist also definiert, in welcher
Klasse, X, Y oder Z, sich wW befindet,

(ii) zv W ist grammatikalisch korrekt. Dann verwenden wir folgendes Schema wie eine

Multiplikationstabelle:

w XYZ
Y X X
Y Z X
Z X Y

Man betrachte also die Zeile zv und die Spalte zu welcher W nach Induktionsannahme
gehört und finde im Schnittpunkt die Menge, welche zv W enthält.

Beispiel:
(a) /=/-1gY, da 1 g X,
(ß) gfeZ, da fe Y,
(7) fgfeX, da gfeZ.
(6) Beginnt ein grammatikalisch korrektes Wort zv W mit /, d.h. zv -f, und ist

fWe X, so gilt W e Y UZ. Dies liest man in der ersten Zeile ab.

Damit ist G in die drei Mengen X, Y,Z zerlegt. Es ist nun leicht nachzurechnen, daß

die Relationen f gelten, und wir tun dies hier nur für die erste:

/X=YUZ.
- Sei W e X, so ist entweder fW ein inkorrektes Wort, d.h. / ist auch der erste

Buchstabe von W, und fWe Y U Z gemäß Beispiel (6). Ist fW ein korrektes

Wort, so ersieht man aus der Tabelle, daß / W e Y gilt. Somit fX C YüZ.

- Sei W e YUZ ein Wort:

(i) Sei / der erste Buchstabe von W, d.h. W fW, so ist W e X und daher

fW =f2W W e X
(ii) Ist der erste Buchstabe von W in {g,g}, so ist / W ein grammatikalisch korrektes

Wort und deshalb gemäß der ersten Zeile der Tabelle fVJeX.
Somit erhält man /(YuZ) C X, und

YUZ=/2(Y UZ)C/X ;

insgesamt gilt also wie gewünscht fX YuZ,
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Wir haben an dieser Stelle den Beweis ausführlich gehalten, um zu zeigen, daß die
rekursive Definition mit den grammatikalischen Regeln sehr exakt verwendet werden
muß.

Nun sind die Hilfsmittel für den Beweis des Banach-Tarski Paradoxons bereitgestellt,
und wir lassen G als Drehgruppe auf B3 operieren, d.h. die Wörter W aus G sind nun
wieder Drehabbildungen:

Für p g B3\D sei G(p) die G-Bahn von p, d.h. G(p) {W(p)\W g G}, die Menge
aller Punkte, die Bilder von p unter Drehung in G sind. Bekanntlich zerlegen die Bahnen
den Grundraum, d.h. für alle p,p' gilt entweder G(p) G(p') oder G(p) C\ G(pf) 0. In
jeder Bahn wähle man mit Hilfe des Auswahlaxioms einen Repräsentanten und erhalte
die Menge R aller Repräsentanten.

Man rechnet nach, daß G(R) B3\D.

Die Zerlegung von G XuYüZ übertragen wir nun auf B3\D: A X(R), B

Y (R), C Z(R). Nach Konstruktion — die Gruppenelemente sind Drehungen — gilt
sinngemäß

f(A) BöC, g(A) B, g(A) C.

Somit sind A,B,C und BUC alle kongruent zueinander. Dies erlaubt uns, A kongruent

zu B UC (man verwende die Kongruenz zwischen A und B UC als Schnittmuster) in zwei

Teile zu zerlegen: A _4iU_42 mit Ax kongruent B,A2 kongruent C, also AX,A2 beide

kongruent zu A. Ebenso B BiUB2,C C1UC2, alles mittels kongruenter Mengen.

Nun ist
B3 AüBuCuD (AXUA2) U (Bx U B2)U(Ci UC2)UD

(Ax U Bi U Cx U D)U(A2 Uß2U C2) B3UB3\D

Nach Korollar 7 ist B3\D zerlegungsgleich zu B3!

Somit ist B3 in zwei Mengen disjunkt so zerlegt, daß diese Mengen zerlegungsgleich zu
B3 sind. D

3 Uniform ausgebreitete Mengen
Uniform ausgebreitete Mengen, d.h. Punktmengen in der Ebene, welche in der Nähe des

Gitters Z2 liegen [La 90], gehen zentral in den Beweis von Laczkovich über die Quadratur
des Kreises ein. Der volle Beweis des Satzes von Laczkovich würde den Rahmen dieses

Aufsatzes sprengen, zumal er mit seinen zahlentheoretischen und maßtheoretischen

Argumentationen einige Stufen tiefer liegt.

