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Catalan-Zahlen und Wege in einem ganzzahligen Gitter

Peter J. Hilton und Jean Pedersen

Peter J. Hilton studierte in Oxford. Nach einigen Jahren Titigkeit an Universitiiten
in England verlegte er seinen Wohnsitz in die Vereinigten Staaten und arbeitete seit-
her an verschiedenen amerikanischen Universititen. Seit 1982 ist er Distinguished
Professor of Mathematics an der State University of New York in Binghamton. Er
hat zahlreiche Biicher und Forschungsartikel geschrieben, vor allem in den Gebie-
ten algebraische Topologie, homologische Algebra und Gruppentheorie. Neben der
Forschung war ihm schon immer der mathematische Unterricht ein besonderes An-
liegen.

Jean Pedersen gehort seit mehreren Jahren dem Lehrkorper des Mathematikdeparte-
mentes der Santa Clara University in Kalifornien an. Thre mathematischen Interessen
wurden durch den langjihrigen engen wissenschaftlichen Kontakt mit G. Pélya ge-
formt: Polyedergeometrie, Kombinatorik, mathematischer Unterricht. Thre Arbeiten
haben grosse internationale Anerkennung gefunden, wie durch Einladungen zu Vor-
trigen an Konferenzen in den USA, Kanada, Italien, Israel belegt wird. Peter Hilton
und Jean Pedersen haben in den letzten Jahren gemeinsam eine lange Reihe von
Beitrigen, insbesondere zum mathematischen Unterricht, veroffentlicht.
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Einleitung

Zwei Eigenschaften machen die Kombinatorik zu einem mathematischen Gebiet, das
sich fiir den Schulunterricht besonders eignet. Erstens verwendet die Kombinatorik eine
Vielzahl von Begriffen aus ganz verschiedenen mathematischen Gebieten und ist so ein
schones Beispiel fiir die Einheit der Mathematik. Zweitens ist die in der Kombinatorik
verwendete Mathematik elementar in dem Sinne, dass ihre Behandlung keine grosseren
Vorbereitungen erfordert; in der Tat kommen die benétigten mathematischen Werkzeuge
typischerweise sogar ohne Differentialrechnung aus.

Die Catalan-Zahlen, so benannt nach dem belgischen Mathematiker Eugene Charles
Catalan (1814-1894), aber tatsédchlich schon viel frilher von Euler im 18. Jahrhundert
entdeckt, lassen sehr viele verschiedene Interpretationen zu. In dieser Arbeit geben wir
drei davon an, die als grundlegend angesehen werden konnen, indem sie sich auf of-
fensichtlich wichtige Konzepte der Graphentheorie, der Informatik und der Geometrie
beziehen. Ferner behandeln wir eine vierte Interpretation, welche die Catalan-Zahlen mit
Wegen in einem ganzzahligen Gitter in der Koordinatenebene verbindet; dies erlaubt es
uns, die Catalan-Zahlen in das grosse Gebiet der klassischen Algebra einzuordnen.

Wir haben an anderer Stelle iiber dieses Thema bereits publiziert (siche [HP 1,2]), einmal
um Hintergrundinformation zu liefern, dann aber auch, um einen attraktiven Beitrag fiir
Mathematiker zu schreiben, deren Hauptinteresse ausserhalb der Kombinatorik liegt. Hier
ist unsere Zielrichtung davon verschieden; wir mochten mit diesem schonen Beispiel
aus der Kombinatorik den Mathematiklehrern Ideen liefern, die zur Motivation ihrer
Schiiler fiir mathematische Einsichten und Techniken dienen konnen. Aus diesem Grunde
bemiihen wir uns hier, die verschiedenen kombinatorischen Operationen explizit und
ausfiihrlich zu beschreiben.

In unserem Text stellen wir ein Argument dar, welches im Laufe des 19. Jahrhunderts
vom franzdsischen Mathematiker Désiré André entdeckt worden ist, und das, wie wir
glauben, eine der schonsten und stimulierendsten mathematischen Einsichten beinhaltet,
welche in der Schule voll gewiirdigt werden konnen. Dieses Argument wurde von André
entwickelt, um eine Losung des sogenannten Abstimmungsproblems zu geben, aber es
zeigt sich, dass es auch als wichtiges Werkzeug fiir das Studium der Catalan-Zahlen in
ihrer vierten Interpretation dienen kann. Im letzten Abschnitt unseres Beitrags geben wir
schliesslich eine ausfiihrliche Diskussion des Abstimmungsproblems.

Wir danken Professor Pere Mumbrui von der Universitit Barcelona fiir die Einladung,
eine Folge von Vortriagen zu halten, aus denen dieser Beitrag entwickelt worden ist.

