
Zeitschrift: Elemente der Mathematik

Herausgeber: Schweizerische Mathematische Gesellschaft

Band: 48 (1993)

Artikel: Catalan-Zahlen und Wege in einem ganzzahligen Gitter

Autor: Hilton, Peter J. / Pedersen, Jean

DOI: https://doi.org/10.5169/seals-44624

Nutzungsbedingungen
Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation
L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use
The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 21.01.2026

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

https://doi.org/10.5169/seals-44624
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en


El Math 48, (1993) 0013 6018/93/020045 16$1 50 + 0 20/0
© 1993 Birkhauser Verlag Basel

Catalan-Zahlen und Wege in einem ganzzahligen Gitter

Peter J Hilton und Jean Pedersen

Peter J Hilton studierte in Oxford Nach einigen Jahren Tätigkeit an Universitäten
in England verlegte er seinen Wohnsitz in die Vereinigten Staaten und arbeitete seit
her an verschiedenen amenkamschen Universitäten Seit 1982 ist er Distinguished
Professor of Mathematics an der State University of New York in Bmghamton Er
hat zahlreiche Bucher und Forschungsartikel geschneben, vor allem in den Gebie
ten algebraische Topologie, homologische Algebra und Gruppentheone Neben der

Forschung war ihm schon immer der mathematische Unterncht em besonderes An
liegen
Jean Pedersen gehört seit mehreren Jahren dem Lehrkörper des Mathematikdeparte
mentes der Santa Clara University in Kalifornien an Ihre mathematischen Interessen
wurden durch den langjahngen engen wissenschaftlichen Kontakt mit G Pölya
geformt Polyedergeometne, Kombmatonk, mathematischer Unterncht Ihre Arbeiten
haben grosse internationale Anerkennung gefunden, wie durch Einladungen zu
Vortragen an Konferenzen m den USA, Kanada, Italien, Israel belegt wird Peter Hilton
und Jean Pedersen haben in den letzten Jahren gemeinsam eine lange Reihe von
Beitragen, insbesondere zum mathematischen Unterncht, veröffentlicht
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Einleitung
Zwei Eigenschaften machen die Kombinatorik zu einem mathematischen Gebiet, das

sich für den Schulunterricht besonders eignet. Erstens verwendet die Kombinatorik eine
Vielzahl von Begriffen aus ganz verschiedenen mathematischen Gebieten und ist so ein
schönes Beispiel für die Einheit der Mathematik. Zweitens ist die in der Kombinatorik
verwendete Mathematik elementar in dem Sinne, dass ihre Behandlung keine grösseren
Vorbereitungen erfordert; in der Tat kommen die benötigten mathematischen Werkzeuge
typischerweise sogar ohne Differentialrechnung aus.

Die Catalan-Zahlen, so benannt nach dem belgischen Mathematiker Eugene Charles
Catalan (1814-1894), aber tatsächlich schon viel früher von Euler im 18. Jahrhundert

entdeckt, lassen sehr viele verschiedene Interpretationen zu. In dieser Arbeit geben wir
drei davon an, die als grundlegend angesehen werden können, indem sie sich auf
offensichtlich wichtige Konzepte der Graphentheorie, der Informatik und der Geometrie
beziehen. Ferner behandeln wir eine vierte Interpretation, welche die Catalan-Zahlen mit
Wegen in einem ganzzahligen Gitter in der Koordinatenebene verbindet; dies erlaubt es

uns, die Catalan-Zahlen in das grosse Gebiet der klassischen Algebra einzuordnen.

Wir haben an anderer Stelle über dieses Thema bereits publiziert (siehe [HP 1,2]), einmal

um Hintergrundinformation zu liefern, dann aber auch, um einen attraktiven Beitrag für
Mathematiker zu schreiben, deren Hauptinteresse ausserhalb der Kombinatorik liegt. Hier
ist unsere Zielrichtung davon verschieden; wir möchten mit diesem schönen Beispiel
aus der Kombinatorik den Mathematiklehrern Ideen liefern, die zur Motivation ihrer
Schüler für mathematische Einsichten und Techniken dienen können. Aus diesem Grunde
bemühen wir uns hier, die verschiedenen kombinatorischen Operationen explizit und
ausführlich zu beschreiben.

