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Zur Geometrie der Mikrocluster

Fiir Prof. Dr. Beno Eckmann zum 75. Geburtstag

H.R. Schneebeli

Hans Rudolf Schneebeli studierte Mathematik an der ETH Ziirich und am Weiz-
mann Institute of Science, Rehovot, Israel. Es folgten Promotion und verschiedene
Arbeiten zur Gruppentheorie und zur Homologischen Algebra unter der Leitung von
Prof. B. Eckmann. Seit 1979 ist Hans Rudolf Schneebeli Mathematiklehrer an der
Kantonsschule Baden. Eines seiner besondern Anliegen ist es, Beziige zwischen Ma-
thematik und andern Erfahrungsbereichen etwa aus Naturwissenschaft und Technik
aufzuzeigen und zur Motivation im Unterricht zu nutzen. Das hier dargestellte Thema
bildete neulich die Grundlage fiir Schiilerarbeiten im Rahmen einer Studienwoche
“Mathematik” der Stiftung “Schweizer Jugend forscht”.

Was haben Fussball, Euler, Kohlenstoff und Buckminster Paller miteinander zu tun?
Um 1985 vermuteten die Chemiker H. Kroto und R.E. Smalley die Existenz eines “gros-
sen”, sehr stabilen Kohlenstoffmolekiils Cgo. Sie stellten sich die 60 Kohlenstoffatome
als kugelformige Struktur bestehend aus Fiinf- und Sechsecken vor, deren Anordnung
derjenigen der schwarzen und weissen Lederstiicken auf einem Fussball (siche Abb.1)
entspricht. Fiir diese und weitere, noch grissere Kohlenstoffmolekiile schlugen sie den
Namen Fullerene vor, nach dem Architekten Richard Buckminster Fuller, der bekannt |
war flir seine eindruckvollen aus Fiinf- und Sechsecken bestehenden Gewolbe. Und
Euler? Bereits die Entdecker der Fullerene stellten fest, dass der Eudersche Polyeder-
satz fiir ein Fulleren die Anzahl der vorkommenden Finfecke festlegt, ndmlich 12. Die
Anzahl der Sechsecke hingegen wird durch Eulers Formel nicht eingeschriinkt, so dass
man sich neben Cgg auch weitere Fullerene, Cyo und noch grossere, vorstellen konfite.
Das Fulleren Cg konnte ‘1990 durch W. Kriitschmer, et 31 direkt naﬁtgawieseﬁ nﬁdf
in makroskopischen Mengen hergestellt werden. . -

Im vorliégenden Beitrag beschiftigt sich Hans Rudolf sembeﬁ mit m w i
natorischen Struktur” der Fullerene. Binfache géometrische Betrachtungen, die. sich
bewusst beschrinken und zum Beispiel die vérichiedenen Biidutigslingen m& Mw
Tektil mﬁickgizhﬁgt I&mﬁ; wmm ﬁ&, mmmnae Anssaganﬁw {ite Straktur deér-
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1 Einleitung

Seit einiger Zeit beschiftigen sich Festkorperphysiker und Chemiker mit Mikroclustern.
Das sind Aggregate von einigen wenigen bis zu einigen hundert Atomen. Im Vergleich
zu den makroskopischen Erscheinungsformen der Materie bilden Mikrocluster also aus-
gesprochene Wenigteilchensysteme. Eine Besonderheit der Mikrocluster ist der iiberaus
hohe Anteil an Atomen, die auf der Oberfliche des Verbandes liegen. Seit 1985 sind reine
Kohlenstoffcluster bekannt. Der beriihmteste Vertreter dieser Gattung ist das Molekiil
Ceo, das “Fussballmolekiil” (vergleiche auch [2], [3]). Das Geriist des Fussballmolekiils
ist ein Netz auf der Kugel, das aus 12 Fiinfecken und 20 Sechsecken besteht, wobei in
jeder Ecke drei Kanten zusammentreffen.