1 Biume, Klammerausdriicke und konvexe Vielecke

Wir beginnen mit einer Darstellung von drei natiirlichen kombinatorischen Begriffen, die
in vollig verschiedenen Zusammenhéngen auftreten, die sich aber spéter als mathematisch
dquivalent herausstellen werden.

Es sei n eine feste ganze Zahl, n = 2. Dann definieren wir drei Folgen von positiven
ganzen Zahlen, die von n abhingen:

ax: nag =1, n,ar = Anzahl der n-dren Biume mit k Verzweigungspunkten, k > 1;
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bx: nbo = 1, ,br = Anzahl der Klammerausdriicke, die durch k Anwendungen einer
n-dren Operation erhalten werden konnen, k > 1;

Ck: nCo =1, ncx = Anzahl der verschiedenen Unterteilungen eines konvexen Vielecks
in k (n + 1)-Ecke durch Diagonalen, die sich nicht schneiden, k > 1.

Man beachte, dass fiir k > 1 das Folgende gilt:

(i) ein n-drer Baum mit k Verzweigungspunkten hat (n — 1)k + 1 Endpunkte und im
ganzen nk + 1 Punkte (siehe Figur 1(a,b));

1 1 2
4 3 4 5
2 3
Fig. 1a) n = 2, k = 3. Ein bindrer Baum (n = 2) Fig. Ib) n = 3, k = 2. Ein ternidrer Baum (n = 3)
mit 3 (k = 3) Verzweigungspunkten (e) mit 2 (k = 2) Verzweigungspunkten (e)
und 4 Endpunkten (0). und 5 Endpunkten (0).

(ii) die n-ire Operation wird, durch Setzen von Klammem, k-mal auf eine Folge von
(n — Dk +1 Symbolen angewendet (siche Figur 1(a’,b’));

(s1((s2 53)54)) (s152(s3 54 55))
Fig. la') n = 2, k = 3. Klammerausdruck, erhal- Fig. lb') n = 3, k = 2. Klammerausdruck erhal-
ten durch 3 (k = 3) Anwendungen einer ten durch 2 (k = 2) Anwendungen einer
bindren (n = 2) Operation auf 4 Symbole terndren (n = 3) Operation auf 5 Symbole

(iii) das Vieleck hat (n — 1)k +2 Seiten und wird durch k — 1 Diagonalen in k disjunkte
(n + 1)-Ecke zerlegt (siehe Figur 1(a”,b")).

Ein ((n — 1k + 2)-Eck wird durch (k — 1) Diagonalen in k disjunkte (n + 1)-Ecke zerlegt.

AN

Fig. 12") n = 2, k = 3. Ein 5-Eck wird durch 2 Fig. 1b”) n = 3, k = 2. Ein 6-Eck wird durch 1
Diagonalen in drei 3-Ecke zerlegt. Diagonale in zwei 4-Ecke zerlegt.
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Ein gut bekanntes und leicht zu beweisendes Resultat (fiir den Fall n = 2 siehe Sloane
[S]) ist das folgende

Theorem 1.1 nlk = nbr = nCr .

Die Bdume der Figur 1(a, b) konnen in die entsprechenden Klammerausdriicke der Figur
1(@, b’) iibersetzt werden. Dazu fiihren wir der Reihe nach Zuordungen durch, wie sie
in der Figur 2 beschrieben werden. Um einen gegebenen Baum in den entsprechenden

Fiir eine n-#ére Operation ist die Zuordnung an einem im Innern liegenden Verzweigungspunkt gegeben durch

|

(5812:1 . .'En)

. . . (Jedes x; ist ein Ausdruck in einer geordneten Un-
1 T2 Tn termenge der urspriinglichen Symbole s;.)

An einem Anfangspunkt ist die Zuordnung gegeben durch

& (ny2 ... yn)

% Ya Un (Jedes y; ist ein Ausdruck in einer geordneten Un-
termenge der urspriinglichen Symbole s;.)

Fig. 2 Typische Schritte bei der Zuordnung eines Klammerausdrucks zu einem Baum.

Klammerausdruck iiberzufiihren, numeriere man als erstes die Endpunkte des Baumes
“von links nach rechts” wie in den Beispielen in der Figur 1(a, b). Dann wird jeder Zahl
i ein Symbol s; zugeordnet. Schliesslich beginne man an einer Stelle bei den Endpunk-
ten, wo ein vollstidndiger Satz von n Symbolen vorkommt, und fiihre die in der Figur
2 angegebene Zuordnung fiir einen im Innern liegenden Punkt aus.!) Man wiederhole
diesen Prozess der Reihe nach fiir alle Punkte im Innern, bis man den Anfangspunkt
erreicht. Fiir diesen fiihre man die zu einem Anfangspunkt gehorige Zuordnung aus, um
den gewiinschten Klammerausdruck zu erhalten. Die Figur 3 illustriert diesen schrittwei-
sen Prozess an einem Beispiel. Um von einem Klammerausdruck zum entsprechenden
Baum zu gelangen, geht man einfach in der umgekehrten Richtung vor.