In unserem Text stellen wir ein Argument dar, welches im Laufe des 19. Jahrhunderts

vom französischen Mathematiker Desire Andre entdeckt worden ist, und das, wie wir
glauben, eine der schönsten und stimulierendsten mathematischen Einsichten beinhaltet,
welche in der Schule voll gewürdigt werden können. Dieses Argument wurde von Andre
entwickelt, um eine Lösung des sogenannten Abstimmungsproblems zu geben, aber es

zeigt sich, dass es auch als wichtiges Werkzeug für das Studium der Catalan-Zahlen in
ihrer vierten Interpretation dienen kann. Im letzten Abschnitt unseres Beitrags geben wir
schliesslich eine ausführliche Diskussion des Abstimmungsproblems.

Wir danken Professor Pere Mumbrü von der Universität Barcelona für die Einladung,
eine Folge von Vorträgen zu halten, aus denen dieser Beitrag entwickelt worden ist.

1 Bäume, Klammerausdrücke und konvexe Vielecke

Wir beginnen mit einer Darstellung von drei natürlichen kombinatorischen Begriffen, die

in völlig verschiedenen Zusammenhängen auftreten, die sich aber später als mathematisch

äquivalent herausstellen werden.

Es sei n eine feste ganze Zahl, n > 2. Dann definieren wir drei Folgen von positiven

ganzen Zahlen, die von n abhängen:

ak: nao l, nak- Anzahl der n-ären Bäume mit k Verzweigungspunkten, k > 1;
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bk' nbo - 1, nbk Anzahl der Klammerausdrücke, die durch k Anwendungen einer
n-ären Operation erhalten werden können, k > 1;

ck: „Co 1, nCk Anzahl der verschiedenen Unterteilungen eines konvexen Vielecks
in k (n + 1)-Ecke durch Diagonalen, die sich nicht schneiden, k > 1.

Man beachte, dass für k > 1 das Folgende gilt:

(i) ein n-ärer Baum mit k Verzweigungspunkten hat (n - l)k + 1 Endpunkte und im

ganzen nk + l Punkte (siehe Figur l(a,b));

Fig. la) n 2, k 3 Ein binarer Baum (n 2) Fig lb) n 3, k 2. Em ternarer Baum (n 3)

mit 3 (k 3) Verzweigungspunkten (•) mit 2 (k 2) Verzweigungspunkten (•)
und 4 Endpunkten (o). und 5 Endpunkten (o).

(ii) die n-are Operation wird, durch Setzen von Klammern, fc-mal auf eine Folge von
(n - l)k + 1 Symbolen angewendet (siehe Figur l(a,,b'));

(*l((*2 *s)*4)) {Si S2{S3 *4 S5))

Fig. la') n 2, k 3 Klammerausdruck, erhal- Fig. lb;) n 3, k 2. Klammerausdruck erhal¬

ten durch 3 (k 3) Anwendungen einer ten durch 2 (k - 2) Anwendungen einer
binaren (n 2) Operation auf 4 Symbole ternaren (n 3) Operation auf 5 Symbole

(iii) das Vieleck hat (n - l)k +2 Seiten und wird durch k - 1 Diagonalen in k disjunkte
(n + 1)-Ecke zerlegt (siehe Figur l(a",b")).

Ein ((n - l)k + 2)-Eck wird durch (k-l) Diagonalen in k disjunkte (n + 1)-Ecke zerlegt

Fig. la") n 2, k 3. Em 5-Eck wird durch 2

Diagonalen in drei 3-Ecke zerlegt.
Fig. lb') n 3, k 2. Ein 6-Eck wird durch 1

Diagonale in zwei 4-Ecke zerlegt.
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Ein gut bekanntes und leicht zu beweisendes Resultat (für den Fall n-2 siehe Sloane

[S]) ist das folgende

Theorem 1.1 n^jt A nQ:

Die Bäume der Figur l(a, b) können in die entsprechenden Klammerausdrücke der Figur
l(a', b') übersetzt werden. Dazu führen wir der Reihe nach Zuordungen durch, wie sie

in der Figur 2 beschrieben werden. Um einen gegebenen Baum in den entsprechenden

Für eine w-äre Operation ist die Zuordnung an einem im Innern liegenden Verzweigungspunkt gegeben durch

(rciZi ...xn)

(Jedes Xj ist ein Ausdruck in einer geordneten
Untermenge der ursprünglichen Symbole s,.)

An einem Anfangspunkt ist die Zuordnung gegeben durch

(t/i 1/2 -.-Vn)

(Jedes y] ist ein Ausdruck in einer geordneten
Untermenge der ursprünglichen Symbole st.)

Fig. 2 Typische Schritte bei der Zuordnung eines Klammerausdrucks zu einem Baum.

