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“Paradoxe” Zerlegung Euklidischer Raume

Walter A. Deuber

Walter Deuber studierte Mathematik und Physik an der ETH Ziirich, wo er 1973 bei
Emst Specker mit einer Dissertation iiber Ramsey-Theorie promovierte. Es folgten
Assistententitigkeit und Habilitation an der Technischen Universitdt Hannover. Seit
1976 ist er Professor an der Universitidt Bielefeld. Neben seiner mathematischen
Forschung, die sich vor allem mit der Kombinatorik von grossen endlichen oder
abzdhlbaren Strukturen beschiftigt, hat Walter Deuber auch anspruchsvolle Pflich-
ten in der Wissenschaftsorganisation libernommen. So war er zweimal Dekan der
Fakultit fiir Mathematik, ferner Griindungssprecher des Sonder-Forschungsbereiches
“Diskrete Strukturen in der Mathematik™ und ist Direktor am Zentrum fiir interdis-
ziplindre Forschung.

1 Einleitung

Seit der Antike ist das Problem bekannt, mit Zirkel und Lineal zu einem Kreis ein
Quadrat gleicher Flidche zu konstruieren. Gegeben sei also der Radius r als Strecke und

Dass man einer Punktmenge in der Ebene und im Raum einen Inhalt zuordnen kamn,
galt in der Geschichte der Mathematik lange Zeit als evident. So erachtete man es
bezeichnenderweise erst gegen die Mitte des letzten Jahrhunderts als notwendig, den
| Begriff des bestimmten Integrals genauver zu fassen: A, Cauchy, JP.G. Dirichlet und
natiirlich B, Riemann gaben kurz nacheinander formale Definitionen dieses Begriffes,
wobei sie in der uns heute geldufigen Weise Grenzwerte von Summen heranzogen.
Anschliessende Verfeinerungen des Inhalisbegriffes (C. Jordan, E. Borel, u.a.} fiir all-
gemeinere Punkimengen filhrten schliesslich zur Lebesgueschen Masstheorie (H. Le-
| besgue, 1902). Im Laufe der weiteren Entwicklung zeigte sich berraschenderweise
auch die Existenz von sogenannten nichtmessbaren Mengen, also von P%mkﬁmng&n,
denen in kéiner verniinftigen Weise ein Inhalt zugeordnet ‘werden kann, Solche Men:
| gen besitzen natiitlich susserst seltsame, fast “unglaubliche” Bigenschafien. ‘Bin spek-

takuliires Beispiel veroffentlichten 1924 St. Banach und A, Tarski: Sie zeigten, dass
eine Kugel mit Raﬁms ¥ in m&wh viele mﬁmssm *&xlmwgen zerlegt wemm,
kann, die sich zu zwei’ Kagehwm sﬂbmkaﬁiﬁs f 2us ,
ge éear rejiien; Anschauung wi chende - und &
Zeﬂegm anée:wsew weiteren U
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zu konstruieren ist eine Strecke s mit

s=m? dh Vr=".
Da die Geradengleichung linear und die Kreisgleichung quadratisch ist, ist diese Aufga-
be nur dann 16sbar, falls 7 selbst als ein endlicher algebraischer Ausdruck geschrieben
werden kann, in welchem schlimmstenfalls Quadratwurzeln auftreten. Schon im letzten
Jahrhundert wurde gezeigt, daB 7 transzendent ist, also nicht algebraisch dargestelit wer-
den kann. Somit ist die Quadratur des Kreises mit Zirkel und Lineal nicht durchfiihrbar.
Dies heiBit, daB — wie auch in dhnlich gelagerten Fillen (Unmoglichkeit der Wiirfelver-
doppelung, Dreiteilung des Winkels) — ein mathematischer Beweis vorliegt, dal dieses
Problem mit Zirkel und Lineal im allgemeinen nicht 16sbar ist!
Wenn nun der Kreis mit Zirkel und Lineal nicht quadrierbar ist, so konnte es ja vielleicht
auf andere Weise geschehen. Um Ideen zu fixieren betrachten wir ein einfaches Problem:
Das 4x1 Rechteck R sowie das 2x2 Quadrat Q konnen zunéchst unter Vernachlidssigung
von Réndern in je vier kongruente Quadrate zerlegt werden.

Definition Sei S eine Gruppe von Isometrien (Kongruenzabbildungen). Zwei Mengen
X,Y heiflen S-zerlegungsgleich, falls disjunkte Zerlegungen von X und Y in gleich
viele Teile existieren, mit der Eigenschaft, daf3 jedes X; isometrisch ist zu Y; mittels einer
Bijektion ¢; € S.

Die Zerlegungsgleichheit ist offenbar eine Aquivalenzrelation. Obiges Beispiel besagt
nun — unter Beriicksichtigung des Randes —, daB}

[0,2) % [0,2) und [0,4) x [0, 1)

zerlegungsgleich beziiglich Translationen sind. Auf diesem Hintergrund erhebt sich die
Frage, ob Kreis und Quadrat zerlegungsgleich sein konnen. Erstaunlicherweise konnte
Laczkovich dies beweisen:

Satz 1.1 [La 90] Kreis und Quadrat gleichen Fldcheninhalts sind zerlegungsgleich be-
ziiglich der Gruppe der Translationen in der Ebene.