Die Beziehung zwischen den Bidumen der Figur 1(a, b) oder der Klammerausdriicke
der Figur 1(a’, b’) und den entsprechenden unterteilten Vielecken der Figur 1(a”, b”)
ist subtiler (und der Hinweis, der in [S] fiir den Fall n = 2 gegeben wird, erscheint

1) Falls mehr als eine Stelle dieser Art vorkommt, so konnen die zugehorigen Zuordnungen simultan durch-
gefithrt werden.
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« (51((s283)s4))
o &
s L4 81 ((8283)84)
84 (8285) 3y
82 83

Fig. 3 Auf diese Weise wird einem Baum schrittweise ein Klammerausdruck zugeordnet.

/ A\(nj'l)kﬂ / L'\("-l)k-bl

. j+n+1
j+n+1

j j+n . : , .
J G+Lji+2...,0+n)=2
. Eine Diagonale wird in das Vieleck
" . eingefiihrt und bezeichnet.
] + . *

7+2 A (n + 1)-Eck der
resultierenden Unterteilung.

(85418542 ... Sy4n) tritt im Ausdruck auf.

Fig. 4 Der erste Schritt der Zuordung zwischen einem Klammerausdruck und einem unterteilten Vieleck.

uns etwas kryptisch). Deshalb gehen wir hier sehr explizit auf diese Zuordnung ein;
sie wird uns schliesslich das Resultat ,b;y = ,c; liefern. Wir nehmen an, dass uns ein
Klammerausdruck vorliegt, der durch k-fache Anwendung einer n-dren Operation auf
eine Folge von (n — 1)k + 1 Symbolen entstanden ist. Wir zeichnen dann ein konvexes
((n — 1)k + 2)-Eck und versehe dessen Seiten, mit Ausnahme der obersten, im Gegen-
uhrzeigersinn mit den Zahlen 1 bis (n — 1)k + 1 (siehe Figur 4). Von links beginnend
finde man nun den ersten Ort im Klammerausdruck, wo eine Folge von n Symbolen in
Klammern eingeschlossen ist. Falls die Indizes der eingeschlossenen Symbole von j + 1
bis j +n gehen, so zeichne man eine Diagonale vom Anfangspunkt der (j + 1)-ten Seite
zum Endpunkt der (j + n)-ten Seite und versehe diese Diagonale mit der Beschriftung
G+1,j+2,..., j +n). Sie teilt das ganze Vieleck in zwei Teilvielecke auf, das eine ist
ein (n + 1)-Eck, wie wir es uns gewiinscht haben, und das andere hat weniger Seiten als
das urspriingliche Vieleck. Wir ersetzen nun in Gedanken den zu (j +1,j +2,...,j +n)
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gehorigen Teil unseres Klammerausdruckes durch ein einzelnes Symbol, zum Beispiel
Z . Wir haben damit unseren Ausdruck effektiv auf einen kiirzeren reduziert, der durch
k — 1 Anwendungen der n-dren Operation entstanden ist. Auf diese Art und Weise
fahren wir induktiv fort, um in unserem Vieleck weitere Diagonalen einzufiihren. Falls
die Seitenzahlen i durch die Symbole s; ersetzt werden, so liefert die Beschriftung
der letzten (obersten) Seite genau den urspriinglichen Klammerausdruck. Figur 5(a, b)
illustriert, wie fiir den entsprechenden Ausdruck der Figur 1(a’, b’) die Unterteilungen
des Pentagons und des Hexagons zu beschriften sind.

(1((23)4)) (12(345))
1 \@5\‘) 4
a) Vieleck fiir (5;((s253)84)), n = 2, k = 3. b) Vieleck fiir (s15,(s35485)), n =3, k = 2.

Fig. 5 Unterteilungen von Vielecken und zugehorige Klammerausdriicke.

Offensichtlich konnen wir auch in der umgekehrten Richtung vorgehen. Wenn ein
((n — 1)k +2)-Eck gegeben ist, das durch k — 1 Diagonalen in k disjunkte (n + 1)-Ecke
unterteilt ist, so konnen wir auf diese Weise den dazugehorigen Ausdruck und damit
natiirlich auch den entsprechenden Baum erhalten. Wir werden bald sehen, wie man zu
einem gegebenen Baum auch direkt ein unterteiltes Vieleck zuordnen kann.