Klammerausdruck überzuführen, numeriere man als erstes die Endpunkte des Baumes

"von links nach rechts" wie in den Beispielen in der Figur l(a, b). Dann wird jeder Zahl
i ein Symbol s, zugeordnet. Schliesslich beginne man an einer Stelle bei den Endpunkten,

wo ein vollständiger Satz von n Symbolen vorkommt, und führe die in der Figur
2 angegebene Zuordnung für einen im Innern liegenden Punkt aus.1) Man wiederhole
diesen Prozess der Reihe nach für alle Punkte im Innern, bis man den Anfangspunkt
erreicht. Für diesen führe man die zu einem Anfangspunkt gehörige Zuordnung aus, um
den gewünschten Klammerausdruck zu erhalten. Die Figur 3 illustriert diesen schrittweisen

Prozess an einem Beispiel. Um von einem Klammerausdruck zum entsprechenden
Baum zu gelangen, geht man einfach in der umgekehrten Richtung vor.

Die Beziehung zwischen den Bäumen der Figur l(a, b) oder der Klammerausdrücke
der Figur l(a\ b') und den entsprechenden unterteilten Vielecken der Figur Ka", b")
ist subtiler (und der Hinweis, der in [S] für den Fall n 2 gegeben wird, erscheint

1) Falls mehr als eine Stelle dieser Art vorkommt, so können die zugehörigen Zuordnungen simultan durch¬

geführt werden.
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1*2*3) s*

& (si((s2s3)s4))

si ((s2sz)s4)

Fig 3 Auf diese Weise wird einem Baum schnttweise ein Klammerausdruck zugeordnet

*<X>-1)* + 1 *Vj» ~ 1)* + 1

3 + 1

7 + n-f 1

& •

7+n

3 + n+l

J + 2

0 + 1.J + 2, ,j+n) Z

Eine Diagonale wird in das Vieleck
eingeführt und bezeichnet.

Ein (n + 1)-Eck der
resultierenden Unterteilung.

(s3+iSj+2 Sj+n) tritt im Ausdruck auf

Fig. 4 Der erste Schntt der Zuordung zwischen einem Klammerausdruck und einem unterteilten Vieleck.

uns etwas kryptisch). Deshalb gehen wir hier sehr explizit auf diese Zuordnung ein;
sie wird uns schliesslich das Resultat nbk - nCk liefern. Wir nehmen an, dass uns ein
Klammerausdruck vorliegt, der durch k -fache Anwendung einer n-ären Operation auf
eine Folge von (n - l)k + 1 Symbolen entstanden ist. Wir zeichnen dann ein konvexes
((n -l)k + 2)-Eck und versehe dessen Seiten, mit Ausnahme der obersten, im
Gegenuhrzeigersinn mit den Zahlen 1 bis (n - l)k + 1 (siehe Figur 4). Von links beginnend
finde man nun den ersten Ort im Klammerausdruck, wo eine Folge von n Symbolen in
Klammern eingeschlossen ist. Falls die Indizes der eingeschlossenen Symbole von j + 1

bis j +n gehen, so zeichne man eine Diagonale vom Anfangspunkt der (/ + l)-ten Seite
zum Endpunkt der (/ + n)-ten Seite und versehe diese Diagonale mit der Beschriftung
(; + 1,; +2,...,; +n). Sie teilt das ganze Vieleck in zwei Teilvielecke auf, das eine ist
ein (n + 1)-Eck, wie wir es uns gewünscht haben, und das andere hat weniger Seiten als
das ursprüngliche Vieleck. Wir ersetzen nun in Gedanken den zu (j + 1,; +29...,; +n)
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gehörigen Teil unseres Klammerausdruckes durch ein einzelnes Symbol, zum Beispiel
Z. Wir haben damit unseren Ausdruck effektiv auf einen kürzeren reduziert, der durch

k-l Anwendungen der n-ären Operation entstanden ist. Auf diese Art und Weise
fahren wir induktiv fort, um in unserem Vieleck weitere Diagonalen einzuführen. Falls
die Seitenzahlen i durch die Symbole sx ersetzt werden, so liefert die Beschriftung
der letzten (obersten) Seite genau den ursprünglichen Klammerausdruck. Figur 5(a, b)
illustriert, wie für den entsprechenden Ausdruck der Figur l(a', b') die Unterteilungen
des Pentagons und des Hexagons zu beschriften sind.

