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Zur Geometrie der Mikrocluster

Für Prof. Dr. Beno Eckmann zum 75. Geburtstag

H.R. Schneebeli

Hans Rudolf Schneebeli studierte Mathematik an der ETH Zürich und am Weiz-
mann Institute of Science, Rehovot, Israel. Es folgten Promotion und verschiedene
Arbeiten zur Gruppentheorie und zur Homologischen Algebra unter der Leitung von
Prof. B. Eckmann. Seit 1979 ist Hans Rudolf Schneebeli Mathematiklehrer an der
Kantonsschule Baden. Eines seiner besondern Anliegen ist es, Bezüge zwischen
Mathematik und andern Erfahrungsbereichen etwa aus Naturwissenschaft und Technik
aufzuzeigen und zur Motivation im Unterricht zu nutzen. Das hier dargestellte Thema
bildete neulich die Grundlage für Schülerarbeiten im Rahmen einer Studienwoche
"Mathematik" der Stiftung "Schweizer Jugend forscht".
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1 Einleitung
Seit einiger Zeit beschäftigen sich Festkörperphysiker und Chemiker mit MikroClustern.
Das sind Aggregate von einigen wenigen bis zu einigen hundert Atomen. Im Vergleich
zu den makroskopischen Erscheinungsformen der Materie bilden Mikrocluster also

ausgesprochene Wenigteilchensysteme. Eine Besonderheit der Mikrocluster ist der überaus
hohe Anteil an Atomen, die auf der Oberfläche des Verbandes liegen. Seit 1985 sind reine
Kohlenstoffcluster bekannt. Der berühmteste Vertreter dieser Gattung ist das Molekül
Cöo, das "Fussballmolekül" (vergleiche auch [2], [3]). Das Gerüst des Fussballmoleküls
ist ein Netz auf der Kugel, das aus 12 Fünfecken und 20 Sechsecken besteht, wobei in
jeder Ecke drei Kanten zusammentreffen.

Fig 1 Fussball und Fussballmolekül

Typische Fragen, die sich zur Struktur der Kohlenstoffcluster aufdrangen, lauten etwa:

- Ist die Struktur von Cöo (oder allgemein von Cn) eindeutig festgelegt, oder gibt es

mehrere Isomere?

- Für welche Zahlen n gibt es Kohlenstoffcluster Cn? Gibt es wirklich Cluster mit 45

Atomen (vgl. die Abbildung in [1], S. 61) oder mit 92 Atomen (gemäss Messungen
mit dem Massenspektrometer)?

Solche Fragen lassen sich meist nicht ohne eingehende Fachkenntnisse aus der Chemie
beantworten. Sie waren für mich jedoch ein Anlass für die Beschäftigung mit einigen

rein geometrischen Problemen, die sich in diesem Zusammenhang stellen. Um den

Unterschied zum Vorbild aus der Chemie deutlich zu machen, soll von geometrischen
Clustern die Rede sein. Dieser Begriff ist noch zu definieren. Er soll nur die kombinatorischen

und qualitativen Eigenschaften der Gerüste von Kohlenstoffclustern erfassen.

Grob gesprochen, handelt es sich bei einem geometrischen Cluster um ein konvexes

Polyeder, dessen Randflächen lauter Fünfecke oder Sechsecke sind und in dessen Ecken

jeweils drei Kanten enden. Es war mein Ziel, einen Gegenstand, der in der chemischen

Grundlagenforschung gegenwärtig besondere Beachtung findet (das Fussballmolekül C&)

wurde zum "Molekül des Jahres 1991" gewählt), ins Blickfeld der Schulmathematik zu
rücken. Mit elementaren Methoden sollen Fragen über die Existenz und Eindeutigkeit
geometrischer Cluster untersucht werden.