Etwas allgemeiner konnte er beweisen :

Satz 1.2 [La 91] Sind A,B C R? konvexe beschrinkte Mengen gleichen Mafles, dann
sind A und B zerlegungsgleich beziiglich der Gruppe der Translationen.

Bitte versuchen Sie jetzt nicht, mit Schere und Papier die Zerlegungen nachzuvollziehen.
Laczkovich zeigt mit seinem Beweis nur, daB Zerlegungen mit etwa 10°° Stiicken das
Gewiinschte leisten. Diese Zerlegung ist also praktisch nicht durchfiihrbar. Sie kann mit
der Schere und Papier auch theoretisch nicht erfolgen, denn:
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Satz 1.3 Kreis und Quadrat gleichen Fldcheninhalts sind nicht zerlegungsgleich beziiglich
Zerlegungen in Jordan-Gebiete, d.h. topologische Scheiben.

Zur Zeit ist unbekannt, ob die Zerlegungsgleichheit von Kreis und Quadrat mit meBbaren
Stiicken realisiert werden kann. Bei einer solch verzwickten Situation erhebt sich sofort
die Frage, wie die Quadratur des Kreises denn iiberhaupt bewiesen werden kann, wenn
doch so exotische Stiicke betrachtet werden. Die prinzipielle Antwort geht dahin, daB,
statt nur endliche Konstruktionen mit Zirkel und Lineal zuzulassen, viel michtigere In-
strumente, wie z.B. das Auswahlaxiom d.h. die Auswahl unendlicher Mengen mit erlaubt
sein miissen. Das Auswahlaxiom ist bekanntlicherweise unabhéngig von der Zermelo-
Fraenkel-Mengenlehre. Es steht also frei, dieses zu verwenden oder auch nicht. In der
Mathematik wird das Auswahlaxiom des Gfteren verwendet, um recht niitzliche Sitze

zu beweisen, oder aber um die Existenz von Exoten nachzuweisen. Eine der niitzlichen
Konsequenzen ist offenbar:

Bemerkung: Jeder Vektorraum hat eine Basis.

Fiir endlichdimensionale Vektorrdume kommt man ja noch mit dem Steinitzschen Aus-
tauschsatz aus. Fiir unendlichdimensionale Rdume jedoch — z.B. die reellen Zahlen
als Vektorraum iiber den rationalen Zahlen mit der Hamel-Basis — braucht man das
Auswahlaxiom. Kiirzlich wurde gezeigt, da der Basissatz fiir Vektorrdume und das
Auswahlaxiom &quivalent sind [Bl 84].

VerlaBt man die Ebene, so erlebt man weitere paradoxe Situationen, ndmlich das berithm-
te Banach-Tarski-Paradoxon [BT 24, Wa 85].

Satz 1.4 Sei B C R die Einheitskugel. Dann gibt es eine Zerlegung in 2 Teile B = B 1QBz,
so daf3 alle drei Mengen B, B, und B zerlegungsgleich sind.

Im dreidimensionalen Raum ist es also moglich, die Einheitskugel zu verdoppeln!

2 Das Banach-Tarski-Paradoxon
Zur Einstimmung beweisen wir einige Lemmata.

Lemma 2.1 Sei N die Menge der positiven natiirlichen Zahlen und a € N. Dann sind N
und N\{a } zerlegungsgleich.

Beweis: Man betrachte die Menge aN aller Vielfachen von a. Zerlege N in N; =

aN und dessen Komplement N, = N\aN. Dann ist N\{a} = (N1\{a })UNZ. Mittels
einer Translation 7 um a lidsst sich Ny in N;\{a} iiberfilhren. Wenn dies hier auch
offensichtlich ist, so ist doch wesentlich, daB a ¢ {7(a), 7*(a), T (a)...}.

Lemma 2.1 besagt, daB das Weglassen von einem Element — und damit wegen der Tran-
sitivitidt der Zerlegungsgleichheit von endlich vielen Elementen — von N eine Menge
ergibt, welche immer noch zerlegungsgleich zu N ist. Wickeln wir nun die natiirlichen
Zahlen an der Einheitskreislinie S ! auf, wobei wir ein fest vorgegebenes a € N mit einem
Punkt p € S! identifizieren, so treten wegen der Transzendenz von 7 keine Doppeldeu-
tigkeiten auf. Translationen 7 von N gehen nun in Drehungen 4 der Einheitskreislinie
liber. Man erhiilt so:
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Korollar 2.2 Sei S! die Einheitskreislinie in der Ebene und p € S'. Dann sind S und
S\{p} zerlegungsgleich.

Beziiglich der von der Translation um 4 in Lemma 2.1 herkommenden Drehung é no-
tieren wir die fiir spiter niitzliche Aussage

(*) p e {6(p),6* (), & (p)...}.

Betrachtet man nun die Einheitskreisscheibe B2 und schneidet einen Radius ohne Zen-
trum heraus, so kann man den Beweis von Korollar 2.2 iibertragen und erhalt:

—)
Korollar 2.3 Sei B? der abgeschlossene Einheitskreis in der Ebene, p ein Einheitsvektor

- —
und R = {\p |\ € (0,11} der Radius von B? in Richtung p ohne das Zentrum. Dann
sind B? und B?\R zerlegungsgleich.