(1((23)4)) (12(345))

SX^
23 (345)

3

a) Vieleck fur (si((s2S3)s4)), n 2, k 3 b) Vieleck fur (sxs2(S2,sAs5)), n 3, k - 2

Fig. 5 Unterteilungen von Vielecken und zugehonge Klammerausdrucke

Offensichtlich können wir auch in der umgekehrten Richtung vorgehen. Wenn ein
((n -l)k + 2)-Eck gegeben ist, das durch k-l Diagonalen in k disjunkte (n + 1)-Ecke
unterteilt ist, so können wir auf diese Weise den dazugehörigen Ausdruck und damit
natürlich auch den entsprechenden Baum erhalten. Wir werden bald sehen, wie man zu
einem gegebenen Baum auch direkt ein unterteiltes Vieleck zuordnen kann.

Wir illustrieren diese Korrespondenzen noch einmal an dem folgenden Beispiel, das

etwas komplizierter ist als das der Figur 5.

Beispiel 1.1 Es sei n 3 und k 4. Wir betrachten den Ausdruck

(sx(s2s3(s4(s5s6s7)ss))s9)

Die entsprechende Aufteilung des konvexen 10-Ecks durch 3 Diagonalen in 4-Ecke mit
der entsprechenden Beschriftung ist in Figur 6 angegeben. Der entsprechende ternäre
Baum ist in Figur 7 aufgezeichnet.

Wir diskutieren zuerst, wie wir vom (unbeschrifteten) unterteilten Vieleck zum dazugehörigen

Ausdruck gelangen. Die Tatsache, dass das Vieleck in 4-Ecke aufgeteilt ist, sagt

uns, dass wir eine ternäre Operationen zu betrachten haben. Wir lassen die oberste Seite
des ursprünglichen 10-Ecks unbeschriftet und beschriften der Reihe nach im Gegenuhrzeigersinn

die andern Seiten, angefangen von der Seite zur Linken der obersten, wie dies

am Rand der Figur 6 angezeigt wird. Zur selben Zeit schreiben wir das ungeklammerte
Wort sxs2s3s4S5S^SjSgSg Unser Ziel ist es jetzt, die oberste Seite des ursprünglichen
10-Ecks so zu beschriften, dass wir daraus den gesuchten Klammerausdruck ablesen

können. Wir beginnen damit, dass wir auf dem Rand des Vielecks eine Stelle (es kann
mehrere geben!) suchen, wo 3 aufeinanderfolgende Seiten durch eine Diagonale verbunden

sind und so ein 4-Eck bilden. Wo dies geschieht (in unserem Fall längs der Seiten 5,
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(1(23(4(567)8))9)

(23(4(567)8))

(4(567)8

(567)

Fig 6 Die beschnftete Unterteilung des Vielecks, welches dem Klammerausdruck (sx(s2S3(S4(s5s6s7)s%))s9),
entspncht

Fig 7 n 3, k 4 Der Baum, der zum Klammerausdruck (Si(s2S2(S4(SsSßS-j)sg))Sg) gehört

6 und 7) wird die Diagonale beschriftet (in unserem Fall mit (5, 6, 7)) und wird zur Seite
eines neuen Vielecks, das zwei Seiten weniger besitzt als das ursprüngliche. Gleichzeitig

setzen wir im Wort sxs2s3s4SsSßSjSsS9 Klammern um den Teilausdruck SsS^Sj. Wir
sehen nun unser neues Vieleck als beschriftet an, wobei wir (5, 6, 7) als ein einzelnes
Symbol auffassen; und analog fassen wir auch in unserem Wort den eingeklammerten
Teil (S5S6S7) als ein einzelnes Symbol auf. Jetzt können wir den eben beschriebenen
Prozess wiederholen und wir fahren auf diese Art und Weise fort, bis auch die oberste
Seite beschriftet und des Wort vollständig mit Klammern versehen ist. Wird nun in der
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Beschriftung der obersten Seite jedes der Symbole i durch sx ersetzt, so erhalten wir den

gewünschten, dem unterteilten Vieleck entsprechenden Klammerausdruck.

Als nächstes überlegen wir uns, wie man das Baumdiagramm direkt aus dem unterteilten
Vieleck erhalten kann, also ohne den Umweg über den entsprechenden Klammerausdruck
einzuschlagen. Figur 8 liefert ein gutes Beispiel, um diesen Prozess zu illustrieren. Man

Beginn

Fig. 8 Die Zuordnung eines unterteilten Vielecks zu einem Baum (der Baum der Figur 7 und das Vieleck
der Figur 6) Beachte* • im Innern liegender Punkt Verzweigungspunkt, o Endpunkt

beginnt, indem man an der obersten Seite des Vielecks in ein 4-Eck der Unterteilung
hineingeht. Gleichzeitig zeichnen wir den Anfangspunkt des Baumes und zeichnen drei
Äste, die von diesem Punkt ausgehen und die den 3 Seiten des 4-Ecks entsprechen.
Falls ein Ast das 4-Eck durch eine der begrenzenden Seite des ursprünglichen Vielecks

geht, dann ist der Endpunkt dieses Astes ein Endpunkt des Baumes (und braucht für das

folgende nicht mehr beachtet zu werden). Wenn hingegen ein Ast das 4-Eck durch eine

innere Diagonale verlässt, und damit in ein anderes 4-Eck der Zerlegung eintritt, dann
ist der Endpunkt dieses Astes ein Verzweigungspunkt, von dem aus wiederum drei Äste

ausgehen. Diese drei Äste entsprechen den drei anderen Seiten des 4-Ecks; usw.