Die folgenden Überlegungen werden in drei Abschnitte aufgeteilt. Zuerst wird der Übergang

vom chemischen Vorbild zum geometrischen Modell vollzogen. Dazu müssen
Definitionen für geometrische Cluster und für die beiden Äquivalenzrelationen "isomer" und
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"isomorph" formuliert werden. In einem zweiten Schritt werden einige Verfahren
angegeben, um aus bekannten geometrischen Clustern neue solche Cluster zu erzeugen. Es

gelingt mit diesen Konstruktionen im letzten Schritt, für jede Isomerieklasse von
geometrischen Clustern einen Vertreter zu erzeugen. Die Aufzählung aller möglichen Clustergerüste

bis auf Isomorphie scheint erheblich schwieriger zu sein. Wir begnügen uns
einstweilen mit dem Hinweis, dass unsere Konstruktionen gelegentlich mehrere geometrische
Cluster mit derselben Eckenzahl aber echt verschiedenen Gerüsten liefern. Interessant ist
auch die Konstruktion eines geometrischen Clusters mit einer rechtshändigen und einer

linkshändigen Variante. Die allgemeinen Clusterkonstruktionen spielen die Rolle einer

Formengrammatik. Es ist mir nicht geglückt zu zeigen, dass die Transformationsregeln
dieser Grammatik ausreichen, um eine Liste aller Isomorphietypen zu erzeugen, wobei
allenfalls einige wenige "primitive" Cluster (das Dodekaeder?) als Grundformen zulässig
wären. Einem Chemiker würde eine solche Liste insofern dienen, als alle Gerüste von
Kohlenstoffclustern auch geometrische Cluster sind. Allerdings ist die Existenz eines

geometrischen Clusters mit n Ecken eine notwendige aber gewiss keine hinreichende

Bedingung dafür, dass Kohlenstoffcluster vom Typ Cn in der Natur vorkommen.

2 Vom Kohlenstoffcluster zum geometrischen Cluster
Die experimentelle Untersuchung der Struktur von Kohlenstoffclustern erfordert den Einsatz

von Massenspektrometern, Röntgenstrukturanalyse und anderen, modernsten

spektroskopischen Methoden. Erschwerend für solche Untersuchungen ist der Umstand, dass

Cluster wie Cöo mit einer Frequenz im Gigahertzbereich um eine Achse rotieren.
Erstaunlicherweise weiss man aber einiges über die Gestalt gewisser Cn -Moleküle. Man
stellt sie sich im allgemeinen als domartige, geschlossene Gerüste vor, die aus Fünfecken
und Sechsecken aufgebaut sind. Dieser Vorstellung verdanken sie auch den Namen Ful-
leren, in Anlehnung an den Namen des Architekten und Erfinders geodätischer Dome,
Buckminster Füller. Im Cöo-Molekül sind alle Bindungslängen untereinander gleich und
alle Bindungswinkel gleich gross. Das stereometrische Gerüst von C70 ist im metrischen
Sinne nicht konvex. Es weist eine taillenartige Einschnürung auf, ist aber im kombinatorischen

Sinn äquivalent zum Gerüst eines konvexen Polyeders. Die Bindungslängen und

Bindungswinkel in diesem Molekül schwanken etwas von Ort zu Ort. Es ist also
anzunehmen, dass sich die exakten metrischen Daten der Cn -Moleküle nur in Ausnahmefällen
bestimmen lassen. Wir überspielen deshalb fehlende Information durch Abstraktion bei
der Modellbildung und betrachten von nun an bloss qualitative geometrische Modelle der
Cn -Moleküle. Ein geometrischer Cluster ist ein Polyeder, das aus lauter fünfeckigen oder

sechseckigen Randflächen aufgebaut ist, bei dessen Ecken jeweils drei Kanten zusam-
menstossen und das vom gleichen kombinatorischen Typ ist wie ein konvexer Körper.
Die geometrische Darstellung des Fullerens Cöo zeigt, dass es geometrische Cluster gibt.
Auch das Dodekaeder ist ein geometrischer Cluster. Ein zugehöriges Kohlenstoffmolekül
C20 ist jedoch noch nicht bekannt. Womöglich kann es wegen der starken Krümmung
des Gerüstes aus "physikalischen" Gründen gar nicht existieren. Es gibt aber Berichte
über die Entdeckung von clusterartigen Anordnungen von Wassermolekülen nach dem

Muster des Dodekaeders.