Nun wollen wir aus dem Einheitskreis noch das Zentrum ausstechen:

Lemma 2.4 B? und B?\{Zentrum} sind zerlegungsgleich.

Beweis: Aus B%\Zentrum schneide man einen Radius heraus und stecke ihn umgekehrt
wieder hinein. Damit fehlt nun ein Punkt p auf der Einheitskreislinie. Wie in Korollar
2.2 und 2.3 stellt man fest, daB B2 und B2\ {p} zerlegungsgleich sind.

Bis jetzt haben wir gezeigt, dal aus dem Einheitskreis ein Radius und das Zentrum
herausgenommen werden konnen, und die Restmenge immer noch zerlegungsgleich zum
Einheitskreis ist. Wegen der Transitivitdt der Zerlegungsgleichheit konnen wir diese
chirurgischen Operationen endlich oft durchfithren und z.B. endlich viele Durchmesser
aus B? herausnehmen, ohne die Zerlegungsgleichheit mit B? zu verlieren. Wir brauchen
aber etwas mehr, namlich, daB man sogar “abzidhlbar oft” weglassen kann, ohne die

Zerlegungsgleichheit zu verlieren.

Satz 2.5 Sei S! die Einheitskreislinie und D C S! eine beliebige abzihlbare Punktmenge.
Dann sind S' und S'\D zerlegungsgleich.

Beweis: Wir betrachten Drehungen 6, von S' um den Winkel @. Sei
®:={pe[0,2mn)|dp € D In e N §,,(p) € D}.

D und N sind abzidhlbar, also auch ®. Daher gibt es a € (0,27)\®. Damit haben wir
erreicht, daB fiir alle p,gq € D gilt:

(**) q 3 {661(}7)5 @a(P), 630(}7)“-},

welches die angekiindigte Verallgemeinerung von (*) ist.
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Wegen (%) ist 6, (D) N D = @ fiir alle n € N; insbesondere gilt fiir m > n die
Relation dgn—n)a (D) N D = 0, welche zu 8,4(D) N 8o (D) = O fiir m # n fiihrt. Die
Mengen D, 6, (D), &4 (D)..., sind also alle paarweise disjunkt. Wir zerlegen nun S! in
N; = U 610 (D) und dessen Komplement N, = S'\N;. Ebenso wird S'\D zerlegt in

n>1

die beiden Mengen d, (N1) und N,. O

Soweit fiir die Ebene. Die Verallgemeinerung auf den dreidimensionalen Raum ist of-
fensichtlich. Wir notieren

Korollar 2.6 Sei S? C R? die Einheitssphdre und D C S? eine abzihlbare Menge. Dann
sind S? und S?\D zerlegungsgleich.

Beweis: Da D abzihlbar ist, gibt es eine Gerade ¢ durch das Zentrum, welche mit D
leeren Schnitt hat. Eine solche Gerade ¢ verwenden wir als Drehachse und iibertragen
den Beweis von Satz 2.5 Wort fiir Wort.

Korollar 2.7 Sei B3 C R? die abgeschlossene Einheitskugel und D C B3 eine abzdihlbare
Menge von Durchmessern. Dann sind B* und B3\D zerlegungsgleich.

Um dem Beweis des Banach-Tarski Paradoxons niherzukommen, betrachten wir den
Einheitsball B> mit der Nordsiidachse g, sowie einer zu g; um 45° geneigten Geraden
9> durch das Zentrum. Sei

— f die Drehung um g; um 180°, also f2 =1,
— ¢ die Drehung um g, um 120°, sowie § = g2, also g3 =¢3=1.

Sei nun G die von f und g erzeugte Kongruenzgruppe. Da das Produkt von zwei Dre-
hungen wieder eine Drehung ist, gibt es zu jedem Element von G eine Drehachse. Da
G abzihlbar ist, ist die Menge D aller Durchmesser von B3, welche als Drehachsen von
Drehungen in G fungieren, abzéhlbar. Dies wollen wir uns fiir spidter auch im Kontext
von Korollar 2.7 merken.

Abgesehen von der geometrischen Interpretation als Drehung, kann formal jedes Element
von G als ein Wort W mit Buchstaben aus dem Alphabet {f,g,¢} aufgefalit werden,
wobei die folgenden “grammatikalischen Regeln” zu beachten sind:

— keine zwei gleichen Buchstaben diirfen nebeneinander stehen, da ja
fi=1,8%=¢ und g% = ¢ wire,

— &, 8 diirfen nicht direkt nebeneinander stehen.

Es ist nun eine Frage des Nachrechnens, z.B. mit Drehmatrizen, da zwei f, g, §-Worter
mit obigen Nebenbedingungen die gleiche Drehung aus G darstellen, genau wenn sie
als Worter gleich sind, d.h., daB sich G als Gruppe von Kongruenzen und G als Gruppe
von Wortern unzweideutig entsprechen. Insbesondere ist 1 € G das leere Wort. Dem
Spezialisten ist an dieser Stelle klar, daB G isomorph zum freien Produkt Z,*Z35 ist.
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Mit Hilfe der Darstellung durch Worter wollen wir nun G zerlegen als G = XUYUZ
mit

1 fX=YUZ,gX=Y,8X=2.