Im Falle n =2 können die oben definierten Zahlen ak,bk, ck wahlweise als Definition der
Catalan-Zahlen genommen werden. Analog können wir nak, nbk, nck als Definition der

verallgemeinerten Catalan-Zahlen betrachten. Es ist nun das folgende Resultat bekannt

(siehe [K]):

Theorem 1.2

"flt=Kfcw-i)=(»-iWi("^)' ***¦
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Der übliche Beweis dieses Resultates (siehe [K]), ist recht kompliziert und verwendet

Argumente der Funktionentheorie. Es ist eines der Hauptziele dieses Beitrags, einen
Beweis des Theorems 1.2 zu geben, der nur elementare Hilfsmittel der Algebra benötigt.
Allerdings werden wir in diesem Beitrag das Theorem 1.2 nur für n 2 beweisen.2) Für
unser Argument benötigen wir eine weitere, vierte Interpretation der verallgemeinerten
Catalan-Zahlen. Dabei weisen wir mit besonderem Nachdruck auf die Flexibilität dieser
vierten Interpretation hin, die wir jetzt beschreiben wollen.

2 Wege im ganzzahligen Gitter

Wir beginnen mit der Definition eines derartigen Weges. Ein Weg im ganzzahligen Gitter
in der Koordinatenebene ist eine Folge von Punkten Pn,Pi, ...,Pm, ra > 0 in R2, wo
jeder Punkt Px ein Gitterpunkt ist, d.h. ganzzahlige Koordinaten besitzt, und wo Px+X aus

Px erhalten wird, indem man eine Einheit nach rechts oder nach oben geht. Wir sagen,
dass dieser Weg von P nach Q führt, falls Po P und Pm Q ist. Ein Weg heisst

n-gut, falls er ganz unterhalb der Geraden y (n - l)x verläuft, andernfalls heisst er
n -schlecht.

Es sei dk ndk die Anzahl von n-guten Wegen von (0,-1) nach (k, (n - l)k - 1). (Nach
Konvention gilt dn 1 •) Wir erweitern die Aussage des Theorems 1.1 und beweisen

Theorem 2.1 nak A nck *4-

Beweis Wir zeigen nbk - ndk, wobei wir offenbar k > 1 annehmen können. Wir
gehen von einem Klammerausdruck aus, der durch k -malige Anwendung einer n-ären
Operation auf eine Folge von (n - l)k +1 Symbolen erhalten worden ist. Für die Zwecke
des Beweises arbeiten wir mit dem 'Ausdruck', der daraus erhalten wird, wenn man alle
schliessenden Klammern weglässt. Indem wir von links her lesen, interpretieren wir eine

öffnende Klammer als einen Befehl "Geh' einen Schritt nach rechts" und ein Symbol als

einen Befehl "Geh' einen Schritt nach oben". Wenn wir unsern Weg in (0,-1) beginnen
lassen, definiert somit jeder Arbeitsausdruck einen Weg von (0,-1) nach (k,(n - l)k),
da es k öffnende Klammern und (n - l)k + 1 Symbole gibt. Wir behaupten nun:

(i) der zweitletzte Punkt des Weges ist (k, (n - l)k - 1),

und

(ii) der Teilweg von (0,-1) nach (k, (n - l)k - 1) ist n-gut.

Der Weg, der sich durch die Anwendung der obigen Regeln aus dem Beispiel 1.1 ergibt,
ist in Figur 9 ersichtlich.