Fig. 1 Fussball und Fussballmolekiil

Typische Fragen, die sich zur Struktur der Kohlenstoffcluster aufdridngen, lauten etwa:

— Ist die Struktur von Cgo (oder allgemein von C,) eindeutig festgelegt, oder gibt es
mehrere Isomere?

— Fiir welche Zahlen n gibt es Kohlenstoffcluster C,,? Gibt es wirklich Cluster mit 45
Atomen (vgl. die Abbildung in [1], S. 61) oder mit 92 Atomen (gemiss Messungen
mit dem Massenspektrometer)?

Solche Fragen lassen sich meist nicht ohne eingehende Fachkenntnisse aus der Chemie
beantworten. Sie waren fiir mich jedoch ein Anlass fiir die Beschiftigung mit eini-
gen rein geometrischen Problemen, die sich in diesem Zusammenhang stellen. Um den
Unterschied zum Vorbild aus der Chemie deutlich zu machen, soll von geometrischen
Clustern die Rede sein. Dieser Begriff ist noch zu definieren. Er soll nur die kombina-
torischen und qualitativen Eigenschaften der Geriiste von Kohlenstoffclustern erfassen.
Grob gesprochen, handelt es sich bei einem geometrischen Cluster um ein konvexes
Polyeder, dessen Randfldchen lauter Fiinfecke oder Sechsecke sind und in dessen Ecken
jeweils drei Kanten enden. Es war mein Ziel, einen Gegenstand, der in der chemischen
Grundlagenforschung gegenwiirtig besondere Beachtung findet (das Fussballmolekiil Cep
wurde zum “Molekiil des Jahres 1991 gewihlt), ins Blickfeld der Schulmathematik zu
riicken. Mit elementaren Methoden sollen Fragen iiber die Existenz und Eindeutigkeit
geometrischer Cluster untersucht werden.

Die folgenden Uberlegungen werden in drei Abschnitte aufgeteilt. Zuerst wird der Uber-
gang vom chemischen Vorbild zum geometrischen Modell vollzogen. Dazu miissen Defi-
nitionen fiir geometrische Cluster und fiir die beiden Aquivalenzrelationen “isomer” und
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“isomorph” formuliert werden. In einem zweiten Schritt werden einige Verfahren ange-
geben, um aus bekannten geometrischen Clustern neue solche Cluster zu erzeugen. Es
gelingt mit diesen Konstruktionen im letzten Schritt, fiir jede Isomerieklasse von geome-
trischen Clustern einen Vertreter zu erzeugen. Die Aufzéhlung aller méglichen Cluster-
geriiste bis auf Isomorphie scheint erheblich schwieriger zu sein. Wir begniigen uns einst-
weilen mit dem Hinweis, dass unsere Konstruktionen gelegentlich mehrere geometrische
Cluster mit derselben Eckenzahl aber echt verschiedenen Geriisten liefern. Interessant ist
auch die Konstruktion eines geometrischen Clusters mit einer rechtshidndigen und einer
linkshidndigen Variante. Die allgemeinen Clusterkonstruktionen spielen die Rolle einer
Formengrammatik. Es ist mir nicht gegliickt zu zeigen, dass die Transformationsregeln
dieser Grammatik ausreichen, um eine Liste aller Isomorphietypen zu erzeugen, wobei
allenfalls einige wenige “primitive” Cluster (das Dodekaeder?) als Grundformen zuléssig
wiren. Einem Chemiker wiirde eine solche Liste insofern dienen, als alle Geriiste von
Kohlenstoffclustern auch geometrische Cluster sind. Allerdings ist die Existenz eines
geometrischen Clusters mit n Ecken eine notwendige aber gewiss keine hinreichende
Bedingung dafiir, dass Kohlenstoffcluster vom Typ C, in der Natur vorkommen.

