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When is a Polygon Circumscribing a Regular
Polygon Again Regular?

Joseph Bennish and Yihnan David Gau !)

Joseph Bennish: 1 was born in Detroit and received my bachelor’s degree from the
University of Michigan and my Ph.D. in 1987 from UCLA, where I studied with
Gregory Eskin. My Ph.D. thesis was on mixed initial-boundary value problems, and
my main research interest continues to be linear partial differential equations. My
other struggles include learning to play the violin and raising two young children.

Yihnan David Gau: 1 was bom in Taiwan and attended National Taiwan University.
In 1981 I received my Ph.D. from Purdue University under Professor Joseph Lipman.
My mathematical interests include algebraic geometry, topology of singularities and
dynamic systems.

Introduction

In the March 1970 issue of “Mathematics Magazine” the following problem appeared:
Is the triangle AABC in Fig. 1a equilateral? Four different solutions to this problem ap-
peared in its November 1970 issue, and shortly thereafter the English geometer J.F. Rigby
generalized the problem to other polygons [2], [3].%) In particular, he showed that the

Gegeben sei gin n-Eck P mit Eckpunkten Py, P,,...,Py. Auf den Seiten P.. P,
i =1,2,.,.,n {Py = P,) scien Punkte A; festgelegt mit APy = AyPp = ... = AP,
Ist P ein reguliires Polygon, so ist offensichtlich das aus den Punkten A, Az,.... 4y
gebildete Polygon A ebenfalls reguliir. Der vorliegende Beitrag beschiftigt sich mit der
Umkehrung dieses Schiusses: Folgt aus der Regularités des Polygons A auch die Regu-'
laritiéit von P? Bekannte Resultate (fiir # = 3,4, und n 26 gerade) werden hier ergiinzt
und prizisiert, Dabej verdient der Weg, den die Autoren einschiagen, selbstindiges In;
teresse. Das geometrische Problem wird in eine analytische Fragestellung tibersetzt, die

im Rahmen dynamischer Systeme interpretiert wird: Es st die Frage zu beantworten,
ob eine gegebene reelle Funktion einen periodischer Punkt, d.h. ob das mgchéﬁge
dynamische System eine periodische Bahn besitzt, In dieser Interpzmm lassen sich
m&imﬁ&hwcbexmﬂmﬁinﬁmmatm%mm:z wsgam%dwm
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1) This work is partially supported by California State University, Long Beach.

2) Rigby also treated other types of “circumscribed polygons” and the analogous question for the hyperbolic
plane.




18 El. Math,, 48, (1993)

quadrilateral circumscribing the square must itself be a square, but that there exists a
non-regular circumscribing hexagon (Fig. 1b).

Py
C Az A, P
&
Ay 4
P
1)4 A5 A5
\/
A ) B P5
a) b)

Fig. 1 The circumscribing hexagon has “period 2” (see Th. 1). The angles of /\A;P;A;,; are 30°, 100°,
50° for i even and 10°, 140°, 30° for i odd.

To be precise, let A=A;...A, and P=P,...P, (A; and P; labelled counterclockwise)
be convex n-sided polygons (abbr. n-gons). Suppose that P is circumscribed about A
(i.e., Ajs1 lies between P; and P;,;) with A;P; = A;;+1Pi+1, Fig. 1b (we shall refer to P
as a circumscribing polygon). This paper is concerned with the question: if A is regular,
is P necessarily regular?

Besides the cases already mentioned, Rigby proved that the answer is negative for n = 6
even. In this paper we answer the question for the remaining values of n (Theorem 1,
part 1). In addition, we analyze the types of non-regular polygons that arise (Theorem
1, part 2).

The main results of this paper are given in the following theorem.