Um dies zu bewerkstelligen, gehen wir rekursiv vor und fangen trivial an mit 1 € X.

Betrachten wir nun ein Wort w W mit Anfangsbuchstaben w € {f,g,¢}, Endstiick W

und unterscheiden zwei Fille:

(1) wW ist nach den grammatikalischen Regeln ein unzulédssiges Wort. Dies heifit aber,
daB wW verkiirzbar ist, und nach Induktionsannahme ist also definiert, in welcher
Klasse, X,Y oder Z, sich wW befindet.

(i) wW ist grammatikalisch korrekt. Dann verwenden wir folgendes Schema wie eine
Multiplikationstabelle:

W

w X Y Z
f Yy X X
g Y 7Z X
gl Z X Y

Man betrachte also die Zeile w und die Spalte zu welcher W nach Induktionsannahme
gehort und finde im Schnittpunkt die Menge, welche w W enthilt.

Beispiel:

(o f=f-1eY, da 1leX,

B gfez, da feY,

(7 fgfeX, da gfeZ.
(6)  Beginnt ein grammatikalisch korrektes Wort w W mit f, d.h. w = f, und ist

fW e X,sogilt We Y UZ. Dies liest man in der ersten Zeile ab.

Damit ist G in die drei Mengen X,Y ,Z zerlegt. Es ist nun leicht nachzurechnen, daf3
die Relationen 1 gelten, und wir tun dies hier nur fiir die erste:

fX=YUZ.
~ Sei W € X, so ist entweder f W ein inkorrektes Wort, d.h. f ist auch der erste
Buchstabe von W, und fW € Y UZ gemiB Beispiel (). Ist f W ein korrektes
Wort, so ersieht man aus der Tabelle, daB fW € Y gilt. Somit fX C YUZ.
_ Sei W e YUZ ein Wort:

(i) Sei f der erste Buchstabe von W, dh. W = fW’, so ist W € X und daher
fW=FfW =WeX

(ii) Ist der erste Buchstabe von W in {g, ¢}, so ist f W ein grammatikalisch korrektes
Wort und deshalb geméB der ersten Zeile der Tabelle f W € X.

Somit erhalt man f(Y UZ) C X, und
YUZ =fA(Y UZ)CfX ;

insgesamt gilt also wie gewiinscht f X = YUZ.
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Wir haben an dieser Stelle den Beweis ausfiihrlich gehalten, um zu zeigen, da die

rekursive Definition mit den grammatikalischen Regeln sehr exakt verwendet werden
muB.

Nun sind die Hilfsmittel fiir den Beweis des Banach-Tarski Paradoxons bereitgestellt,

und wir lassen G als Drehgruppe auf B> operieren, d.h. die Worter W aus G sind nun
wieder Drehabbildungen:

Fiir p € B3\D sei G(p) die G-Bahn von p, d.h. G(p) = {W(P)|W € G}, die Menge
aller Punkte, die Bilder von p unter Drehung in G sind. Bekanntlich zerlegen die Bahnen
den Grundraum, d.h. fiir alle p, p’ gilt entweder G(p) = G(p’) oder G(p) NG (p’) = (. In
jeder Bahn wihle man mit Hilfe des Auswahlaxioms einen Représentanten und erhalte
die Menge R aller Reprisentanten.

Man rechnet nach, daB G(R) = B3\D.

Die Zerlegung von G = XUYUuZ iibertragen wir nun auf B3\D: A = X(R), B =
Y (R), C =Z(R). Nach Konstruktion — die Gruppenelemente sind Drehungen — gilt
sinngeméil

f(A)=BUC, g(A) =B, (A) =

Somit sind A, B, C und BUC alle kongruent zueinander. Dies erlaubt uns, A kongruent
zu BUC (man verwende die Kongruenz zwischen A und B UC als Schnittmuster) in zwei
Teile zu zerlegen: A = A1UA2 m1t Ay kongruent B, A, kongruent C, also A;, A, beide
kongruent zu A. Ebenso B = B 1UBz, Cc=C IUCZ, alles mittels kongruenter Mengen.

Nun ist o _
B3 = AUBUCUD = (A;UA;) U By UB)UC; UC)UD

= (A UB; UC, UD)U(A, UB, U Cy) = B3UB3\D .
Nach Korollar 7 ist B3\D zerlegungsgleich zu B>!

Somit ist B* in zwei Mengen disjunkt so zerlegt, daB diese Mengen zerlegungsgleich zu
B? sind. O

3 Uniform ausgebreitete Mengen

Uniform ausgebreitete Mengen, d.h. Punktmengen in der Ebene, welche in der Néhe des
Gitters Z2 liegen [La 90], gehen zentral in den Beweis von Laczkovich iiber die Quadratur
des Kreises ein. Der volle Beweis des Satzes von Laczkovich wiirde den Rahmen die-
ses Aufsatzes sprengen, zumal er mit seinen zahlentheoretischen und maftheoretischen
Argumentationen einige Stufen tiefer liegt.

Definition: Sei Q = Z? das Quadratgitter. Eine Menge X C R? heif3t uniform ausge-
breitet (beziiglich Q), falls eine Bijektion ¢ : X < Q existiert mit
lp(x) — x| <k fiir ein geeignetes k € R und alle x.