2 Vom Kohlenstoffcluster zum geometrischen Cluster

Die experimentelle Untersuchung der Struktur von Kohlenstoffclustern erfordert den Ein-
satz von Massenspektrometern, Rontgenstrukturanalyse und anderen, modernsten spek-
troskopischen Methoden. Erschwerend fiir solche Untersuchungen ist der Umstand, dass
Cluster wie Cgp mit einer Frequenz im Gigahertzbereich um eine Achse rotieren. Er-
staunlicherweise weiss man aber einiges iiber die Gestalt gewisser C,-Molekiile. Man
stellt sie sich im allgemeinen als domartige, geschlossene Geriiste vor, die aus Fiinfecken
und Sechsecken aufgebaut sind. Dieser Vorstellung verdanken sie auch den Namen Ful-
leren, in Anlehnung an den Namen des Architekten und Erfinders geoditischer Dome,
Buckminster Fuller. Im Cgp-Molekiil sind alle Bindungslédngen untereinander gleich und
alle Bindungswinkel gleich gross. Das stereometrische Geriist von Cyg ist im metrischen
Sinne nicht konvex. Es weist eine taillenartige Einschniirung auf, ist aber im kombinato-
rischen Sinn dquivalent zum Geriist eines konvexen Polyeders. Die Bindungsldngen und
Bindungswinkel in diesem Molekiil schwanken etwas von Ort zu Ort. Es ist also anzu-
nehmen, dass sich die exakten metrischen Daten der C,,-Molekiile nur in Ausnahmefillen
bestimmen lassen. Wir iiberspielen deshalb fehlende Information durch Abstraktion bei
der Modellbildung und betrachten von nun an bloss qualitative geometrische Modelle der
Cn-Molekiile. Ein geometrischer Cluster ist ein Polyeder, das aus lauter fiinfeckigen oder
sechseckigen Randflichen aufgebaut ist, bei dessen Ecken jeweils drei Kanten zusam-
menstossen und das vom gleichen kombinatorischen Typ ist wie ein konvexer Korper.
Die geometrische Darstellung des Fullerens Cqo zeigt, dass es geometrische Cluster gibt.
Auch das Dodekaeder ist ein geometrischer Cluster. Ein zugehoriges Kohlenstoffmolekiil
Cyo ist jedoch noch nicht bekannt. Womoglich kann es wegen der starken Kriimmung
des Geriistes aus “physikalischen” Griinden gar nicht existieren. Es gibt aber Berichte
liber die Entdeckung von clusterartigen Anordnungen von Wassermolekiilen nach dem
Muster des Dodekaeders.

Unser Ziel ist eine moglichst weitgehende Klassifikation der geometrischen Cluster. Da-
bei lassen wir uns von zwei Klassifikationsmustern leiten. Zwei geometrische Cluster
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(gedacht als Verbindungen aus lauter gleichartigen Atomen) heissen isomer, wenn sie
dieselbe Eckenzahl aufweisen. Zwei geometrische Cluster heissen (kombinatorisch) iso-
morph, wenn es eine bijektive Abbildung vom einen auf den andern gibt, wobei Ecken
in Ecken, Kanten in Kanten und Fldchen in Flichen so abgebildet werden, dass alle
Inzidenzbeziehungen (das kombinatorische Schema) erhalten bleiben. Mit dem Massen-
spektrometer lésst sich die Anzahl der Atome eines wirklichen Clusters bestimmen. Die
Isomerieklasse ist damit bekannt. Es ist also naheliegend, fiir geometrische Cluster die
folgenden Fragen zu stellen:

— Welche Eckenzahlen treten in geometrischen Clustern auf? (Welche Isomerieklassen
gibt es?)

— Wie lisst sich ein vollstindiges Reprisentantensystem fiir die Isomorphieklassen der
geometrischen Cluster eines bestimmten Isomers algorithmisch und effizient erzeu-
gen?

Von nun an werden wir auch die Kurzbezeichnung “Cluster” fiir geometrische Cluster
verwenden, wenn der Zusammenhang Verwechslungen ausschliesst.