Theorem 1 Suppose a regular n-gon A with sides equal to one is inscribed in an n-gon
PWithAIPI =A2P2= "‘=AnPn. Then

1. ifn=3,40rn =7 o0dd, then P must be regular;

2. if n 2 6 even, then P may be non-regular. Moreover, for n 2 8, the angles and sides
of P must have period 2, i.e.: /P, = [P3=---and [Py = [Py =---; PiP, = P3P4 =
P5P6=---andP2P3 =P4P5='--

Our approach differs markedly from Rigby’s: a new theme of abundant and deficient
angles unifies our proof of part 1 of Theorem 1. The basic idea here is quite simple. It
is shown in Lemma 2 that for n > 6 the angles of a non-regular circumscribing #n-gon
P must alternate between being larger than (abundant) and smaller than (deficient) the
angle of a regular n1-gon, and thus can only occur if n is even. A similar argument works
for n =3 and 4.
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To prove the second part of Theorem 1 we translate the geometric question (whether
there are non-regular n-gons of period k) to an analytic one, namely: Does a certain
function f have a periodic point with period equal to k (k > 1 a divisor of n)? In
Theorem 2 the existence of period 2 points is proved, and in Theorem 3 it is shown that
there are no points of period greater than 2 if n > 6.

The paper is divided into two sections which contain the proofs of the first and second
parts of Theorem 1, respectively. The dynamics of the polygons P are discussed in
Remark 3, and a bifurcation diagram is given for the case of the hexagon (Fig. 6). A

picture of a non-regular pentagon along with graphs are given in Remark 4 at the end
of the paper.

1 The Cases in Which There are Only Regular Circumscribing Polygons

Let A and P be as in Theorem 1. Let a denote Q’—_ﬁz)—”, the angle measure of a regular
n-gon. Central to our discussion is the following notion for the angles of P: the angle
LP; is abundant (resp. deficient) if /P; > a (resp. LP; < a ).

First we observe that if /P; = a, for 1 <i < n, then P must be regular. (The triangle
case is clear. If n > 4, noting that « is not acute we have AAP1A; = AA,;P,A3. Hence
P,A, = P,A; and PP, = P1A; + AP, = P2A3 +A3P3 = P,P3.) Thus a non—regular
circumscribing polygon P must have both deficient and abundant angles since the sum
of its angles is na.

Geometrically it is easy to determine whether ZP; is abundant or deficient. Given two
points A and B, the locus of points P with ZAPB equal to a given angle measure are
two circular arcs, one on each side of the segment AB. When A, B are A;, A;1, and the
given angle measure is a, the arc which lies outside (= the side opposite the center of
A) of the segment A;A;.; will be referred to as the regular arc on A;A;4 and derEied
by Ai/z‘l\i+1. (See Figs. 2, 3, and 4.) If P; lies inside (resp. outside) the regular arc A; A,
then /P; > a (resp. /P; < ). Thus /P; is abundant (resp. deficient) if and only if P;
lies inside (resp. outside) the regular arc A;-/A\m.
Next we show that a regular arc and its
Q neighboring sides are tangent. Suppose 1 2

— ——
5, then the rays A;_;A; and A;pA;4 inter-
sect, say at (). Suppose OQ intersects the

regular arc A;A;,; at R;, where O is the
center of the circle containing the regular

arc A;A;+ (Fig. 2).

Fig.2 (n=6)
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Then

LAiQAi1 =T -2LQA A =T-2(m—-a)=2a-T = n—;w. €))

LA;OR; =7-2/A;RiO =1- LA;RjAj;1 =T — .
Using these two equations we get

1
LOAQ=m- EZAiQAiH - LA;OR; =7 (a- %)—(W—a) = -72£
This proves the following lemma for n > 5:

Lemma 1 Each regular arc A;Ai4 is tangent to its two neighboring sides A;_1A; and
Ain1Ainp at A; and A, respectively.

In fact it is easy to check that this Lemma also holds for n = 3 and 4.