Definition: Sei Q Z2 das Quadratgitter. Eine Menge X C R2 heißt uniform
ausgebreitet (bezüglich Q), falls eine Bijektion (p : X <-> Q existiert mit

\<p(x) - x | < k für ein geeignetes k g R und alle x.
Eine Punktmenge X ist also uniform ausgebreitet, falls X mittels einer Bijektion in
Q "hineingewackelt" werden kann, wobei beim Wackeln jeder Punkt höchstens k weit
bewegt wird.
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Beispiele: Natürlich ist Q selbst uniform ausgebreitet. Entfernt man aus Q eine endliche
Punktmenge D so ist Q\D uniform ausgebreitet. Ebenso führt das Weglassen von endlich
vielen Gittergeraden aus Q wieder zu einer uniform ausgebreiteten Menge. Uniform
ausgebreitete Mengen sind abzählbar und diskret, d.h. jede beschränkte Teilmenge ist
endlich.

Uniform ausgebreitete Mengen sind im eindimensionalen Fall — man betrachte
beschränkte Bijektionen (p : X <-> Z — aus der Zahlentheorie recht gut bekannt. Die
Ausdehnung des Begriffs auf die Ebene oder allgemeiner für metrische Räume ist erst
in neuerer Zeit fruchtbar geworden.

Im allgemeinen wird es unmöglich sein, für eine uniform ausgebreitete Menge X eine

Bijektion ip : X <-> Q effektiv anzugeben. Man ist daher bemüht, Kriterien anzugeben,
welche auf Grund lokaler Eigenschaften von X die Existenz einer globalen Bijektion
X <-> Q garantieren. Hierfür wird nun ein Kriterium angegeben (zu einer Menge A
bezeichnet \A\ deren Kardinahtat).

Kriterium 3.1 [La 90] Sei X C R2 eine Punktmenge. X ist uniform ausgebreitet, genau
wenn ein k g R existiert mit:

(i) Für jede endliche Teilmenge A von X enthält die k -Umgebung von A mindestens \A\
viele Punkte aus Q.

(ii) Für jede endliche Teilmenge B von Q enthält die k -Umgebung von B mindestens \B \

viele Punkte aus X.

Um festzustellen, ob X uniform ausgebreitet ist, muß man also "nur" testen, ob zu jeder
endlichen Teilmenge von X und Q jeweils genügend viele Punkte der jeweils anderen

Menge höchstens einen vorgegebenen Abstand k hierzu haben.

Wir geben nun die wesentlichen Ideen des Beweises und beginnen mit dem sogenannten
Heiratssatz für endliche bipartite Graphen.

Definition: Ein Graph heißt bipartit, falls seine Eckenmenge so in zwei Teilmengen

(typischerweise A,B) zerlegbar ist, daß alle Kanten von der einen zur anderen Teilmenge

verlaufen.

A B

Im Rahmen der Soziomathematik werden bipartite Graphen modelliert, indem die
Gesellschaft in zwei Geschlechter zerfällt und die Kanten die symmetrische Relation des

"heterosexuell befreundet sein" angeben. Wir halten uns hier an die abstrakte Sprache
der Mathematik und überlassen Interpretationen dem Leser.
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Zu jedem a g A gibt es die Menge der benachbarten Ecken

Ba {b g B \ a und b sind durch eine Kante verbunden}.

Ebenso gibt es zu A' C A die Menge B^' der Ecken in B, die zu mindestens einem
a g A' benachbart sind

BA> IJ Ba.

aeA'

Ein A-matching in einem bipartitem Graphen A, B ist eine Menge von Kanten mit
folgenden Eigenschaften:

(i) Jeder Punkt von A ist in genau einer Kante des matching enthalten,

(ii) je 2 Kanten sind identisch oder haben disjunkte Endpunkte.

Der Heiratssatz von P. Hall, welcher schon im letzten Jahrhundert bei Frobenius in
matrizentheoretischer Formulierung auftritt, gibt ein Kriterium dafür, daß in einem endlichen
bipartiten Graphen ein A-matching existiert.