Unser Ziel ist eine möglichst weitgehende Klassifikation der geometrischen Cluster. Dabei

lassen wir uns von zwei Klassifikationsmustern leiten. Zwei geometrische Cluster
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(gedacht als Verbindungen aus lauter gleichartigen Atomen) heissen isomer, wenn sie

dieselbe Eckenzahl aufweisen. Zwei geometrische Cluster heissen (kombinatorisch)
isomorph, wenn es eine bijektive Abbildung vom einen auf den andern gibt, wobei Ecken
in Ecken, Kanten in Kanten und Flächen in Flächen so abgebildet werden, dass alle

Inzidenzbeziehungen (das kombinatorische Schema) erhalten bleiben. Mit dem Massen-

spektrometer lässt sich die Anzahl der Atome eines wirklichen Clusters bestimmen. Die
Isomerieklasse ist damit bekannt. Es ist also naheliegend, für geometrische Cluster die
folgenden Fragen zu stellen:

- Welche Eckenzahlen treten in geometrischen Clustern auf? (Welche Isomerieklassen

gibt es?)

- Wie lässt sich ein vollständiges Repräsentantensystem für die Isomorphieklassen der

geometrischen Cluster eines bestimmten Isomers algorithmisch und effizient erzeugen?

Von nun an werden wir auch die Kurzbezeichnung "Cluster" für geometrische Cluster
verwenden, wenn der Zusammenhang Verwechslungen ausschliesst.

2.1 Einige kombinatorische Eigenschaften geometrischer Cluster
Geometrische Cluster zeichnen sich durch eine Reihe von bekannten Eigenschaften aus,
die sich entweder unmittelbar aus dem kombinatorischen Schema ablesen lassen oder
aber sofort aus dem Polyedersatz von Euler folgen.

1. Enthält ein geometrischer Cluster E Ecken, K Kanten, F Flächen, so gilt

E-K+F=2, und 3E=2K.

Insbesondere ist die Eckenzahl E stets gerade und die Kantenzahl K ist stets durch
3 teilbar. Die beiden linearen Beziehungen zwischen E,K,F zeigen, dass jede der

Zahlen E,K,F die beiden andern eindeutig festlegt, also auch die Isomerieklasse
bestimmt, welcher der entsprechende Cluster angehört.

2. Es sei / die Anzahl der Fünfecke und s die Anzahl der Sechsecke in einem Cluster.
Dann gelten die Beziehungen 5/ + 6s 3E und f +s F. Setzen wir dies in der

Polyederformel ein mit 6E 10/ + 12s, 6K 15/ + 18s, und 6F 6/ +6s so folgt

/ 12. Für s ergibt sich zunächst keine Einschränkung. Jeder geometrische Cluster
enthält also genau zwölf Fünfecke. Deshalb gilt für die Eckenzahl E > 20.

2.2 Konstruktion von Clusternetzen im Netz eines Polyeders
Wir geben hier weitere Beispiele für geometrische Cluster an, die im Netz eines Polyeders
konstruiert werden. Das erste Verfahren geht vom Netz eines Tetraeders aus, das zweite
führt fünfkantige oder sechskantige Prismen in geometrische Cluster über.

2.2.1 Clusternetze im Netz des Tetraeders

Die folgenden Beispiele werden durch Abbildungen des Clusternetzes in einem
Tetraedernetz beschrieben. Dabei wird die (kombinatorische) Symmetrie des Tetraedergerüstes
auf die Symmetrie des Clusters übertragen werden.



El. Math., 48, (1993)

Fig. 2 Cluster mit 28, 40, 56 Ecken im Netz eines Tetraeders

2.2.2 Prismatische Cluster
Der Grundgedanke für die Konstruktion dieser Cluster besteht darin, den Mantel eines

Prismas mit einem Netz aus Fünfecken und Sechsecken zu überziehen.

1. Fünfecksprisma
Wir wählen je ein Fünfeck als Grund- und Deckfläche eines Prismas. Am obern
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und am untern Rand des Mantels werden nun je fünf Fünfecke angeordnet. Im
Zwischenraum lassen sich n > 0 Ringe mit 5n Sechsecken einfügen. Die Anordnung
wird schematisch in der folgenden Abbildung gezeigt.