2) Leser, die am Beweis für Theorem 1.2 im allgemeinen Fall interessiert sind, mögen den Beitrag [HP 1,2]

zu Rate ziehen.
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Fig. 9 n 3, k 4. Der Gitterweg,
welcher dem Klammerausdruck
(sx(s2s3(s4(s5s6s7)ss))s9)

zugeordnet ist.

y-2x

(4,8)

(4,7)

_r
_r
(o,-i)

Um (i) zu beweisen, brauchen wir nur zu beachten, dass unser (Arbeits-)'Ausdruck' nicht
mit einer öffnenden Klammer enden kann. Um (ii) zu beweisen, machen wir die
Induktionsvoraussetzung (bezüglich k), die folgendes besagt: Wenn wir bis zu irgendeiner (mit
Ausnahme der letzten) Stelle des (Arbeits-)'Ausdruckes' (von links her) ut Klammern
und Vt Symbole gezählt haben, so dass unser Weg den Punkt (ux,vx - 1) erreicht hat,
dann gilt (n - l)ux >vx, d.h. der Punkt liegt unterhalb der Geraden y (n - l)x. Die
Induktionsvoraussetzung ist offensichtlich wahr für k 1, so dass wir k > 2 annehmen
können. Ähnlich wie im Argument nach Theorem 1.1 wollen wir einen Abschnitt unseres
'Ausdrucks' suchen, der aus einer öffnenden Klammer gefolgt von n Symbolen besteht.
Indem wir diese durch ein einzelnes Symbol ersetzen, erhalten wir einen 'Ausdruck'
für k - 1 Anwendungen der n-ären Operation. Es sei nun u[ und v[ in analoger Weise
für diesen kürzeren 'Ausdruck' definiert wie ux und vx. Nach unserer Induktionsvoraussetzung

gilt dann (n - l)u[ > v[ (natürlich mit Ausnahme des letzten Schrittes). Für
jeden Index i, welcher dem ausgewählten Abschnitt vorangeht, gilt dann offensichtlich
(n - l)ut > vx. Führen wir das neue Symbol ein, so schhessen wir für den Index in»

welcher dem ausgewählten Abschnitt unmittelbar vorangeht, (n - l)uXo > vXo + 1. Wenn
wir nun den ausgewählten Abschnitt wiederherstellen, haben wir somit die Beziehungen
uh uXo + 1, vH vlQ + n, so dass für ix folgt (n - l)uh > vh. Indem wir schliesslich
einen Index i jenseits des ausgewählten Abschnittes betrachten (aber immer noch vor
dem letzten Schritt), so haben wir ut u[ + 1, vt v[ + n - 1, so dass wiederum folgt
(n -l)ut >vt. Daraus ergibt sich, dass wir (mit Ausnahme des letzten Schrittes) einen

«-guten Weg von (0,-1) nach (k, (n - l)k - 1) erhalten.

Wir überlassen es dem Leser, zu beweisen, dass umgekehrt ein n -guter Weg zu einem
Klammerausdruck Anlass gibt. Ähnlich wie oben wird dies natürlich ein induktives
Argument verlangen.
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Für n 2 ist die Folge der Zahlen, die durch eine der vier gegebenen Definitionen
erhalten wird, die Folge der Catalan-Zahlen Q; insbesondere gilt

2ak 2bk 2Ck 2dk - Ck

Die Zahlen nak(- nbk nCk - ndk) werden üblicherweise verallgemeinerte Catalan-
Zahlen (siehe [HP 1,2]) genannt. Im nächsten Abschnitt wollen wir nun eine explizite
Formel für Ck angeben; wir beschränken uns also ganz auf den Fall n 2.

3 Berechnung der Catalan-Zahlen (n 2); die Spiegelungsmethode
von Andre

Vor etwas mehr als 100 Jahren hat Desire Andre, ein französischer Mathematiker, eine
kurze Notiz in der angesehenen französischen Zeitschrift Comptes Rendus de l'Academie
des Sciences, Paris [A] veröffentlicht, die den Titel "Solution directe du probl&me resolu

par M. Bertrand" trägt. Dieses Problem ist später unter dem Namen Abstimmungsproblem

bekannt geworden, welches wir jetzt beschreiben und lösen wollen, indem wir eine
Variante der Methode von Andre benützen. Zuerst allerdings wollen wir die Methode von
Andr6 anwenden, um 2dk zu berechnen, d.h. wir wollen die 2-guten Wege von (0,-1)
nach (k9k - 1) abzählen.

Nach unserer Definition in Abschnitt 2 musste Andr6 für gegebene Punkte (a9b) P
und (c,d) Q mit b < a < d < c die Anzahl n-guter Wege im ganzzahligen Gitter
von P nach Q bestimmen, d.h. derjenigen, die ganz unterhalb der Geraden y x
verlaufen. Andres Lösung dieses Problems ist wunderschön und stellt heute eines der

Standardwerkzeuge der Kombinatorik dar (siehe z.B. Comtet [C]). Wir wollen sie jetzt
beschreiben. Da wir in diesem ganzen Abschnitt n-2 annehmen, werden wir in unserer
Notation die Angabe von n unterdrücken.