Eine Punktmenge X ist also uniform ausgebreitet, falls X mittels einer Bijektion in
Q “hineingewackelt” werden kann, wobei beim Wackeln jeder Punkt hochstens k weit
bewegt wird.
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Beispiele: Natiirlich ist Q selbst uniform ausgebreitet. Entfernt man aus Q eine endliche
Punktmenge D so ist Q\D uniform ausgebreitet. Ebenso fiihrt das Weglassen von endlich
vielen Gittergeraden aus () wieder zu einer uniform ausgebreiteten Menge. Uniform
ausgebreitete Mengen sind abzéhlbar und diskret, d.h. jede beschrinkte Teilmenge ist
endlich.

Uniform ausgebreitete Mengen sind im eindimensionalen Fall — man betrachte be-
schrinkte Bijektionen ¢ : X < Z — aus der Zahlentheorie recht gut bekannt. Die
Ausdehnung des Begriffs auf die Ebene oder allgemeiner fiir metrische Rdume ist erst
in neuerer Zeit fruchtbar geworden.

Im allgemeinen wird es unmoglich sein, fiir eine uniform ausgebreitete Menge X eine
Bijektion ¢ : X < () effektiv anzugeben. Man ist daher bemiiht, Kriterien anzugeben,
welche auf Grund lokaler Eigenschaften von X die Existenz einer globalen Bijektion
X « ( garantieren. Hierfiir wird nun ein Kriterium angegeben (zu einer Menge A
bezeichnet |A| deren Kardinalitit).

Kriterium 3.1 [La 90] Sei X C R? eine Punktmenge. X ist uniform ausgebreitet, genau
wenn ein k € R existiert mit:

(i) Fiir jede endliche Teilmenge A von X enthdlt die k-Umgebung von A mindestens |A|
viele Punkte aus Q.

(i) Fiir jede endliche Teilmenge B von Q enthdlt die k-Umgebung von B mindestens |B |
viele Punkte aus X .

Um festzustellen, ob X uniform ausgebreitet ist, muf3 man also “nur” testen, ob zu jeder
endlichen Teilmenge von X und Q jeweils geniigend viele Punkte der jeweils anderen
Menge hochstens einen vorgegebenen Abstand k hierzu haben.

Wir geben nun die wesentlichen Ideen des Beweises und beginnen mit dem sogenannten
Heiratssatz fiir endliche bipartite Graphen.

Definition: Ein Graph heif3t bipartit, falls seine Eckenmenge so in zwei Teilmengen
(typischerweise A, B) zerlegbar ist, daf3 alle Kanten von der einen zur anderen Teilmenge
verlaufen.

A B

Im Rahmen der Soziomathematik werden bipartite Graphen modelliert, indem die Ge-
sellschaft in zwei Geschlechter zerfdllt und die Kanten die symmetrische Relation des
“heterosexuell befreundet sein” angeben. Wir halten uns hier an die abstrakte Sprache
der Mathematik und iiberlassen Interpretationen dem Leser.
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Zu jedem a € A gibt es die Menge der benachbarten Ecken
B, ={b € B | a und b sind durch eine Kante verbunden}.

Ebenso gibt es zu A’ C A die Menge Ba: der Ecken in B, die zu mindestens einem
a € A’ benachbart sind
Ba = | J B..

acA’

Ein A-matching in einem bipartitem Graphen A, B ist eine Menge von Kanten mit
folgenden Eigenschaften:

(i) Jeder Punkt von A ist in genau einer Kante des matching enthalten,
(i1) je 2 Kanten sind identisch oder haben disjunkte Endpunkte.

Der Heiratssatz von P. Hall, welcher schon im letzten Jahrhundert bei Frobenius in matri-
zentheoretischer Formulierung auftritt, gibt ein Kriterium dafiir, da in einem endlichen
bipartiten Graphen ein A-matching existiert.

Satz 3.2 [Ha 35] Sei G = (A, B) ein endlicher bipartiter Graph. Dann sind folgende
Aussagen dquivalent

(i) Zu G existiert ein A-matching.
(ii) Fiir jedes A" C A gilt |Ba/| > |A’| (Hall’sche Bedingung).

Beweis: “i = ii” Sei M eine Kantenmenge, die ein A-matching ist. Da die Kanten in
M paarweise disjunkt sind, ist fiir jedes A’ C A die Ungleichung |B4.| > |A’| erfiillt.

Der folgende Beweis fiir “ii = i” geht auf Halmos und Vaughan [HV 50] zuriick
und geschieht mit Induktion nach |A|. Fiir |A| = 1 gibt die Hall’sche Bedingung das
A-matching. Also ist |A| > 2 und fiir alle A’ C A der Satz schon bewiesen.

Fall (a) Jede echte nichtleere Teilmenge A’ von A erfiillt |B4/| > |A’|+ 1. Dann wihlen
wir eine beliebige Kante fiir das matching. Der Restgraph (ohne die beiden Endpunkte
der gewihiten Kante) erfiillt die Hall’sche Bedingung und hat nach Induktionsannahme
ein matching.