Fig 3 Abwicklung des Mantels emes funfkantigen Pnsmas mit dem Netz aus Fünfecken und Sechsecken

Im allgemeinen entstehen so Cluster mit 20 + lOn Ecken und 5n Sechsecken. Der
Fall n 0 entspricht dem Dodekaeder. Der Fall n 4 liefert ein Isomer zum Fulleren
Cöo, das aber einer andern Isomorphieklasse angehört. Das Beispiel n 2 liefert ein
Isomer mit fünfzähliger Symmetrie zum Cluster mit 40 Ecken, der im Tetraedernetz

angegeben wurde und eine andere Symmetrie aufweist.

2. Sechseckprisma
Entsprechend zu den vorangehenden Beispielen lassen sich am obern und am untern
Rand des Mantels eines sechskantigen Prismas je sechs Fünfecke anordnen. Der
Zwischenraum wird gemäss folgendem Schema mit 6n Sechsecken aufgefüllt.

-?

Fig. 4 Abwicklung des Mantels emes sechskantigen Pnsmas mit dem Netz aus Fünfecken und Sechsecken
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Es entstehen Cluster mit 24 + 12n Ecken und 6n + 2 Sechsecken. Im Falle n 3

entsteht ein weiteres Isomer zum Fulleren Cöo-

3. Ein isolierter Sonderfall mit sechszähliger Symmetrie
Eine Variante der eben ausgeführten Konstruktion liefert ein Isomer zum sechskantigen

prismatischen Cluster mit 48 Ecken. Je zwei Hauben aus sieben Sechsecken
werden durch einen Kranz von zwölf Fünfecken verbunden.

/\

T
*o

Fig. 5 Schematische Darstellung von zwei Isomeren mit 48 Ecken

3 Allgemeine Clusterkonstruktionen
Ausgehend von bereits bekannten geometrischen Clustern sollen neue solche Cluster
konstruiert werden. In einem anderen Zusammenhang wurden in [4] bereits Konstruktionen

zur Erzeugung regulärer Kreisnetze verwendet, die nach unserer Sprechweise zu
den allgemeinen Clusterkonstruktionen gehören. Wir unterscheiden globale und lokale
Modifikationen.

3.1 Globale Modifikationen von Clustern
Die globalen Modifikationen sind auf beliebige Cluster anwendbar und liefern neue Cluster,

indem im gegebenen Cluster alle Ecken, Kanten oder Flächen nach demselben
Verfahren umgewandelt werden. Im Zusammenhang mit dem Isomorphieproblem ist es

interessant zu bemerken, dass die (kombinatorische) Symmetriegruppe eines Clusters
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auch auf allen Clustern operiert, die aus ihm durch globale Modifikationen hervorgehen.
Die (kombinatorischen) Symmetrien eines Clusters vererben sich bei globalen
Modifikationen.

3.1.1 Kantentransformation
Denkt man sich ein Polyeder aus Holz hergestellt, so liessen sich alle Kanten abhobeln

und in zusätzliche Flächen verwandeln. Die Kantentransformation beruht auf dieser

Vorstellung. Sie ersetzt alle ursprünglichen Kanten eines geometrischen Clusters durch
Flächen. Eine genauere Betrachtung der Verhältnisse an den Ecken zeigt, dass diese

neuen Flächen Sechsecke sind und dass die ursprünglichen Seitenflächen in verkleinerter

Gestalt aber sonst unverändert im neuen Cluster eingebettet sind.

Fig. 6 Kantentransformation

Bezeichnen E', K', Ff die Anzahlen der Ecken, Kanten, Flächen nach der Kantentransformation

und E, K, F die ursprünglichen Anzahlen, so gilt

E' E+2K
K' 3E+2K
F' K+F

Mit den Beziehungen 2K 3E und E -K +F =2 folgt daraus

E' 4E

K' 4K

Beispiel: Die Anwendung der Kantentransformation auf ein Dodekaeder liefert einen
geometrischen Cluster mit 80 Ecken, nochmalige Kantentransformation ergibt einen Cluster
mit bereits 320 Ecken.