We make a simple but crucial observation (needed in the proof of the following key
Lemma 2). Suppose R; lies on the regular arc Ai//ﬁ,l. Join R; to A;;; and extend it
until it meets the next regular arc A,:;Z,-Jrz, say at R;,; (Fig. 3a). Then A;R; = A;;1R;41.
(Proof. Since ZAj+1 = a = LR; implies ZA;+1AiR; = LAinAi+1Riv, we get by the
side-angle-angle theorem that AA;R; A4 = AAiv1RivAivn.)

Fig.3 a)

Fig.3 b)
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Lemma 2 Let P be a circumscribing n-gon withn 2 6. If LP; is deficient (resp. abundant)
then /P;,, is abundant (resp. deficient).

Proof. Since P is convex, the vertex P; lies inside AA; A;4+1Q (Fig. 2). In view of Eq. (1),
LP; > "—n"ﬂ7r. On the other hand, if /P; is deficient then P; lies outside the regular arc

A;A;+ (Fig. 3a). Thus the line segment P;A;,; intersects A;Z;l, say at R;. We have
LA;R;P; = m—a = 2 which is < “=27 if n > 6. Thus £P; > /A;R;P; and A;P; < A;R;.

Construct R;;; from R; as in the above observation. Since A;R; = A;;1Ri;1, the last
inequality becomes Aj.1 P41 < Ai+1Ri+1. Since Ajii, Riy and Pjy; are collinear (they all
lie on the line ?iA,-H), P;,1 lies between A;;; and R;;;. So P;,; lies inside A;;;A;4, and
/P;,; is abundant.

The case that /P; is abundant can be argued similarly (see Fig. 3b): We now have P; is
between R; and A;:; (R;, Ri+; again lie on regular arcs) and /R; = a > % > LA;P;R;,
which implies A;R; < A;P; or Aj+1Ri41 < Ai+1Pi41. Thus Ry is between A;;; and P;y
and /P;,; is deficient.

Remark 1. A similar argument yields: If /P; is deficient then /P, is deficient if n =3
or 4, and can be either abundant or deficient if n = 5. On the other hand, if /P; is
abundant then /P;,, is abundant if n = 3 and deficient if n = 4 or 5.

Proof of Theorem 1, part 1: if n = 3,4 or n 2 7 odd, then any circumscribing n-gon P
must be regular.

Suppose P is a non-regular circumscribing polygon. By the observation at the beginning
of this section, at least one ZP; is deficient. If furthermore n = 3 or 4, by remark 1, the
existence of one deficient angle would imply that all angles are deficient, a contradiction.
If on the other hand n 2 6 then, by Lemma 2, the existence of one deficient angle implies
that the angles alternate between abundant and deficient, which can happen only if n is
even.

We conclude this section with a remark

eemTTTes ~e about the range of the length £ := A;P;.
/," S Remark 2. For a circumscribing polygon P,
R - N regular or not, at least one ZP; is > a, which
'/' % is > T if n > 4. By considering AA;P;Ais1,

] we see that 0 < £ = A;P; < A;jAiq1 = 1. For
: n = 3 the largest possible value of ¢ is the
\ ! diameter A;R = % of the circle containing
A / the regular arc, see Fig. 4.

Note that for each £ in the above range a
regular circumscribing n-gon P can be ob-
tained by starting with R; on the regular arc
with AR, = £ and then construct R,, ..., R,
as in the observation before Lemma 2.

Thus there is a one-to-one correspondence
between points on a regular arc and regular
Fig. 4 polygons P.
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2 The Cases of Non-Regular Circumscribing Polygons

In this section we will prove part 2 of Theorem 1. That is, it will be shown analytically
that whenever n > 6 is even there are non-regular n-gons P satisfying the conditions of
Theorem 1, and that, with the exception of the hexagon, all these polygons have period 2.
In [2] and [3] a geometric proof is outlined for the existence of non-regular polygons,
but our analytic approach leads to a description of the types of non-regular polygons P.
We adopt the same notation as in section 1. Henceforth, n > 6, so by Remark 2 the
length £ := A;P; takes values in (0, 1).