Wir illustrieren diese Korrespondenzen noch einmal an dem folgenden Beispiel, das
etwas komplizierter ist als das der Figur 5.

Beispiel 1.1 Es sei n =3 und k = 4. Wir betrachten den Ausdruck

(81(5253(84(555657)58))S9) -

Die entsprechende Aufteilung des konvexen 10-Ecks durch 3 Diagonalen in 4-Ecke mit
der entsprechenden Beschriftung ist in Figur 6 angegeben. Der entsprechende ternére
Baum ist in Figur 7 aufgezeichnet.

Wir diskutieren zuerst, wie wir vom (unbeschrifteten) unterteilten Vieleck zum dazuge-
horigen Ausdruck gelangen. Die Tatsache, dass das Vieleck in 4-Ecke aufgeteilt ist, sagt
uns, dass wir eine ternidre Operationen zu betrachten haben. Wir lassen die oberste Seite
des urspriinglichen 10-Ecks unbeschriftet und beschriften der Reihe nach im Gegenuhr-
zeigersinn die andern Seiten, angefangen von der Seite zur Linken der obersten, wie dies
am Rand der Figur 6 angezeigt wird. Zur selben Zeit schreiben wir das ungeklammerte
Wort 5152535455565758S9 . Unser Ziel ist es jetzt, die oberste Seite des urspriinglichen
10-Ecks so zu beschriften, dass wir daraus den gesuchten Klammerausdruck ablesen
konnen. Wir beginnen damit, dass wir auf dem Rand des Vielecks eine Stelle (es kann
mehrere geben!) suchen, wo 3 aufeinanderfolgende Seiten durch eine Diagonale verbun-
den sind und so ein 4-Eck bilden. Wo dies geschieht (in unserem Fall lings der Seiten 5,
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(1(23(4(567)8))9)

1 ™

(23(4(567)8))

(4(567)8)
7
6
5

Fig. 6 Die beschriftete Unterteilung des Vielecks, welches dem Klammerausdruck (s;(S253(54(S55¢57)58))S9),

entspricht.
1 9

4 8

o]
5 6 7

Fig. 7 n =3, k = 4. Der Baum, der zum Klammerausdruck (s;(s,53(54(S55657)Sg))So) gehort.

6 und 7) wird die Diagonale beschriftet (in unserem Fall mit (5, 6, 7)) und wird zur Seite
eines neuen Vielecks, das zwei Seiten weniger besitzt als das urspriingliche. Gleichzei-
tig setzen wir im Wort 5,5,5354555¢5758S9 Klammemn um den Teilausdruck sssgs;. Wir
sehen nun unser neues Vieleck als beschriftet an, wobei wir (5, 6, 7) als ein einzelnes
Symbol auffassen; und analog fassen wir auch in unserem Wort den eingeklammerten
Teil (sssgs7) als ein einzelnes Symbol auf. Jetzt konnen wir den eben beschriebenen
Prozess wiederholen und wir fahren auf diese Art und Weise fort, bis auch die oberste
Seite beschriftet und des Wort vollstindig mit Klammern versehen ist. Wird nun in der
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Beschriftung der obersten Seite jedes der Symbole i durch s; ersetzt, so erhalten wir den
gewiinschten, dem unterteilten Vieleck entsprechenden Klammerausdruck.

Als néchstes iiberlegen wir uns, wie man das Baumdiagramm direkt aus dem unterteilten
Vieleck erhalten kann, also ohne den Umweg iiber den entsprechenden Klammerausdruck
einzuschlagen. Figur 8 liefert ein gutes Beispiel, um diesen Prozess zu illustrieren. Man

Beginn

7

Fig. 8 Die Zuordnung eines unterteilten Vielecks zu einem Baum (der Baum der Figur 7 und das Vieleck
der Figur 6). Beachte: e = im Innern liegender Punkt = Verzweigungspunkt, © = Endpunkt.

beginnt, indem man an der obersten Seite des Vielecks in ein 4-Eck der Unterteilung
hineingeht. Gleichzeitig zeichnen wir den Anfangspunkt des Baumes und zeichnen drei
Aste, die von diesem Punkt ausgehen und die den 3 Seiten des 4-Ecks entsprechen.
Falls ein Ast das 4-Eck durch eine der begrenzenden Seite des urspriinglichen Vielecks
geht, dann ist der Endpunkt dieses Astes ein Endpunkt des Baumes (und braucht fiir das
folgende nicht mehr beachtet zu werden). Wenn hingegen ein Ast das 4-Eck durch eine
innere Diagonale verlédsst, und damit in ein anderes 4-Eck der Zerlegung eintritt, dann
ist der Endpunkt dieses Astes ein Verzweigungspunkt, von dem aus wiederum drei Aste
ausgehen. Diese drei Aste entsprechen den drei anderen Seiten des 4-Ecks; usw.