Fall (5) Es gibt eine echte nichtleere Teilmenge A’ von A mit |Ba/| = |A’|. Nach In-
duktion gibt es ein A’-matching. Der Restgraph (ohne die vom A’-matching iiberdeckten
Ecken) erfiillt die Hall’sche Bedingung, denn wire diese fiir ein A* C A\ A’ verletzt,
so auch fiir A* U A’. Also gibt es nach Induktionsannahme im Restgraphen auch ein
matching.

Dieser Beweis ist der kiirzeste mir bekannte und offenbar sehr elegant. Er hat vom
Standpunkt der angewandten Mathematik den Nachteil, dal man erst in den Fall (0)
kommt, nachdem man alle 2!4/ — 2 nichtleeren Teilmengen A’ von A ausgetestet hat,
also exponentiell lange gearbeitet hat. Es gibt zum Gliick Beweise, welche zu einem
Algorithmus mit O(|A|>°) Laufzeit fithren [HK 73], wobei gegebenenfalls auch gleich
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ein Gegenbeispiel, falls vorhanden, produziert wird. Ob dies bestmoglich ist, ist nicht
bekannt.

Der nichste Schritt besteht nun darin, den Heiratssatz auf abzéihlbare bipartite Graphen
auszudehnen. Folgendes Beispiel zeigt, daB dies im allgemeinen nicht geht.

B »\o\o\o

Hier ist die Hall’sche Bedingung erfiillt, aber ein A-matching existiert nicht. Dies liegt an
dem einen Punkt ag, in welchem unendlich viele Kanten anstoBen, d.h. ay hat unendliche
Valenz.

Falls man sich auf abzédhlbare Graphen beschridnkt, in denen kein Punkt unendliche
Valenz hat, d.h. auf lokalfinite Graphen, so gilt der Heiratssatz:

Satz 3.3 Sei G = (A, B) ein lokalfiniter bipartiter Graph. Dann hat G ein A-matching
genau wenn ﬁ'ir jede endliche Teilmenge A’ von A die Hall’ sche Bedingung erfiillt ist.

Wir wollen den Beweis hier nicht bringen, zumal wir im nichsten Abschnitt einen etwas
allgemeineren Satz beweisen werden.

Als nédchstes betrachten wir einen abz#dhlbaren lokalfiniten bipartiten Graphen, in wel-
chem die Hall’sche Bedingung auf beiden Seiten erfiillt ist. Wir wissen also, daB} in
G = (A, B) sowohl ein A-matching als auch ein B-matching existiert. Dies heifit aber
noch nicht direkt, daB ein matching gleichzeitig beide Seiten A, B iiberdeckt. Dies wird
vielmehr erst von einem anderen klassischen Satz garantiert.

Satz 3.4 (Cantor-Bernstein) Sei G = (A, B) ein bipartiter Graph, in welchem es sowohl
ein A-matching M,, als auch ein B-matching M, gibt. Dann gibt es ein matching M
welches gleichzeitig A und B iiberdeckt. Weiter ist (als Kantenmenge) M C M, U M,.

Nun ist der Beweis des Kriteriums fiir das uniforme Ausgebreitetsein einer Menge recht
leicht. Man betrachte den bipartiten Graphen mit den beiden Teilen A = X und B = Z2.
Sollten A und B nicht disjunkt sein, so verschieben wir die Punkte in A um ¢ und
erreichen A N B = (. Zwei Punkte in A, B sind durch eine Kante zu verbinden, falls
ihr Abstand hochstens k ist. Ein A und B iiberdeckendes matching definiert nun durch
seine Kanten eine Bijektion ¢ : A — B mit |p(x) — x| < k fiir alle x. Die im Kriterium
angegebenen Bedingungen sind aber gerade die Hall’schen Bedingungen fiir die beiden
Seiten des bipartiten Graphen.
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4 Paradoxe diskrete Punktmengen

Wir haben im letzten Abschnitt uniform ausgebreitete Mengen in der Ebene kennenge-
lernt. Die dortige Definition 148t sich offenbar viel allgemeiner fassen.

Definition: Sei M ein metrischer Raum mit Metrik d. Zwei Teilmengen X,Y von M
heifien aquivalent, falls eine Bijektion ¢ : X «— Y existiert mit

d(px),x) <k
fiir ein geeignetes k und alle x € X.

Wir erinnern uns, dal eine Menge X uniform ausgebreitet ist, wenn sie dquivalent zum
Quadratgitter ist. Allgemein ist in einem metrischen Raum eine Menge X &4quivalent
zu Y falls X in Y “hineingewackelt” werden kann. Es braucht wohl nicht betont zu
werden, daB es sich bei unserem Begriff auch wirklich um eine Aquivalenz handelt.

In Anlehnung an das Banach-Tarski-Pardoxon wollen wir nun paradoxe Mengen defi-
nieren.

Definition: Eine Teilmenge M eines metrischen Raumes heif3t paradox, genau wenn
eine Zerlegung von M in zwei Teilmengen My, M, existiert, so daf} alle drei Mengen
M, My, M paarweise dquivalent sind.

Beispiel 1 Sei M ein beschrinkter metrischer Raum (z.B. der triviale metrische Raum
mit d(x,y) = 1, genau wenn x # y). Dann ist X &dquivalent zu Y, genau wenn sie
dieselbe Kardinalitdt haben. M ist paradox, genau wenn M unendlich ist.