2.1 Einige kombinatorische Eigenschaften geometrischer Cluster

Geometrische Cluster zeichnen sich durch eine Reihe von bekannten Eigenschaften aus,
die sich entweder unmittelbar aus dem kombinatorischen Schema ablesen lassen oder
aber sofort aus dem Polyedersatz von Euler folgen.

1. Enthilt ein geometrischer Cluster E Ecken, K Kanten, F Flédchen, so gilt
E-K+F=2, und 3E =2K.

Insbesondere ist die Eckenzahl E stets gerade und die Kantenzahl K ist stets durch
3 teilbar. Die beiden linearen Beziehungen zwischen E,K,F zeigen, dass jede der
Zahlen E,K,F die beiden andern eindeutig festlegt, also auch die Isomerieklasse
bestimmt, welcher der entsprechende Cluster angehort.

2. Essei f die Anzahl der Fiinfecke und s die Anzahl der Sechsecke in einem Cluster.
Dann gelten die Beziehungen 5f + 6s = 3E und f +s = F. Setzen wir dies in der
Polyederformel ein mit 6E = 10f +12s, 6K = 15f +18s, und 6F = 6f +6s , so folgt
f = 12. Fiir s ergibt sich zunichst keine Einschrinkung. Jeder geometrische Cluster
enthilt also genau zwolIf Fiinfecke. Deshalb gilt fiir die Eckenzahl E > 20.

2.2 Konstruktion von Clusternetzen im Netz eines Polyeders

Wir geben hier weitere Beispiele fiir geometrische Cluster an, die im Netz eines Polyeders
konstruiert werden. Das erste Verfahren geht vom Netz eines Tetraeders aus, das zweite
fiihrt fiinfkantige oder sechskantige Prismen in geometrische Cluster iiber.

2.2.1 Clusternetze im Netz des Tetraeders

Die folgenden Beispiele werden durch Abbildungen des Clusternetzes in einem Tetra-
edernetz beschrieben. Dabei wird die (kombinatorische) Symmetrie des Tetraedergeriistes
auf die Symmetrie des Clusters libertragen werden.



El. Math,, 48, (1993) 5

Fig. 2 Cluster mit 28, 40, 56 Ecken im Netz eines Tetraeders

2.2.2 Prismatische Cluster
Der Grundgedanke fiir die Konstruktion dieser Cluster besteht darin, den Mantel eines
Prismas mit einem Netz aus Fiinfecken und Sechsecken zu iiberziehen.

1. Fiinfecksprisma
Wir wihlen je ein Fiinfeck als Grund- und Deckfliche eines Prismas. Am obemn
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und am untern Rand des Mantels werden nun je fiinf Fiinfecke angeordnet. Im Zwi-
schenraum lassen sich n = 0 Ringe mit 5n Sechsecken einfiigen. Die Anordnung
wird schematisch in der folgenden Abbildung gezeigt.

L

Fig. 3 Abwicklung des Mantels eines fiinfkantigen Prismas mit dem Netz aus Fiinfecken und Sechsecken

Im allgemeinen entstehen so Cluster mit 20 + 10n Ecken und 5n Sechsecken. Der
Fall n = O entspricht dem Dodekaeder. Der Fall n = 4 liefert ein Isomer zum Fulleren
Ce0, das aber einer andern Isomorphieklasse angehort. Das Beispiel n = 2 liefert ein
Isomer mit fiinfzihliger Symmetrie zum Cluster mit 40 Ecken, der im Tetraedernetz
angegeben wurde und eine andere Symmetrie aufweist.