Im Falle n = 2 konnen die oben definierten Zahlen ay, by, ¢, wahlweise als Definition der
Catalan-Zahlen genommen werden. Analog konnen wir ,ax, »bx, nCx als Definition der
verallgemeinerten Catalan-Zahlen betrachten. Es ist nun das folgende Resultat bekannt
(siehe [K]):

Theorem 1.2

___1_ nk B 1 nk > 1
= \k=1) T m=Dk+1\k ) T
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Der iibliche Beweis dieses Resultates (siehe [K]), ist recht kompliziert und verwendet
Argumente der Funktionentheorie. Es ist eines der Hauptziele dieses Beitrags, einen
Beweis des Theorems 1.2 zu geben, der nur elementare Hilfsmittel der Algebra benotigt.
Allerdings werden wir in diesem Beitrag das Theorem 1.2 nur fiir n = 2 beweisen.?) Fiir
unser Argument bendtigen wir eine weitere, vierte Interpretation der verallgemeinerten
Catalan-Zahlen. Dabei weisen wir mit besonderem Nachdruck auf die Flexibilitéit dieser
vierten Interpretation hin, die wir jetzt beschreiben wollen.

2 Wege im ganzzahligen Gitter

Wir beginnen mit der Definition eines derartigen Weges. Ein Weg im ganzzahligen Gitter
in der Koordinatenebene ist eine Folge von Punkten Py, Py,...,Py,, m 20 in R2, wo
jeder Punkt P; ein Gitterpunkt ist, d.h. ganzzahlige Koordinaten besitzt, und wo P;;; aus
P; erhalten wird, indem man eine Einheit nach rechts oder nach oben geht. Wir sagen,
dass dieser Weg von P nach Q fiihrt, falls Pp = P und P,, = Q ist. Ein Weg heisst

n-gut, falls er ganz unterhalb der Geraden y = (n — 1)x verlduft, andernfalls heisst er
n-schlecht.

Es sei dy = ,,d; die Anzahl von n-guten Wegen von (0,—1) nach (k, (n — 1)k — 1). (Nach
Konvention gilt dy = 1.) Wir erweitern die Aussage des Theorems 1.1 und beweisen

Theorem 2.1 nlk = nbk = nCx = ndk.

Beweis  Wir zeigen ,br = ,di, wobei wir offenbar k > 1 annehmen konnen. Wir
gehen von einem Klammerausdruck aus, der durch k-malige Anwendung einer n-dren
Operation auf eine Folge von (n — 1)k +1 Symbolen erhalten worden ist. Fiir die Zwecke
des Beweises arbeiten wir mit dem ‘Ausdruck’, der daraus erhalten wird, wenn man alle
schliessenden Klammern weglésst. Indem wir von links her lesen, interpretieren wir eine
Offnende Klammer als einen Befehl “Geh’ einen Schritt nach rechts” und ein Symbol als
einen Befehl “Geh’ einen Schritt nach oben”. Wenn wir unsern Weg in (0, -1) beginnen
lassen, definiert somit jeder Arbeitsausdruck einen Weg von (0,—1) nach (k, (n — 1)k),
da es k offnende Klammern und (n — 1)k + 1 Symbole gibt. Wir behaupten nun:

(i) der zweitletzte Punkt des Weges ist (k, (n — 1)k — 1),

und

(ii) der Teilweg von (0,—1) nach (k, (n — 1)k — 1) ist n-gut.

Der Weg, der sich durch die Anwendung der obigen Regeln aus dem Beispiel 1.1 ergibt,
ist in Figur 9 ersichtlich.

2) Leser, die am Beweis fiir Theorem 1.2 im allgemeinen Fall interessiert sind, mdgen den Beitrag [HP 1,2]
zu Rate ziehen.