3.1.2 Eckentransformation
Bei dieser Operation werden alle Ecken eines geometrischen Clusters durch Sechsecke

ersetzt; dazu sind zwei Schritte nötig:

1. Wir wählen eine Ecke A aus. Auf den drei Kanten, die in A enden, werden die Mittel¬

punkte markiert und untereinander verbunden. Dadurch entsteht zunächst ein Dreieck,
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in dessen Innerem A liegt. Entsprechende Dreiecke werden in allen Ecken gebildet
so, dass in jeder Kantenmitte je zwei Dreiecke aneinanderstossen. Die ursprünglichen

Kanten werden nun entfernt und es entsteht ein Polyeder, das nicht vom Typ
eines geometrischen Clusters sein kann, da es vierzählige Ecken und Dreiecksflachen
enthält. Dieser Mangel wird im folgenden Schritt korrigiert.

In den vierzähligen Ecken werden neue Kanten nach dem Muster der folgenden
Abbildung eingeführt.

2.

;*£

y <

Fig. 7 Die zwei Schntte der Eckentransformation

Mit den gleichen Bezeichnungen wie bei der Kantentransformation lässt sich die Auswirkung

der Eckentransformation auf die Anzahlen der Ecken, Kanten und Flächen durch
folgende Formeln beschreiben:

E' 3E

K' 3E+K
F' E+F

Mit den Beziehungen 2K 3E und E -K +F =2 folgt daraus

E' 3E

K' 3K

Beispiel: Die Anwendung der Eckentransformation auf das Dodekaeder liefert den zu
C60 gehörigen Cluster, eine weitere Eckentransformation erzeugt einen Cluster mit 180
Ecken.

3.2 Lokale Modifikationen von Clustern
Es gibt Konstruktionen, die ausgehend von einem Cluster wieder einen Cluster ergeben,
dabei aber im Gegensatz zu den globalen Modifikationen nur einen Teilbereich des ur-
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sprünglichen Clusters erfassen. Eine Modifikation eines Clusters C heisst lokal, wenn es

einen einfach geschlossenen Kantenweg T in C gibt, der C in zwei nichtleere Gebiete
teilt, von denen eines samt dem Kantenweg T als Rand unverändert bleibt. Bei jeder
lokalen Clustermodifikation bleibt die Zahl der Fünfecke in jedem der beiden Teilgebiete

mit gemeinsamem Rand T notwendigerweise erhalten. Symmetrien von Clustern
können durch lokale Modifikationen gebrochen werden. Das Einfügen eines Kranzes von
Sechsecken beim Verlängern eines prismatischen Clusters ist ein Beispiel für eine lokale
Modifikation. In den folgenden Beispielen treten lokale Modifikationen von Clustern auf,
bei denen Fünfecke beteiligt sind. Die jeweiligen Modifikationen werden durch die
Abbildungen erklärt. Im Stile chemischer Formeln geben wir grob die Art der Modifikation
wieder. Eine Konfiguration aus r Fünfecken und s Sechsecken wird notiert als prhs.

I. Erzeugung von Isomeren durch Bewegung von Fünfecken

a) Bewegung eines Paars von Fünfecken: p2h2 »-> p2h2

v /Y
>-< X.

s ^.

Fig. 8 Die Transformation p2h2 *-» p2h2

b) Bewegung eines Paars von Fünfecken: p2h4 h-> p2h4

Y

Fig. 9 Die Transformation p2h4 H» p2k
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2. Erzeugen eines Sechsecks: p2hi h* p2h2

y -{

Fig. 10 Die Transformation p2h\ »-> p2h2

3. Erzeugen von zwei Sechsecken: p3hi h» p3h3

Fig. 11 Die Transformation p^h\ i-> pfa

4. Erzeugen von drei Sechsecken: p^hi h-> p4/z4

r-\

Fig. 12 Die Transformation p^h\ t-> p^h*
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5. Erzeugen von drei Sechsecken: p^ «-» p^h3

PehFig. 13 Die Transformation p^

Es fällt auf, dass sich die Eckenzahlen additiv ändern, wenn eine lokale Modifikation
vorgenommen wird, während eine globale Modifikationen durch Multiplikation mit
einer Konstanten auf den Eckenzahlen wirkt. Für die Konstruktion geometrischer Cluster
sind die lokalen Konstruktionen interessanter als die globalen, denn sie erlauben die
Konstruktion von Isomeren und das Anfügen von kleinen Zahlen neuer Ecken. Die
Konstruktionsvorschriften für lokale Modifikationen lassen sich auch rückwärts lesen.