We consider the function f which for given £ computes 6;,; from the argument 6;, where
0; = LA;+1A;P;. A periodic orbit of f of period k corresponds to a polygon P of period k.
More precisely, if ¢ is an angle between 0 and 27/ such that the ith iterates f'(¢) > 0
are distinct fori =0,...,k -1, f k (¢) = ¢, and n is divisible by k, then the sides and
angles of the polygon P with ZA;;A;P; =fi(¢)), i =1,...,n, have period k. (This is a
consequence of basic theorems on triangles such as the side-angle-side theorem.)

Let ¥, = LAjA;+1P;. Then 6;, =1 —a— 1Y, =27 /n —1;, where

9; = arctan biT = arctan —K—Slﬂ—g’———
a AiAig—AT ) 1-4£cosb; )’

and T is the foot of the perpendicular of P; onto the line A;A;;;. Therefore, we have

2T £sin 6
f(0) = “"r;— — arctan ('1——:2—0——08'—0) .

By Remark 2 there is exactly one regular polygon P for each £. For £ fixed, let 3
represent the angle ZA,A;P; of this regular polygon. Note that f (3) = 3.

Lemma 3 f'(3) < -1 if and only if £ > £y, and f'(3) = —1 only if £ = £y, where
-3
£y = (4—3sin2 2—:-) : ()

Proof. Let S be the foot of the perpendicular of A, onto the line A;P] in the case in
which P is regular. Since n > 6, P; lies between A; and S. Then

£=AS-PS =cosfB-csinf, 3)

where ¢ = cot(ZA,P,S) = cot(m — a) = cot(2w /n).
The derivative of f is given by

, £2—£cosb

f6)= 1-20cos@+£2 X
Since 1-2¢cos 8+£2 > 0, we have 2£2~3£ cos +1 < 0 whenever f'(() < —1. Substituting
Eq. (3) into the above inequality leads to cot 3 > 2c +1/c. Since the cotangent function
is decreasing in the first quadrant we get 3 < arccot(2c + 1/c) =: 7. But cos @ — c sin 8
is decreasing in the first quadrant, so £ > cosy —csiny = (¢ + 1)/ V4c*+5c2+1 =
V1 +c2/+/1 + 4c? which simplifies to £. Since the argument is valid if all the inequality
signs are reversed (or replaced by equal signs) the assertion is proved.
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Lemma 4 Let h(0) = f2(0)—0, where 2 is the composition of f with itself. Then h'(3) > 0
if £> o, and W'(B) <0 if £ < o,

Proof. Since h'(0) = f'(f(6))f () — 1, we get h'(B) = [f'(B)]*> — 1. Therefore, by the
previous lemma, it suffices to show that f'(3) < 1. But this is equivalent to £cos 3 < 1.

We are now ready to establish the second part of Theorem 1: the next theorem deals
with period 2 circumscribing polygons, whereas Theorem 3 deals with higher periods.

Theorem 2 Let n > 6 be even. Then there exists a non-regular circumscribing polygon
of period 2 for each £, £y < £ < {1, where £y := (2cos(2m / n))~}, and £y is defined in
Eq.(2).)

Based on plots of f2, we conjecture that for each £ € (£, £;), there is only one period
2 circumscribing polygon, and for £ & (4o, ¢;), there are no period 2 circumscribing
polygons (see Fig. 5). The complexity of f2 prevents us from obtaining an analytic
proof of this conjecture.

0.7

0.6

0.5}
/__

0.4f
/

0.3f

0.2t

0.1 .t
|

—t

0.2 0.4 0.6 0.8

Fig. 5 (n =8, £y = 0.632, £; = 0.707) Graphs off2 for £ =.37,.47,.57,.67,.717,.87. The steeper graphs
correspond to larger values of £.