54 El. Math., 48, (1993)

(4,8)
¢ (4,7)

Fig. 9 n =3, k = 4. Der Gitterweg,
welcher dem Klammerausdruck +
(51(5253(54(555657)58))S9)
zugeordnet ist. 4

Y

[

(0,-1)

Um (i) zu beweisen, brauchen wir nur zu beachten, dass unser (Arbeits-)‘ Ausdruck’ nicht
mit einer 6ffnenden Klammer enden kann. Um (ii) zu beweisen, machen wir die Indukti-
onsvoraussetzung (beziiglich k), die folgendes besagt: Wenn wir bis zu irgendeiner (mit
Ausnahme der letzten) Stelle des (Arbeits-)’ Ausdruckes’ (von links her) u#; Klammern
und v; Symbole gezihlt haben, so dass unser Weg den Punkt (u;,v; — 1) erreicht hat,
dann gilt (n — 1)u; 2 v;, d.h. der Punkt liegt unterhalb der Geraden y = (n — 1)x. Die
Induktionsvoraussetzung ist offensichtlich wahr fiir k = 1, so dass wir k > 2 annehmen
konnen. Ahnlich wie im Argument nach Theorem 1.1 wollen wir einen Abschnitt unseres
‘Ausdrucks’ suchen, der aus einer 6ffnenden Klammer gefolgt von n Symbolen besteht.
Indem wir diese durch ein einzelnes Symbol ersetzen, erhalten wir einen ‘Ausdruck’
fiir k — 1 Anwendungen der n-dren Operation. Es sei nun u; und v; in analoger Weise
fiir diesen kiirzeren ’Ausdruck’ definiert wie #; und v;. Nach unserer Induktionsvoraus-
setzung gilt dann (n — 1)u] > v/ (natiirlich mit Ausnahme des letzten Schrittes). Fiir
jeden Index i, welcher dem ausgewihlten Abschnitt vorangeht, gilt dann offensichtlich
(n — Du; 2 v;. Fihren wir das neue Symbol ein, so schliessen wir fiir den Index ip,
welcher dem ausgewihlten Abschnitt unmittelbar vorangeht, (n — 1)u;, =2 v;, + 1. Wenn
wir nun den ausgewdhlten Abschnitt wiederherstellen, haben wir somit die Beziehungen
u;, = u;,+1, v; =v;, +n, so dass fiir i; folgt (n — 1)u;, 2 v;,. Indem wir schliesslich
einen Index i jenseits des ausgewihlten Abschnittes betrachten (aber immer noch vor
dem letzten Schritt), so haben wir u; = u/ +1, v; = v/ +n — 1, so dass wiederum folgt
(n — Du; 2 v;. Daraus ergibt sich, dass wir (mit Ausnahme des letzten Schrittes) einen
n-guten Weg von (0,—1) nach (k, (n — 1)k — 1) erhalten.

Wir iiberlassen es dem Leser, zu beweisen, dass umgekehrt ein n-guter Weg zu einem
Klammerausdruck Anlass gibt. Ahnlich wie oben wird dies natiirlich ein induktives
Argument verlangen.
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Fiir n = 2 ist die Folge der Zahlen, die durch eine der vier gegebenen Definitionen
erhalten wird, die Folge der Catalan-Zahlen Cj; insbesondere gilt

28k =2bg =20, = 2dk = C .

Die Zahlen ,ay(= ,by = ncx = nd;) werden iiblicherweise verallgemeinerte Catalan-
Zahlen (siehe [HP 1,2]) genannt. Im nichsten Abschnitt wollen wir nun eine explizite
Formel fiir Cx angeben; wir beschrinken uns also ganz auf den Fall n = 2.

3 Berechnung der Catalan-Zahlen (n = 2); die Spiegelungsmethode
von André

Vor etwas mehr als 100 Jahren hat Désiré André, ein franzosischer Mathematiker, eine
kurze Notiz in der angesehenen franzosischen Zeitschrift Comptes Rendus de I’ Académie
des Sciences, Paris [A] veroffentlicht, die den Titel “Solution directe du probléme résolu
par M. Bertrand” trigt. Dieses Problem ist spiter unter dem Namen Abstimmungspro-
blem bekannt geworden, welches wir jetzt beschreiben und 16sen wollen, indem wir eine
Variante der Methode von André beniitzen. Zuerst allerdings wollen wir die Methode von
André anwenden, um ,d; zu berechnen, d.h. wir wollen die 2-guten Wege von (0,-1)
nach (k,k — 1) abzihlen.

Nach unserer Definition in Abschnitt 2 musste André fiir gegebene Punkte (a,b) = P
und (c,d) = Q mit b <a <d < c die Anzahl n-guter Wege im ganzzahligen Gitter
von P nach Q bestimmen, d.h. derjenigen, die ganz unterhalb der Geraden y = x
verlaufen. Andrés Losung dieses Problems ist wunderschon und stellt heute eines der
Standardwerkzeuge der Kombinatorik dar (siche z.B. Comtet [C]). Wir wollen sie jetzt
beschreiben. Da wir in diesem ganzen Abschnitt # = 2 annehmen, werden wir in unserer
Notation die Angabe von n unterdriicken.