Satz 3.2 [Ha 35] Sei G - (A, B) ein endlicher bipartiter Graph. Dann sind folgende
Aussagen äquivalent

(i) Zu G existiert ein A-matching.

(ii) Für jedes A' C A gilt \BA>\ > |A'| (Hall'sche Bedingung).

Beweis: "z => ii" Sei M eine Kantenmenge, die ein A-matching ist. Da die Kanten in
M paarweise disjunkt sind, ist für jedes A' C A die Ungleichung \Ba'\ > \A'\ erfüllt.

Der folgende Beweis für "ii => /" geht auf Halmos und Vaughan [HV 50] zurück
und geschieht mit Induktion nach \A\. Für \A\ 1 gibt die Hall'sche Bedingung das

A-matching. Also ist |A| > 2 und für alle Af c A der Satz schon bewiesen.

Fall (a) Jede echte nichtleere Teilmenge A' von A erfüllt \Ba>\ > \A'\ +1. Dann wählen
wir eine beliebige Kante für das matching. Der Restgraph (ohne die beiden Endpunkte
der gewählten Kante) erfüllt die Hall'sche Bedingung und hat nach Induktionsannahme
ein matching.

Fall (ß) Es gibt eine echte nichtleere Teilmenge A' von A mit \B#\ - \A\. Nach
Induktion gibt es ein Af-matching. Der Restgraph (ohne die vom A'-matching überdeckten

Ecken) erfüllt die Hall'sche Bedingung, denn wäre diese für ein A* C A \ A! verletzt,
so auch für A* U A'. Also gibt es nach Induktionsannahme im Restgraphen auch ein

matching.

Dieser Beweis ist der kürzeste mir bekannte und offenbar sehr elegant. Er hat vom
Standpunkt der angewandten Mathematik den Nachteil, daß man erst in den Fall (ß)
kommt, nachdem man alle 2^ - 2 nichtleeren Teilmengen A' von A ausgetestet hat,
also exponentiell lange gearbeitet hat. Es gibt zum Glück Beweise, welche zu einem

Algorithmus mit 0(|A|25) Laufzeit führen [HK 73], wobei gegebenenfalls auch gleich
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ein Gegenbeispiel, falls vorhanden, produziert wird. Ob dies bestmöglich ist, ist nicht
bekannt.

Der nächste Schritt besteht nun darin, den Heiratssatz auf abzählbare bipartite Graphen
auszudehnen. Folgendes Beispiel zeigt, daß dies im allgemeinen nicht geht.

B

Hier ist die Hall'sche Bedingung erfüllt, aber ein A-matching existiert nicht. Dies liegt an
dem einen Punkt ao, in welchem unendlich viele Kanten anstoßen, d.h. ao hat unendliche
Valenz.

Falls man sich auf abzählbare Graphen beschränkt, in denen kein Punkt unendliche
Valenz hat, d.h. auf lokalfinite Graphen, so gilt der Heiratssatz:

Satz 3.3 Sei G (A,B) ein lokalfiniter bipartiter Graph. Dann hat G ein A-matching
genau wenn für jede endliche Teilmenge A' von A die Hall sehe Bedingung erfüllt ist.

Wir wollen den Beweis hier nicht bringen, zumal wir im nächsten Abschnitt einen etwas

allgemeineren Satz beweisen werden.

Als nächstes betrachten wir einen abzählbaren lokalfiniten bipartiten Graphen, in
welchem die Hall'sche Bedingung auf beiden Seiten erfüllt ist. Wir wissen also, daß in
G (A,B) sowohl ein A-matching als auch ein B-matching existiert. Dies heißt aber
noch nicht direkt, daß ein matching gleichzeitig beide Seiten A, B überdeckt. Dies wird
vielmehr erst von einem anderen klassischen Satz garantiert.

Satz 3.4 (Cantor-Bernstein) Sei G (A,B) ein bipartiter Graph, in welchem es sowohl
ein A-matching Mx, als auch ein B-matching M2 gibt. Dann gibt es ein matching M
welches gleichzeitig A und B überdeckt. Weiter ist (als Kantenmenge) M C Mx U M2.