Wir haben dieses Beispiel nur angegeben um zu zeigen, ein wie weites Spektrum der Be-
griff der paradoxen Mengen umfaft. In diesem Aufsatz beschrinken wir uns im weiteren
auf den R" mit der euklidischen Metrik.

Beispiel 2 R" ist paradox. Fiir n = 2 pflastere man die Ebene schachbrettartig mit [0, 1)
Quadraten. Die schwarzen Felder gehoren zu M,, die weilen zu M,. Es ist klar, daB
M, und M, &quivalent sind. Ferner ist [0, 1)2 dquivalent zu [0, 1) % [0, 2), womit man
stiickweise eine Bijektion zwischen M, und M hat.

Dieses Beispiel zeigt, dass die Frage nach paradoxen Mengen erst interessant wird, wenn
man sich auf moglichst “diinne” Mengen kapriziert.

Definition: X C R" heif3t diskret, falls jede beschrinkte Teilmenge von X endlich ist.

Fiir diskrete Mengen ist die Frage der Paradoxitit nicht mehr so einfach. Immerhin gibt
es noch Beispiele.
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Beispiel 3 Sei M = {logn|n € N} die Menge der Logarithmen natiirlicher Zahlen. M
ist paradox: Man setze

M; ={log2n | n e N}
M, ={log2n +1) | n e N},

die Mengen der Logarithmen gerader resp. ungerader natiirlicher Zahlen. Wegen log 2n =
logn +log?2 ist M; dquivalent zu M. Wegen

2n +1
lim (log(2n + 1) — log(2n)) = lim log " =logl=0
Nn—>00 n—ca 27”1

ist auch ¢ : M, — M,, welches durch ¢(log2n) = log(2n + 1) definiert ist, eine
Wackelbijektion.

Nun liegen im Intervall [0, x) ungefihr f (x) = e* viele Punkte von M, d.h. die Kardina-
litdt von M N[0, x] wichst exponentiell. Man konnte daher vermuten, dal die Paradoxitit
von M mit dessen exponentiellem Wachstum zusammenhingt. Da8 dies bei geeigneter
Definition zutrifft, wollen wir nun beweisen.

Definition: Eine diskrete Teilmenge M von R" hat mindestens exponentielles Wachs-
tum, falls € > 0 und k € N existieren, so dap fiir jede endliche Teilmenge X' von M
gilt:
Jede k-Umgebung von X'

UX' M)={ze M|y e X" d(z,y) <k}
hat mindestens (1 +¢€)|X’| viele Punkte.

Wir wollen nun flugs diese etwas abstrakte Definition vereinfachen und beweisen

Lemma 4.1 Sei M C R" diskret. Dann sind dquivalent

(1) M hat mindestens exponentielles Wachstum.
(ii) Es gibt k € N, so dap fiir jede endliche Teilmenge X' von M gilt

U (X', M)| > 2|X’].

Beweis: “i = i1”: Habe X exponentielles Wachstum mit Parametern ¢, k, so gibt es a
mit (1 +¢)* =2 und man setze k = ak. Man verwende nun die Exponentialgesetze um
(11) zu zeigen.

“ii = i”: Dies ist die Definition des exponentiellen Wachstums mit € = 1.

Es gilt nun
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Satz 4.2 [DeSiSo 91] Sei M eine diskrete Punktmenge in R". Dann sind dquivalent
(1) M ist paradox.
(il M hat mindestens exponentielles Wachstum.

Zunichst zeigen wir, daB jede paradoxe Meﬁge auch mindestens exponentielles Wachs-
tum hat. Sei M = M;UM, eine paradoxe Zerlegung mit Wackelbijektionen ¢; : M —
M; fiir i = 1,2 mit zugehorigen Konstanten ki, k,. Mit k = max(k,, k;) erhalten wir
sofort fiir jede endliche Teilmenge X’ von M

Uk (X', M)| > |1 (XD)] + (XN = 2|X],

d.h. M hat mindestens exponentielles Wachstum.

Damit ist die Wachstumsbedingung als Kriterium fiir Paradoxitit als natiirlich erkannt.
Die Umkehrung ist etwas schwieriger zu beweisen. Der Beweis folgt der Linie des oben
beschriebenen Heiratssatzes, benutzt jedoch einen Haremsatz.

Definition: Sei G = (A, B) ein bipartiter Graph. Eine Kantenmenge m ist ein (2,1)-
matching fiir G falls m jeden Punkt von A genau zweimal und jeden Punkt von B genau
einmal trifft.

Wie vorher ist ein Graph lokalfinit, falls in jedem Punkt nur endlich viele Kanten an-
stolen. Weiter sind B, und A, die Mengen der mit a, resp. b verbundenen Punkte
(@ € A,b € B), sowie By, Ap: die Mengen der mit A’ C A resp. B’ C B verbunde-
nen Punkte. Es gilt nun der folgende Haremsatz.

Satz 4.3 Sei G = (A, B) ein lokalfiniter bipartiter abzihlbarer Graph. Es gibt genau dann
ein (2, 1)-matching, wenn

(i) |Bar| > 2|A’| fiir jede endliche Teilmenge A’ von A, sowie

(ii) |Ag/| > |B’| fiir jede endliche Teilmenge B’ von B gilt.