Als erstes beachten wir, dass die totale Anzahl der Wege, gute und schlechte, von P
nach Q durch den Binomialkoeffizienten

(c+d)—(a+b))
d-b

oder, was auf dasselbe herauskommt, durch

((c+d)—(a+b)>

c—a

beschrieben wird. Es geniigt deshalb, die schlechten Wege zu zihlen. Falls P ein schlech-
ter Weg ist, dann hat dieser Weg einen gemeinsamen Punkt mit der Geraden y = x. Es
sei F der erste solche gemeinsame Punkt. Wir bezeichnen mit P, und P, die Teilwege,
die von P nach F und von F nach Q fiihren. Dann konnen wir = PP, schreiben,



56 El. Math., 48, (1993)

wenn wir die rechte Seite als Zusammensetzung von Wegen interpretieren. Nun sei P,
der Weg, der aus &P, durch Spiegelung an der Geraden y = x erhalten wird. Dann ist
P*=P P, ein Weg von P(b,a) nach Q(c,d). Die Zuordnung P — P beschreibt eine
eineindeutige Korrespondenz zwischen der Menge der schlechten Wege von P nach Q
und der Menge aller Wege von P nach Q. Es folgt daraus, dass die totale Anzahl der
schlechten Wege von P nach (Q gegeben ist durch den Binomialkoeffizienten

((c+d)—(a+b))
c—-b

oder, was dasselbe ist, durch

((c +d)—(a+b)>
d-a '

Es wird nun klar, dass es zum mindesten vier anscheinend verschiedene (aber in Wirk-
lichkeit identische) Arten gibt, einen expliziten Ausdruck fiir die Anzahl guter Wege von
P nach Q anzugeben. Im Hinblick auf die Catalan-Zahlen, fiir die sich der Ausdruck
dann wesentlich vereinfacht, wollen wir die Anzahl guter Wege von P (a, b) nach Q(c,d)
durch die Formel

G3.1) ((C+d)—(a +b))_((c+d)—(a+b))

d-b d—-a

beschreiben. Das zugehorige Argument wird in Figur 10 illustriert, wo der Teilweg von

Anzahl aller Wege — Anzahl schlechter Wege = Anzahl guter Wege =

_ (c+d)-(@+b) c+d)-@+b)
- d-b d-a

Q(c,d)

.........

Fig. 10 Andrés Spiegelungsmethode P(a,b)

F nach Q als Wellenlinie eingezeichnet ist, um irgendeinen Weg (in unserem einge-
schrinkten Sinn) von F nach Q anzudeuten.
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In dem Spezialfall, der uns interessiert, liefert eine Anwendung von (3.1), dass die Zahl
Ci guter Wege von P(0,-1) nach Q(k,k — 1) durch

2k 2k 2k k+1 1/ 2k
2 = - = —— -1 = >
on 6= () ()= (D) ] =elD) - e
gegeben ist. Im néchsten Abschnitt werden wir nun die Formel (3.1) und das Prinzip
von André beniitzen, um das berithmte Abstimmungsproblem zu losen.

4 Das Abstimmungsproblem

Gegen Ende des 19. Jahrhunderts hat das sogenannte Abstimmungsproblem viele Mathe-
matiker und besonders die Wahrscheinlichkeitstheoretiker beschéftigt. Wir nehmen an,
dass eine Wahl mit zwei Kandidaten X und Y abgehalten wird und wir nehmen weiter
an, dass X a Stimmen erhélt und Y b Stimmen. Dabei gelte a > b, so dass X die Wahl
gewinnt. Wir betrachten nun die folgende Frage:

Was ist die Wahrscheinlichkeit p dafiir, dass wihrend der ganzen Auszéhlung
der Stimmen der Kandidat X mehr Stimmen aufzuweisen hat als Y ?

Natiirlich tibersetzt sich dieses Problem leicht in eine Frage iiber Wege in einem ganz-
zahligen Gitter in der Koordinatenebene. Jeder Weg von (0,0) nach (a,b) stellt eine
mogliche Auszidhlung der Stimmen dar. Es gibt offensichtlich

4.1 <“ :b)

solche Wege. Wir wollen eine Auszédhlung giinstig nennen, bei der X immer mehr Stim-
men aufzuweisen hat als Y. Es ist klar, dass eine giinstige Auszdhlung einem guten
Weg entspricht (mit Ausnahme des Anfangspunktes (0,0)). Wir miissen deshalb nur die
Anzahl dieser guten Wege bestimmen.