Nun ist der Beweis des Kriteriums für das uniforme Ausgebreitetsein einer Menge recht
leicht. Man betrachte den bipartiten Graphen mit den beiden Teilen A X und B Z2.

Sollten A und B nicht disjunkt sein, so verschieben wir die Punkte in A um e und
erreichen A fl B =0. Zwei Punkte in A, B sind durch eine Kante zu verbinden, falls
ihr Abstand höchstens k ist. Ein A und B überdeckendes matching definiert nun durch
seine Kanten eine Bijektion (p : A-+B mit \<p(x) -x\ <k für alle x. Die im Kriterium
angegebenen Bedingungen sind aber gerade die Hall'sehen Bedingungen für die beiden
Seiten des bipartiten Graphen.
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4 Paradoxe diskrete Punktmengen

Wir haben im letzten Abschnitt uniform ausgebreitete Mengen in der Ebene kennengelernt.

Die dortige Definition läßt sich offenbar viel allgemeiner fassen.

Definition: Sei M ein metrischer Raum mit Metrik d. Zwei Teilmengen X, Y von M
heißen äquivalent, falls eine Bijektion (p : X <—> Y existiert mit

d((p(x),x)<k

für ein geeignetes k und alle x g X.

Wir erinnern uns, daß eine Menge X uniform ausgebreitet ist, wenn sie äquivalent zum
Quadratgitter ist. Allgemein ist in einem metrischen Raum eine Menge X äquivalent
zu Y falls X in Y "hineingewackelt" werden kann. Es braucht wohl nicht betont zu
werden, daß es sich bei unserem Begriff auch wirklich um eine Äquivalenz handelt.

In Anlehnung an das Banach-Tarski-Pardoxon wollen wir nun paradoxe Mengen
definieren.

Definition: Eine Teilmenge M eines metrischen Raumes heißt paradox, genau wenn
eine Zerlegung von M in zwei Teilmengen Mi,_V_2 existiert, so daß alle drei Mengen
Mi,_V_2,M paarweise äquivalent sind.

Beispiel 1 Sei M ein beschränkter metrischer Raum (z.B. der triviale metrische Raum
mit d(x,y) 1, genau wenn x i=- y). Dann ist X äquivalent zu Y, genau wenn sie
dieselbe Kardinahtat haben. M ist paradox, genau wenn M unendlich ist.

Wir haben dieses Beispiel nur angegeben um zu zeigen, ein wie weites Spektrum der
Begriff der paradoxen Mengen umfaßt. In diesem Aufsatz beschränken wir uns im weiteren
auf den Rn mit der euklidischen Metrik.

Beispiel 2 R" ist paradox. Für n-2 pflastere man die Ebene schachbrettartig mit [0, l)2
Quadraten. Die schwarzen Felder gehören zu Mi, die weißen zu M2. Es ist klar, daß

Mi und M2 äquivalent sind. Ferner ist [0, l)2 äquivalent zu [0,1) x [0,2), womit man
stückweise eine Bijektion zwischen Mi und M hat.

Dieses Beispiel zeigt, dass die Frage nach paradoxen Mengen erst interessant wird, wenn
man sich auf möglichst "dünne" Mengen kapriziert.

Definition: X C R" heißt diskret, falls jede beschränkte Teilmenge von X endlich ist.

Für diskrete Mengen ist die Frage der Paradoxität nicht mehr so einfach. Immerhin gibt
es noch Beispiele.
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Beispiel 3 Sei M {logn\n g N} die Menge der Logarithmen natürlicher Zahlen. M
ist paradox: Man setze

Mx {log2n | n e N}
M2 {log(2n + 1)|«€N},

die Mengen der Logarithmen gerader resp. ungerader natürlicher Zahlen. Wegen log 2n

log n + log 2 ist Mi äquivalent zu M. Wegen

lim (log(2rc + 1) - log(2«)) lim log — log 1 0

ist auch (p : M2 -> Mx, welches durch (p(log2n) log(2n + 1) definiert ist, eine

Wackelbijektion.

Nun liegen im Intervall [0,x) ungefähr/(x) ex viele Punkte von M, d.h. die Kardinahtat

von M D[0, x] wächst exponentiell. Man könnte daher vermuten, daß die Paradoxität
von M mit dessen exponentiellem Wachstum zusammenhängt. Daß dies bei geeigneter
Definition zutrifft, wollen wir nun beweisen.