2. Sechseckprisma
Entsprechend zu den vorangehenden Beispielen lassen sich am obern und am untern
Rand des Mantels eines sechskantigen Prismas je sechs Fiinfecke anordnen. Der
Zwischenraum wird gemiss folgendem Schema mit 6n Sechsecken aufgefiillt.

b o 5 & b

Fig. 4 Abwicklung des Mantels eines sechskantigen Prismas mit dem Netz aus Fiinfecken und Sechsecken.
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Es entstehen Cluster mit 24 + 12n Ecken und 6n + 2 Sechsecken. Im Falle n = 3
entsteht ein weiteres Isomer zum Fulleren Cegp.

3. Ein isolierter Sonderfall mit sechszidhliger Symmetrie
Eine Variante der eben ausgefiihrten Konstruktion liefert ein Isomer zum sechskan-
tigen prismatischen Cluster mit 48 Ecken. Je zwei Hauben aus sieben Sechsecken
werden durch einen Kranz von zwolf Fiinfecken verbunden.

Fig. 5 Schematische Darstellung von zwei Isomeren mit 48 Ecken

3 Allgemeine Clusterkonstruktionen

Ausgehend von bereits bekannten geometrischen Clustern sollen neue solche Cluster
konstruiert werden. In einem anderen Zusammenhang wurden in [4] bereits Konstruk-
tionen zur Erzeugung reguldrer Kreisnetze verwendet, die nach unserer Sprechweise zu
den allgemeinen Clusterkonstruktionen gehoren. Wir unterscheiden globale und lokale
Modifikationen.

3.1 Globale Modifikationen von Clustern

Die globalen Modifikationen sind auf beliebige Cluster anwendbar und liefem neue Clu-
ster, indem im gegebenen Cluster alle Ecken, Kanten oder Flichen nach demselben
Verfahren umgewandelt werden. Im Zusammenhang mit dem Isomorphieproblem ist es
interessant zu bemerken, dass die (kombinatorische) Symmetriegruppe eines Clusters
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auch auf allen Clustern operiert, die aus ihm durch globale Modifikationen hervorgehen.
Die (kombinatorischen) Symmetrien eines Clusters vererben sich bei globalen Modifi-
kationen.

3.1.1 Kantentransformation

Denkt man sich ein Polyeder aus Holz hergestellt, so liessen sich alle Kanten abho-
beln und in zusitzliche Flichen verwandeln. Die Kantentransformation beruht auf dieser
Vorstellung. Sie ersetzt alle urspriinglichen Kanten eines geometrischen Clusters durch
Fliachen. Eine genauere Betrachtung der Verhiltnisse an den Ecken zeigt, dass diese
neuen Flichen Sechsecke sind und dass die urspriinglichen Seitenflichen in verkleiner-
ter Gestalt aber sonst unverindert im neuen Cluster eingebettet sind.

\
\ \ / /
\ //

Fig. 6 Kantentransformation

Bezeichnen E’, K', F' die Anzahlen der Ecken, Kanten, Fldchen nach der Kantentrans-
formation und E, K, F die urspriinglichen Anzahlen, so gilt

E'=E+2K ,
K'=3E +2K ,
F'=K+F.

Mit den Beziehungen 2K = 3E und E - K + F = 2 folgt daraus

E'=4E ,
K'=4K .

Beispiel: Die Anwendung der Kantentransformation auf ein Dodekaeder liefert einen geo-
metrischen Cluster mit 80 Ecken, nochmalige Kantentransformation ergibt einen Cluster
mit bereits 320 Ecken.

3.1.2 Eckentransformation
Bei dieser Operation werden alle Ecken eines geometrischen Clusters durch Sechsecke
ersetzt; dazu sind zwei Schritte notig:

1. Wir wihlen eine Ecke A aus. Auf den drei Kanten, die in A enden, werden die Mittel-
punkte markiert und untereinander verbunden. Dadurch entsteht zunéchst ein Dreieck,
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in dessen Innerem A liegt. Entsprechende Dreiecke werden in allen Ecken gebildet
so, dass in jeder Kantenmitte je zwei Dreiecke aneinanderstossen. Die urspriingli-
chen Kanten werden nun entfernt und es entsteht ein Polyeder, das nicht vom Typ
eines geometrischen Clusters sein kann, da es vierzihlige Ecken und Dreiecksflichen
enthdlt. Dieser Mangel wird im folgenden Schritt korrigiert.