Als erstes beachten wir, dass die totale Anzahl der Wege, gute und schlechte, von P
nach Q durch den Binomialkoeffizienten

(c + d)-(a+b)
d-b

oder, was auf dasselbe herauskommt, durch

(c + d)-(a + b)

c-a

beschrieben wird. Es genügt deshalb, die schlechten Wege zu zählen. Falls SP ein schlechter

Weg ist, dann hat dieser Weg einen gemeinsamen Punkt mit der Geraden y x. Es

sei F der erste solche gemeinsame Punkt. Wir bezeichnen mit &i und ^2 die Teilwege,
die von P nach F und von F nach Q führen. Dann können wir 2P= 9Pi2P2 schreiben,
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wenn wir die rechte Seite als Zusammensetzung von Wegen interpretieren. Nun sei #i
der Weg, der aus 9>i durch Spiegelung an der Geraden y x erhalten wird. Dann ist
9>*=^>i3:>2 ein Weg von P(b9a) nach Q(c,d). Die Zuordnung SP ^ SP beschreibt eine

eineindeutige Korrespondenz zwischen der Menge der schlechten Wege von P nach Q
und der Menge aller Wege von P nach Q. Es folgt daraus, dass die totale Anzahl der
schlechten Wege von P nach Q gegeben ist durch den Bmomialkoeffizienten

(c + d)-(a+b)
c-b

oder, was dasselbe ist, durch

(c + d)-
d-

(a + b)

¦a

Es wird nun klar, dass es zum mindesten vier anscheinend verschiedene (aber in
Wirklichkeit identische) Arten gibt, einen expliziten Ausdruck für die Anzahl guter Wege von
P nach Q anzugeben. Im Hinblick auf die Catalan-Zahlen, für die sich der Ausdruck
dann wesentlich vereinfacht, wollen wir die Anzahl guter Wege von P(a,b) nach Q(c,d)
durch die Formel

(3.1)
(c+d)-(a + b)

d-b
(c + d)-(a+b)

d -a

beschreiben. Das zugehörige Argument wird in Figur 10 illustriert, wo der Teilweg von

Anzahl aller Wege - Anzahl schlechter Wege Anzahl guter Wege

+ d) - (a + b)\ /(c + d) - (a + b)\

d-b )~ \ d-a

Q(c,d)

P(b,a)

Fig. 10 Andres Spiegelungsmethode

V2

M i F

Vi

P(a,b)

F nach Q als Wellenlinie eingezeichnet ist, um irgendeinen Weg (in unserem
eingeschränkten Sinn) von F nach Q anzudeuten.
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In dem Spezialfall, der uns interessiert, liefert eine Anwendung von (3.1), dass die Zahl
Ck guter Wege von P(0,-1) nach Q(k,k - 1) durch

-> «-'.M.'-.K*, iii-i 1 ^ 1

gegeben ist. Im nächsten Abschnitt werden wir nun die Formel (3.1) und das Prinzip
von Andre benützen, um das berühmte Abstimmungsproblem zu lösen.

4 Das Abstimmungsproblem
Gegen Ende des 19. Jahrhunderts hat das sogenannte Abstimmungsproblem viele
Mathematiker und besonders die Wahrscheinlichkeitstheoretiker beschäftigt. Wir nehmen an,
dass eine Wahl mit zwei Kandidaten X und Y abgehalten wird und wir nehmen weiter
an, dass X a Stimmen erhält und Y b Stimmen. Dabei gelte a > b, so dass X die Wahl
gewinnt. Wir betrachten nun die folgende Frage:

Was ist die Wahrscheinlichkeit p dafür, dass während der ganzen Auszählung
der Stimmen der Kandidat X mehr Stimmen aufzuweisen hat als Y

Natürlich übersetzt sich dieses Problem leicht in eine Frage über Wege in einem
ganzzahligen Gitter in der Koordinatenebene. Jeder Weg von (0,0) nach (a,b) stellt eine

mögliche Auszählung der Stimmen dar. Es gibt offensichtlich

er
solche Wege. Wir wollen eine Auszählung günstig nennen, bei der X immer mehr Stimmen

aufzuweisen hat als Y. Es ist klar, dass eine günstige Auszählung einem guten
Weg entspricht (mit Ausnahme des Anfangspunktes (0,0)). Wir müssen deshalb nur die
Anzahl dieser guten Wege bestimmen.