Definition: Eine diskrete Teilmenge M von Rn hat mindestens exponentielles Wachstum,

falls £ > 0 und keN existieren, so daß für jede endliche Teilmenge Xf von M
gilt:

Jede k-Umgebung von X'

Uk(X',M) {z g M\3y e Xf d(z,y)<k}

hat mindestens (l+e)\X'\ viele Punkte.

Wir wollen nun flugs diese etwas abstrakte Definition vereinfachen und beweisen

Lemma 4.1 Sei MeR" diskret. Dann sind äquivalent

(i) M hat mindestens exponentielles Wachstum.

(ii) Es gibt k e N, so daß für jede endliche Teilmenge X' von M gilt

\Uk(X',M)\>2\X'\.

Beweis: "i => n": Habe X exponentielles Wachstum mit Parametern e,k, so gibt es a

mit (1 +e)a =2 und man setze k - ak. Man verwende nun die Exponentialgesetze um
(ii) zu zeigen.

"ii => V: Dies ist die Definition des exponentiellen Wachstums mit e - 1.

Es gilt nun
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Satz 4.2 [DeSiSo 91] Sei M eine diskrete Punktmenge in R". Dann sind äquivalent
(i) M ist paradox.

(ii) M hat mindestens exponentielles Wachstum.

Zunächst zeigen wir, daß jede paradoxe Menge auch mindestens exponentielles Wachstum

hat. Sei M M1ÜM2 eine paradoxe Zerlegung mit Wackelbijektionen (px : M —>

Mx für i 1,2 mit zugehörigen Konstanten kx,k2. Mit k max(kx,k2) erhalten wir
sofort für jede endliche Teilmenge X' von M

|14(X',M)| > \<px(X')\ + |^(X')| 2|X'|,

d.h. M hat mindestens exponentielles Wachstum.

Damit ist die Wachstumsbedingung als Kriterium für Paradoxität als natürlich erkannt.
Die Umkehrung ist etwas schwieriger zu beweisen. Der Beweis folgt der Linie des oben
beschriebenen Heiratssatzes, benutzt jedoch einen Haremsatz.

Definition: Sei G (A,B) ein bipartiter Graph. Eine Kantenmenge m ist ein (2,1)-
matching/wr G falls m jeden Punkt von A genau zweimal und jeden Punkt von B genau
einmal trifft.

Wie vorher ist ein Graph lokalfinit, falls in jedem Punkt nur endlich viele Kanten
anstoßen. Weiter sind Ba und A& die Mengen der mit a, resp. b verbundenen Punkte
(a g A,b g B), sowie Ba*,Ab' die Mengen der mit A' C A resp. ß'cß verbundenen

Punkte. Es gilt nun der folgende Haremsatz.

Satz 4.3 Sei G (A,B) ein lokalfiniter bipartiter abzählbarer Graph. Es gibt genau dann
ein (2, l)-matching, wenn

(i) \Ba'\ > 2\A'\ für jede endliche Teilmenge A' von A, sowie

(ii) |Ag/| > \B'\ für jede endliche Teilmenge B' von B gilt.

Bemerkungen:
1. Der Satz gilt (mit austauschbarem Beweis) für (fc,f)-matchings (k,£ natürliche Zah¬

len).
2. Die Lokalfinitheit ist wesentlich, nicht jedoch die Abzählbarkeit, welche hier der

Einfachheit halber gefordert wurde. Im allgemeinen Fall wird das Auswahlaxiom
benötigt.