2. In den vierzdhligen Ecken werden neue Kanten nach dem Muster der folgenden
Abbildung eingefiihrt.

/
/

Fig. 7 Die zwei Schritte der Eckentransformation \

Mit den gleichen Bezeichnungen wie bei der Kantentransformation lisst sich die Auswir-
kung der Eckentransformation auf die Anzahlen der Ecken, Kanten und Flichen durch
folgende Formeln beschreiben:

E’'=3E,
K'=3E +K ,
F'=E+F.

Mit den Beziehungen 2K = 3E und E — K +F =2 folgt daraus

E'=3E,
K'=3K .

Beispiel: Die Anwendung der Eckentransformation auf das Dodekaeder liefert den zu

Ceo gehorigen Cluster, eine weitere Eckentransformation erzeugt einen Cluster mit 180
Ecken.

3.2 Lokale Modifikationen von Clustern
Es gibt Konstruktionen, die ausgehend von einem Cluster wieder einen Cluster ergeben,
dabei aber im Gegensatz zu den globalen Modifikationen nur einen Teilbereich des ur-
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spriinglichen Clusters erfassen. Eine Modifikation eines Clusters C heisst lokal, wenn es
einen einfach geschlossenen Kantenweg I' in C gibt, der C in zwei nichtleere Gebiete
teilt, von denen eines samt dem Kantenweg I als Rand unverindert bleibt. Bei jeder
lokalen Clustermodifikation bleibt die Zahl der Fiinfecke in jedem der beiden Teilge-
biete mit gemeinsamem Rand I" notwendigerweise erhalten. Symmetrien von Clustern
konnen durch lokale Modifikationen gebrochen werden. Das Einfiigen eines Kranzes von
Sechsecken beim Verldngern eines prismatischen Clusters ist ein Beispiel fiir eine lokale
Modifikation. In den folgenden Beispielen treten lokale Modifikationen von Clustern auf,
bei denen Fiinfecke beteiligt sind. Die jeweiligen Modifikationen werden durch die Ab-
bildungen erklart. Im Stile chemischer Formeln geben wir grob die Art der Modifikation
wieder. Eine Konfiguration aus r Fiinfecken und s Sechsecken wird notiert als p, hs.

1. Erzeugung von Isomeren durch Bewegung von Fiinfecken

a) Bewegung eines Paars von Fiinfecken: pyh, — pah;

Fig. 8 Die Transformation pyh, &= pyh;

b) Bewegung eines Paars von Fiinfecken: p,hy — pohs

Fig. 9 Die Transformation pyhs > paha
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2. Erzeugen eines Sechsecks: pohy — pahy

Fig. 10  Die Transformation ph; - prhy

3. Erzeugen von zwei Sechsecken: psh; — pshs

Fig. 11  Die Transformation psh; + psh;

4. Erzeugen von drei Sechsecken: psh; — pahy

Fig. 12 Die Transformation psh; + pahs
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5. Erzeugen von drei Sechsecken: ps +— pehs

Fig. 13  Die Transformation ps +— pgh;

Es fillt auf, dass sich die Eckenzahlen additiv dndern, wenn eine lokale Modifikation
vorgenommen wird, wihrend eine globale Modifikationen durch Multiplikation mit ei-
ner Konstanten auf den Eckenzahlen wirkt. Fiir die Konstruktion geometrischer Cluster
sind die lokalen Konstruktionen interessanter als die globalen, denn sie erlauben die
Konstruktion von Isomeren und das Anfiigen von kleinen Zahlen neuer Ecken. Die
Konstruktionsvorschriften fiir lokale Modifikationen lassen sich auch riickwirts lesen.