Proof of Theorem 2. Since h() = f%(8) - 0, a zero ¢ > 0 of h other than 3 corresponds
to a non-regular polygon P of period 2 as long as f(¢) > 0. By the definition of f3,

*) £, can be interpreted geometrically as A;Q, where Q is defined in Fig. 2. Also a simple check verifies
that £y < £;. Moreover, both {to(n)} and {tl(n)} are decreasing sequences which converge to one-half,
and £; — £, = O(n™?).
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h(B) = 0. Moreover, by Lemma 4, h'(3) > 0. Therefore, if h(0) > 0 then h will have
at least one zero in the interval (0, 3) (by the intermediate value theorem). However,
h©) =f(p), p =2m/n, so h(0) >0 is equivalent to tanp > £sinp /(1 ~~£cosp). But this
inequality holds if (and only if) £ < ¢;. (Note also that f (¢) > 0 since /P, is abundant,
where ¢ = ZA2A1P1.)

Remark 3. By examining plots of the function f2, we are led to conjecture that as
£ passes through ¢, the iteration goes through a period-doubling bifurcation (see [1],
pp-158-159 for a discussion of period-doubling bifurcation). This is illustrated in Fig. 6.

Fig. 6 (n = 8) The dotted regular arc represents the vertices of regular polygons for 0 < £ < 1; the other
curve consists of the two positions (for various £) of vertices of period-two polygons, one on each
side of the regular arc. The bifurcation occurs at the intersection of the two curves.

Fig. 7a gives a nonregular hexagon (corresponding to an ¢ near {p) and the regular
hexagon (corresponding to £p) from which the nonregular hexagon bifurcates. On the
other hand, as £ increases to £; = 1, the non-regular hexagon approaches an equilateral
triangle. This is illustrated in Fig. 7b. In general, the non-regular 2m-gon approaches a
regular m-gon as £ increases to £;.

Fig. 7b)
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Theorem 3 There are no non-regular n-gons, n > 6, with period greater than two.

Proof. This is equivalent to there being no orbits of f of period greater than 2 which are
contained in the interval (0,p), p = 2w /n, n > 6. Since a decreasing function cannot
have a point with period greater than 2, it suffices to show that for 0 < £ < 1 f is
decreasing on the subset of (0, p) where f > 0. In view of Eq. (4) f'(f) < 0 if £ < cosé.
By the first part of Theorem 1 we haven > 8,sop <7/4.If £ < 1/V2 then f'(6) <0
on (0,p).

Consider the case 1/v2 < £< 1. By the proof of Theorem 2, f (p) <0 if £; < £< 1. But
£y = (2cos p)‘1 < Qcost/4) " =1//2 forn > 8, s0 f(p) <0 in this case. However,
f is concave up on (0, p) since

sin 8(£ — £3)

7= (1—=2£4cos 8 + £2)2

is positive for 0 < @ < w. Thus, in this case, the concavity of f and the fact that f (p) <0
imply that f is decreasing on the subinterval of (0,p) on which f > 0.

Remark 4. The results so far still leave unanswered the question whether there are non-
regular pentagons and non-regular hexagons of period 6. (Non-regular hexagons of period
3 are precluded since, by Lemma 2, deficient and abundant angles must alternate.) By
examining plots of the function f and its iterates we have concluded that there are non-
regular pentagons (Fig. 8) but no non-regular hexagons of period 6 (Fig. 9). Indeed, there
seems to be a range of £ for each value of which there are two non-regular pentagons.

1.2
1
0.8 //
%
0.6
0.4
0.2
0.2 0.4 0.6 0.8 1 1.2
a) b)

Fig. 8 (n = 5) Graphs of f and f° for £ =.946. Note that f> has eleven fixed points so there are two
non-regular pentagons for this value of £.
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1
0. 0.8
0. 0.6
0. 0.4
0. 0.2
7
NN

a) b)
Fig. 9 (n = 6) Graphs of f and f6 for (a) £ =.77 and (b) £ =. 86.
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