Der Beweis des Satzes, daß eine diskrete Menge M von mindestens exponentiellem
Wachstum paradox ist, ist nun ganz leicht:

Man betrachte den bipartiten Graphen mit A M und B M und verbinde zwei
Punkte, falls ihr Abstand höchstens k ist. Die Bedingung für exponentielles Wachstum
ergibt unmittelbar die Existenzbedingungen für ein (2,l)-matching. Dieses zerlegt B in
zwei Mengen Mi,M2, welche entlang der Kanten des matchings äquivalent zu M sind,
womit M als paradox erkannt ist. D

Der Beweis des Haremsatzes folgt ähnlichen Gedankengängen wie derjenige des

Heiratssatzes. Allerdings brauchen wir eine etwas technischere Version für den Beweis von
Satz 4.2. welcher wiederum keine neuen Ideen braucht, sondern im formalen Rahmen
des Heiratssatzes bewiesen werden kann.
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Bemerkung: Ist G (A,B) ein abzählbarer lokalfiniter bipartiter Graph, sind A* C

A,B* C B endliche Mengen und gelten die Bedingungen (i) (ii) des Haremsatzes für
Teilmengen A' von A* undB' von B*, dann gibt es in G ein "lokales" (2,1 )-matching m,
d.h. eine Kantenmenge welche A* genau zweifach und B* genau einfach überdeckt. Man
bemerke, daß die Kanten von m nicht zwischen A* und B * verlaufen müssen.

Wir wenden uns nun der Übertragung des endlichen Falles des Haremsatzes, den wir
voraussetzen, auf den abzählbaren Fall zu und werden hierfür das Baumlemma von
König anwenden.

Definition: Ein Baum ist ein ungerichteter
zusammenhängender Graph ohne Kreise
(s. Bild).

Satz 4.4 (Baumlemma von König) [Kö 27]: Sei T ein abzählbarer lokalfiniter Baum.
Dann gibt es von jedem Punkt aus einen unendlich langen Weg.

Beweis: Seien T ein Baum und eine Ecke to gegeben. Da T lokalfinit ist, gibt es einen
Nachbarn tx von to, über welchen unendlich viele Wege laufen. Aus demselben Grund

gibt es einen Nachbarn t2 von t\9 über usw. to~ti-t2... ist dann ein unendlich langer
Weg. D

Um das Baumlemma anzuwenden, gehen wir von einem bipartiten lokalfiniten abzählbaren

Graph G (A,B) aus und zählen A {ai,a2...},B {bi,b2...} auf. Für jede
natürliche Zahl n betrachten wir den endlichen Graphen G„, welcher aus allen Kanten
besteht, die in A* {ßi.. .an } oder B* {bi...bn} anstoßen. Nun erfüllt G„ die Bedingung
der Bemerkung zum Haremsatz. Also gibt es in jedem Gn ein lokales (2,l)-matching
m für A^,B*. Da Gn endlich ist, gibt es nur endlich viele solche (2,l)-matchings, aber
mindestens eines, also insgesamt abzählbar viele.

Nun bauen wir den Baum: Die Ecken des Baumes sind die soeben angegebenen lokalen

(2,l)-matchings. Baumkanten werden wie folgt definiert: Sind mi,m2 zwei lokale
matchings, wobei mi zu Gn und m2 zu Gn+i gehöre, so verbinden wir mi mit m2 durch
eine Kante, falls mi C m2 gilt. Schließlich verbinden wir alle (2,l)-matchings, welche

zu Gi gehören, artifiziell mit einer Extraecke 0.

Es ist ein allgemeines Phänomen, daß solche sorgfältig definierte Extensionsgraphen
lokalfinite Bäume ergeben, eine Tatsache, die wir hier nicht im einzelnen nachrechnen.
Vielmehr wenden wir nun Königs Baumlemma an und erhalten einen in 0 beginnenden
unendlich langen Weg von matchings

0 c mi c m2 c m3 c • • •,

also eine aufsteigende Kette.
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Nun genügt es, die Vereinigung aller in den mx vorkommenden matching-Kanten zu
nehmen, um ein (2,l)-matching von G (A, B) zu erhalten. Damit ist der Satz bewiesen.

Es war für uns zunächst erstaunlich, daß die Paradoxität der diskreten Teilmengen, welche
durch die Arbeiten von Laczkovich zur Quadratur des Kreises motiviert waren, im W mit
einem solch einfachen Kriterium behandelt werden kann und dabei der Beweis derart
klassischen Linien folgt. Natürlich haben wir hier an einigen Stellen die technischen

Nachrechnungen weggelassen, welche in der Originalliteratur zu finden sind. Dadurch
hoffen wir, wenigstens die Ideen verdeutlicht zu haben, die in diesem klassischen Gebiet
der Mathematik neue Fortschritte gebracht haben.
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