4 Konstruktionen von Clustern, Isomerie und Isomorphie

Lokale Modifikationen werden benutzt, um weitere Beispiele fiir geometrische Cluster
zu konstruieren. Dabei stehen zwei Absichten im Vordergrund: In (4.1) wird ein Verfah-
ren beschrieben, das je einen Vertreter fiir jeden Isomerietyp der geometrischen Cluster
liefert. Damit wird das Isomerieproblem konstruktiv gelost. Viel schwieriger ist das Iso-
morphieproblem fiir geometrische Cluster. Es verlangt die Angabe einer vollstindigen
Liste der Cluster bis auf Isomorphie und eines Verfahrens, das zu zwei vorgelegten Clu-
stern entscheidet, ob sie zueinander (kombinatorisch) isomorph seien. Isomorphe Cluster
sind notwendigerweise isomer. In (4.2) werden einige Beispiele fiir nicht isomorphe Iso-
mere angegeben. Im Falle von C,3 werden einige der Probleme beleuchtet, die beim
Klassifizieren von Isomeren bis auf Isomorphie auftreten.
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4.1 Isomerie
Es gibt Cluster mit E Ecken fiir E = 20 und fiir alle geraden Zahlen E > 24.
Diese Aussage wird in den folgenden drei Schritten begriindet.

1. Wir wissen bereits, dass E = 20 und gerade ist. Zuerst wird E = 22 ausgeschlossen:
Es gibt keinen Cluster mit 22 Ecken.
Begriindung: In einem solchen Cluster gibt es genau ein Sechseck. Um dieses Sechs-
eck lassen sich die notwendigerweise auftretenden 12 Fiinfecke auf genau eine Art
so anordnen, dass von jeder Ecke drei Kanten ausgehen. Dabei entsteht jedoch ein
Netz mit 24 Ecken, es gehort zum einfachsten Fall eines Clusters vom Typ der
“Sechseckprismen”.

2. Wird die lokale Modifikatione ps +> pehs auf ein Dodekaeder angewendet, so
entsteht ein Cluster Cy6. Mit poh, +— p2h; wird dieses in einen prismatischen
Cluster mit 24 Ecken umgewandelt.

3. Wir betrachen den prismatischen Cluster mit 24 Ecken und wihlen eines der beiden
Sechsecke mit allen seinen unmittelbar angrenzenden Fiinfecken aus. Diese Konfigu-
ration nennen wir Polarkappe. In jedem prismatischen Cluster, der vom sechskantigen
Prisma geméss den Verfahren aus (2.2.2) konstruiert wurde, treten zwei solche iso-
morphe Polarkappen auf. Die folgenden drei lokalen Modifikationen werden auf die
Polarkappen angewandt und liefern die Beispiele der Form E = 24 + 12n + 2k fiir
k =1,2,3. Da jede der beiden Kappen fiir Modifikationen zur Verfiigung steht und
am Ende der Konstruktion wieder zwei Polarkappen gebildet werden, folgt dann die
Behauptung mit Induktion.

k=1
Anwendung von ph; = pah
gemiss der nebenstehenden Figur:

Fig. 14

k=2
Anwendung von ps3h; — pshs
gemiss der nebenstehenden Figur:

Fig. 15
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k=3
Anwendung von pshy +— pahy
gemiss der nebenstehenden Figur:

Fig. 16

4.2 Isomorphie

Der Cluster C49 von Abb.2 besitzt die Symmetrie eines Tetraeders. Er ist also nicht
isomorph zum Fiinfecksprisma mit 40 Ecken. Ein weiteres Beispiel lédsst sich konstruieren
durch wiederholte Anwendung der lokalen Modifikation poh; +— pyh, ausgehend vom
prismatischen Cluster mit 30 Ecken. Dabei wird ein Cluster mit 40 Ecken aufgebaut,
bei dem 10 Fiinfecke in einem Ring angeordnet sind und zwei weitere davon getrennt
nur von Sechsecken berandet sind. Damit haben wir mindestens drei nicht isomorphe
Isomere zu Cy4y gefunden.