Bemerkungen:

1. Der Satz gilt (mit austauschbarem Beweis) fiir (k, £)-matchings (k, £ natiirliche Zah-
len).

2. Die Lokalfinitheit ist wesentlich, nicht jedoch die Abzidhlbarkeit, welche hier der
Einfachheit halber gefordert wurde. Im allgemeinen Fall wird das Auswahlaxiom
benotigt.

Der Beweis des Satzes, daB eine diskrete Menge M von mindestens exponentiellem
Wachstum paradox ist, ist nun ganz leicht:

Man betrachte den bipartiten Graphen mit A = M und B = M und verbinde zwei
Punkte, falls ihr Abstand hochstens k ist. Die Bedingung fiir exponentielles Wachstum
ergibt unmittelbar die Existenzbedingungen fiir ein (2,1)-matching. Dieses zerlegt B in
zwei Mengen M, M,, welche entlang der Kanten des matchings dquivalent zu M sind,
womit M als paradox erkannt ist. ]

Der Beweis des Haremsatzes folgt dhnlichen Gedankengidngen wie derjenige des Hei-
ratssatzes. Allerdings brauchen wir eine etwas technischere Version fiir den Beweis von
Satz 4.2. welcher wiederum keine neuen Ideen braucht, sondern im formalen Rahmen
des Heiratssatzes bewiesen werden kann.
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Bemerkung: Ist G = (A, B) ein abzdhlbarer lokalfiniter bipartiter Graph, sind A* C
A,B* C B endliche Mengen und gelten die Bedingungen (i) (ii) des Haremsatzes fiir
Teilmengen A’ von A* und B’ von B*, dann gibt es in G ein “lokales” (2,1)-matching m,
d.h. eine Kantenmenge welche A* genau zweifach und B* genau einfach iiberdeckt. Man
bemerke, daf3 die Kanten von m nicht zwischen A* und B* verlaufen miissen.

Wir wenden uns nun der Ubertragung des endlichen Falles des Haremsatzes, den wir
voraussetzen, auf den abzdhlbaren Fall zu und werden hierfiir das Baumlemma von
Konig anwenden.

Definition: Ein Baum ist ein ungerichteter
zusammenhdngender Graph ohne Kreise
(s. Bild).

Satz 4.4 (Baumlemma von Konig) [K6 27]: Sei T ein abzdhlbarer lokalfiniter Baum.
Dann gibt es von jedem Punkt aus einen unendlich langen Weg.

Beweis: Seien T ein Baum und eine Ecke f; gegeben. Da T lokalfinit ist, gibt es einen
Nachbarn t; von ty, liber welchen unendlich viele Wege laufen. Aus demselben Grund
gibt es einen Nachbam #, von t,, iiber ... usw. to—t; —t;... ist dann ein unendlich langer
Weg. O

Um das Baumlemma anzuwenden, gehen wir von einem bipartiten lokalfiniten abzéhl-
baren Graph G = (A, B) aus und zdhlen A = {ay,4;...},B = {b},b,...} auf. Fiir jede
natiirliche Zahl n betrachten wir den endlichen Graphen G,, welcher aus allen Kanten be-
steht, die in A}, = {a,...a,} oder B, = {b;...b, } anstoBen. Nun erfiillt G,, die Bedingung
der Bemerkung zum Haremsatz. Also gibt es in jedem G, ein lokales (2,1)-matching
m fiir A}, B,;. Da G, endlich ist, gibt es nur endlich viele solche (2,1)-matchings, aber
mindestens eines, also insgesamt abzdhlbar viele.

Nun bauen wir den Baum: Die Ecken des Baumes sind die soeben angegebenen loka-
len (2,1)-matchings. Baumkanten werden wie folgt definiert: Sind m,;,m, zwei lokale
matchings, wobei m; zu G, und m; zu G, gehore, so verbinden wir m; mit m, durch
eine Kante, falls m; C m, gilt. SchlieBlich verbinden wir alle (2,1)-matchings, welche
zu G; gehoren, artifiziell mit einer Extraecke O.

Es ist ein allgemeines Phdanomen, da solche sorgfiltig definierte Extensionsgraphen
lokalfinite Bdume ergeben, eine Tatsache, die wir hier nicht im einzelnen nachrechnen.
Vielmehr wenden wir nun Konigs Baumlemma an und erhalten einen in 0 beginnenden
unendlich langen Weg von matchings

OCcmcmcmC---,

also eine aufsteigende Kette.
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Nun geniigt es, die Vereinigung aller in den m; vorkommenden matching-Kanten zu
nehmen, um ein (2,1)-matching von G = (A, B) zu erhalten. Damit ist der Satz bewiesen.

Es war fiir uns zunéchst erstaunlich, daB} die Paradoxitét der diskreten Teilmengen, welche
durch die Arbeiten von Laczkovich zur Quadratur des Kreises motiviert waren, im R” mit
einem solch einfachen Kriterium behandelt werden kann und dabei der Beweis derart
klassischen Linien folgt. Natiirlich haben wir hier an einigen Stellen die technischen
Nachrechnungen weggelassen, welche in der Originalliteratur zu finden sind. Dadurch
hoffen wir, wenigstens die Ideen verdeutlicht zu haben, die in diesem klassischen Gebiet
der Mathematik neue Fortschritte gebracht haben.
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