Man beachte, dass in einer günstigen Auszählung der Kandidat X die erste Stimme
erhalten muss. Der entsprechende Weg führt deshalb im ersten Schritt von (0,0) nach

(1,0). Unser Problem besteht somit einfach darin, die Anzahl guter Wege von (1,0) nach

(a,b) zu bestimmen. Nach unseren früheren Überlegungen ist die Anzahl solcher Wege
durch die Formel

gegeben. Um die in unserem Abstimmungsproblem gesuchte Wahrscheinlichkeit p zu
berechnen, müssen wir einfach (4.2) durch (4.1) dividieren, und wir erhalten

n -h
(4.3) r a+b '

Dieses erstaunlich einfache Resultat zeigt, dass die Wahrscheinlichkeit p nur vom
Verhältnis a/b abhängt und nicht von der totalen Anzahl der Stimmen. Diese Tatsache
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ist sicherlich überraschend, ja sie scheint unserer Intuition zu widersprechen. Vielleicht
vermag das folgende alternative Argument, das die Wahrscheinlichkeit mit der
Spiegelungsidee von Andre kombiniert, diesen seltsamen Aspekt unseres Resultates noch etwas
zu klären.3)

Betrachten wir einen typischen Weg, der einer Auszählung der Stimmen entspricht (siehe

Figur 11). Dann können wir uns leicht das folgende überlegen: für einen Weg von (0,0)

(M)

(0,0)
•-*

(1.0)

Fig. 11 Der Gitterweg, welcher einer günstigen Auszählung entspricht.

nach (a,b), der einer Auszählung entspricht, ist die Wahrscheinlichkeit p# dafür, dass

der erste Schritt nach rechts geht, durch

Pr a+b

gegeben, und die Wahrscheinlichkeit po dafür, dass der erste Schritt nach oben geht,
durch

b
P0 aTb'

Was wir finden wollen, ist die Wahrscheinlichkeit p dafür, dass ein gegebener Weg

ganz unterhalb der Geraden y x verläuft (natürlich mit Ausnahme des Punktes (0,0)).
Natürlich sind alle Wege, die mit einem Schritt nach oben beginnen, schlecht. Ebenso klar
ist, dass ein Weg, der mit einem Schritt nach rechts beginnt, sowohl gut wie schlecht sein

kann. Eine nähere Betrachtung (mit Andres Idee der Spiegelung) zeigt in der Tat, dass

3) Wir danken Professor James A. Wahab für eine briefliche Mitteilung, die uns zu dieser Sicht des Resultates
führte.
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jeder Weg, der mit einem Schritt nach oben beginnt, einem notwendigerweise schlechten
Weg entspricht, der mit einem Schritt nach rechts beginnt. Diese eineindeutige Beziehung
zwischen Wegen, die mit einem Schritt nach oben beginnen, und schlechten Wegen, die
mit einem Schritt nach rechts beginnen, wird erhalten, indem man den Teilweg von O
nach R an der Geraden y x spiegelt und den ursprünglichen Teilweg von R nach (a, b)
beibehält (siehe Figur 12). Es folgt, dass die Wahrscheinlichkeit dafür, dass ein Weg mit

(a,b)

Fig. 12 Die Andr6 Spiegelung eines schlechten Weges.

einem Schritt nach rechts beginnt, und schlecht ist, gerade gleich der Wahrscheinlichkeit
dafür ist, dass ein Weg mit einem Schritt nach oben beginnt, nämlich po. Damit erhalten

wir, in Übereinstimmung mit unserem früheren Resultat:

p p (guter Weg)

p(Weg beginnt mit einem Schritt nach rechts und ist gut)

p(Weg beginnt mit einem Schritt nach rechts)-

-p(Weg beginnt mit einem Schritt nach rechts und ist schlecht)

PR~PO

a b

a+b
a-b
a + b

a + b

Wie wir bereits bemerkt haben, hängt die gesuchte Wahrscheinlichkeit nur vom Verhältnis
a/b ab, z.B. ist die Wahrscheinlichkeit die gleiche, ob X 80 Stimmen erhält und Y
40, oder ob X 800 Stimmen erhält und Y 400. Allerdings folgt aus dieser Tatsache
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nicht, dass die Wahrscheinlichkeit die gleiche bleibt, wenn die Stimmen in Gruppen
von, sagen wir 10, aufgeteilt werden, bevor sie ausgezahlt werden Zum Beispiel ist im
extremen Fall, wo sämtliche Stimmen m einer Gruppe zusammengefasst werden, die
Wahrscheinlichkeit ganz einfach l1 Es gibt also im Anschluss an unsere Losung des

Abstimmungsproblems weitere interessante Fragen in diesem Gebiet
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