Fig. 17 Zur Konstruktion eines Isomers von Cyg

Aus Abb.5 kennen wir auch bereits zwei nicht isomorphe Isomere zu Cgg.

Durch jede lokale Modifikation mit konstanter Eckenzahl, wie etwa p,h, —  pyhy,
lassen sich Fiinfecke und Sechsecke auf geeigneten Clustern bewegen. Aber der Um-
fang der Bewegung ist offensichtlich beschrinkt. Es ist also nicht zu erwarten, dass
solche Bewegungen ausreichen, um alle Isomorphietypen eines Isomers zu erzeugen. Im
folgenden Beispiel wird das Tetraedernetz von Cyg aus Abb.2 als Ausgangspunkt einer
Konstruktion benutzt. In einem ersten Zwischenschritt (Abb.18 a) wird die Eckenzahl
erniedrigt, damit im darauf folgenden Ubergang von C, zu Cyg an einer neuen Stelle
mit p,h; — pah;, ein Sechseck eingefiigt werden kann (Abb.18 b). Mit p,h, — pahy,
an geeigneter Stelle angewendet, finden wir ein weiteres Muster vom Typ C,g (Abb.18
c). Es zeigt sich nun bereits in diesen eher einfachen Fillen, dass die Zuordnung der
gefundenen Beispiele zu ihren Isomorphietypen nicht mehr offensichtlich ist.
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a)

b)

¢)

Fig. 18  Konstruktion von Isomeren zu Cyg

Die beiden Netze (b,c) gleichen sich stark. Sie sind jedoch nicht isomorph, wie die
folgende Uberlegung zeigt. In beiden Clustern treten zwei Paare von Sechsecken auf,
die sich ldngs einer Kante beriihren. Darum ist der Umriss jeder der beiden Teilfiguren
ein Zehneck. Zwischen den beiden Zehnecken gibt es genau zwei verbindende Kanten
(“Briicken”). Der Rand der Zehnecke werde so orientiert, dass das Innere zur Linken
liegt. Startet man nun in einem Randpunkt, von dem aus eine “Briicke” abzweigt und
zéhlt die Zahl der Kanten bis zur Abzweigung der inneren Kante, welche das Zehneck
in zwei Sechsecke teilt, so sind es im einen Fall zwei, im andern drei Kanten. Diese
Zahlen sind Invarianten des Isomorphietyps.
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Es ist bemerkenswert, dass es fiir Cg zwei spiegelsymmetrische Isomere gibt, die nicht
isomorph sind (Chiralitdt). Insgesamt wurden also drei nicht isomorphe Isomere fiir Cyg
gefunden. Es ist mir aber bisher nicht gelungen nachzuweisen, dass es keine andern als
diese gibt.

Fig. 19  Chirale Isomere bei Cyg

Offene Fragen

1. Lassen sich alle Isomorphietypen von Clustern aus dem Dodekaeder durch lokale
Modifikationen gewinnen?

2. Angenommen, zwei Cluster haben dieselbe Eckenzahl. Gibt es eine Folge von lokalen
Modifikationen (mit nicht notwendig gleichbleibender Eckenzahl), die den einen in
den andern Cluster transformieren?

3. Wir nennen zwei Cluster bewegungsidquivalent, wenn es eine Folge von lokalen
Modifikationen gibt, die den einen Cluster in den andern iiberfiihrt, wobei die Anzahl
der Ecken in jedem Schritt unverindert bleibt. Welches sind die Klassen bewegungs-
dquivalenter Cluster? Sind es die Isomerieklassen?

Eine positive Antwort auf (1) wiirde auch (2) beantworten, da sogar jeder Cluster mittels
lokaler Modifikationen auf dem Umweg iiber das Dodekaeder in jeden andern transfor-
miert werden konnte.
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