Man beachte, dass in einer giinstigen Auszdhlung der Kandidat X die erste Stimme
erhalten muss. Der entsprechende Weg fiihrt deshalb im ersten Schritt von (0,0) nach
(1,0). Unser Problem besteht somit einfach darin, die Anzahl guter Wege von (1,0) nach
(a,b) zu bestimmen. Nach unseren friiheren Uberlegungen ist die Anzahl solcher Wege
durch die Formel

a+b-1 a+b-1\ (@a+b-1)! _
“.2) ( b )'( b-1 )‘—E—b!—'(“ 2

gegeben. Um die in unserem Abstimmungsproblem gesuchte Wahrscheinlichkeit p zu
berechnen, miissen wir einfach (4.2) durch (4.1) dividieren, und wir erhalten

-b

AN

Dieses erstaunlich einfache Resultat zeigt, dass die Wahrscheinlichkeit p nur vom Ver-
hiltnis a / b abhidngt und nicht von der totalen Anzahl der Stimmen. Diese Tatsache
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ist sicherlich iiberraschend, ja sie scheint unserer Intuition zu widersprechen. Vielleicht
vermag das folgende alternative Argument, das die Wahrscheinlichkeit mit der Spiege-
lungsidee von André kombiniert, diesen seltsamen Aspekt unseres Resultates noch etwas
zu kliren.?)

Betrachten wir einen typischen Weg, der einer Auszidhlung der Stimmen entspricht (siehe
Figur 11). Dann konnen wir uns leicht das folgende iiberlegen: fiir einen Weg von (0,0)

(a,b)

(0,0)

h 4

(1,0)

Fig. 11  Der Gitterweg, welcher einer giinstigen Auszidhlung entspricht.

nach (a,b), der einer Auszihlung entspricht, ist die Wahrscheinlichkeit pg dafiir, dass
der erste Schritt nach rechts geht, durch

gegeben, und die Wahrscheinlichkeit po dafiir, dass der erste Schritt nach oben geht,
durch ;

PO =235

Was wir finden wollen, ist die Wahrscheinlichkeit p dafiir, dass ein gegebener Weg
ganz unterhalb der Geraden y = x verlduft (natiirlich mit Ausnahme des Punktes (0,0)).
Natiirlich sind alle Wege, die mit einem Schritt nach oben beginnen, schlecht. Ebenso klar
ist, dass ein Weg, der mit einem Schritt nach rechts beginnt, sowohl gut wie schlecht sein
kann. Eine nihere Betrachtung (mit Andrés Idee der Spiegelung) zeigt in der Tat, dass

3) Wir danken Professor James A. Wahab fiir eine briefliche Mitteilung, die uns zu dieser Sicht des Resultates
fiihrte.
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jeder Weg, der mit einem Schritt nach oben beginnt, einem notwendigerweise schlechten
Weg entspricht, der mit einem Schritt nach rechts beginnt. Diese eineindeutige Beziehung
zwischen Wegen, die mit einem Schritt nach oben beginnen, und schlechten Wegen, die
mit einem Schritt nach rechts beginnen, wird erhalten, indem man den Teilweg von O
nach R an der Geraden y = x spiegelt und den urspriinglichen Teilweg von R nach (a, b)
beibehilt (siehe Figur 12). Es folgt, dass die Wahrscheinlichkeit dafiir, dass ein Weg mit

#

y

(a,0)

z
0 =
Fig. 12 Die André Spiegelung eines schlechten Weges.

einem Schritt nach rechts beginnt, und schlecht ist, gerade gleich der Wahrscheinlichkeit
dafiir ist, dass ein Weg mit einem Schritt nach oben beginnt, ndmlich po. Damit erhalten
wir, in Ubereinstimmung mit unserem fritheren Resultat:

p = p(guter Weg)
= p(Weg beginnt mit einem Schritt nach rechts und ist gut) ,
= p(Weg beginnt mit einem Schritt nach rechts)—

— p(Weg beginnt mit einem Schritt nach rechts und ist schlecht)

= PR~ PO
_a b
“a+b a+b
_a-b
Ta+b’

Wie wir bereits bemerkt haben, hiingt die gesuchte Wahrscheinlichkeit nur vom Verhiltnis
a/b ab, z.B. ist die Wahrscheinlichkeit die gleiche, ob X 80 Stimmen erhilt und Y
40, oder ob X 800 Stimmen erhilt und Y 400. Allerdings folgt aus dieser Tatsache
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nicht, dass die Wahrscheinlichkeit die gleiche bleibt, wenn die Stimmen in Gruppen
von, sagen wir 10, aufgeteilt werden, bevor sie ausgezidhlt werden. Zum Beispiel ist im
extremen Fall, wo sémtliche Stimmen in einer Gruppe zusammengefasst werden, die
Wahrscheinlichkeit ganz einfach 1! Es gibt also im Anschluss an unsere Losung des
Abstimmungsproblems weitere interessante Fragen in diesem Gebiet.
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