4 Konstruktionen von Clustern, Isomerie und Isomorphie
Lokale Modifikationen werden benutzt, um weitere Beispiele für geometrische Cluster
zu konstruieren. Dabei stehen zwei Absichten im Vordergrund: In (4.1) wird ein Verfahren

beschrieben, das je einen Vertreter für jeden Isomerietyp der geometrischen Cluster
liefert. Damit wird das Isomerieproblem konstruktiv gelöst. Viel schwieriger ist das Iso-

morphieproblem für geometrische Cluster. Es verlangt die Angabe einer vollständigen
Liste der Cluster bis auf Isomorphie und eines Verfahrens, das zu zwei vorgelegten
Clustern entscheidet, ob sie zueinander (kombinatorisch) isomorph seien. Isomorphe Cluster
sind notwendigerweise isomer. In (4.2) werden einige Beispiele für nicht isomorphe
Isomere angegeben. Im Falle von C2% werden einige der Probleme beleuchtet, die beim
Klassifizieren von Isomeren bis auf Isomorphie auftreten.
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4.1 Isomerie
Es gibt Cluster mit E Ecken fur E 20 und fur alle geraden Zahlen E > 24

Diese Aussage wird in den folgenden drei Schritten begründet

1. Wir wissen bereits, dass E > 20 und gerade ist Zuerst wird E 22 ausgeschlossen
Es gibt keinen Cluster mit 22 Ecken.

Begründung: In einem solchen Cluster gibt es genau ein Sechseck. Um dieses Sechseck

lassen sich die notwendigerweise auftretenden 12 Fünfecke auf genau eine Art
so anordnen, dass von jeder Ecke drei Kanten ausgehen. Dabei entsteht jedoch ein
Netz mit 24 Ecken, es gehört zum einfachsten Fall eines Clusters vom Typ der

"Sechseckprismen"

2 Wird die lokale Modifikatione p^ h» p$h3 auf em Dodekaeder angewendet, so

entsteht em Cluster C2$ Mit p2h2 «-> p2hi wird dieses in einen prismatischen
Cluster mit 24 Ecken umgewandelt

3 Wir betrachen den prismatischen Cluster mit 24 Ecken und wählen eines der beiden
Sechsecke mit allen seinen unmittelbar angrenzenden Fünfecken aus. Diese Konfiguration

nennen wir Polarkappe. In jedem prismatischen Cluster, der vom sechskantigen
Prisma gemäss den Verfahren aus (2.2 2) konstruiert wurde, treten zwei solche

isomorphe Polarkappen auf. Die folgenden drei lokalen Modifikationen werden auf die

Polarkappen angewandt und liefern die Beispiele der Form E 24 + 12n + 2k fur
k 1,2,3. Da jede der beiden Kappen fur Modifikationen zur Verfugung steht und

am Ende der Konstruktion wieder zwei Polarkappen gebildet werden, folgt dann die

Behauptung mit Induktion.

fc l
Anwendung von p2hi «-» p2h2

gemäss der nebenstehenden Figur:

Fig 14

fc=2
Anwendung von p3hi ?-» p3h3

gemäss der nebenstehenden Figur:

Fig 15
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k 3

Anwendung von p4hi «-* p4/z4

gemäss der nebenstehenden Figur:

Fig 16

4.2 Isomorphie
Der Cluster C40 von Abb.2 besitzt die Symmetrie eines Tetraeders. Er ist also nicht
isomorph zum Fünfecksprisma mit 40 Ecken. Ein weiteres Beispiel lässt sich konstruieren
durch wiederholte Anwendung der lokalen Modifikation p2hi t-> p2h2 ausgehend vom
prismatischen Cluster mit 30 Ecken. Dabei wird ein Cluster mit 40 Ecken aufgebaut,
bei dem 10 Fünfecke in einem Ring angeordnet sind und zwei weitere davon getrennt
nur von Sechsecken berandet sind. Damit haben wir mindestens drei nicht isomorphe
Isomere zu C4o gefunden.

•v

Fig 17 Zur Konstruktion eines Isomers von C40

Aus Abb.5 kennen wir auch bereits zwei nicht isomorphe Isomere zu C4g.

Durch jede lokale Modifikation mit konstanter Eckenzahl, wie etwa p2h2 »-> p2h2,
lassen sich Fünfecke und Sechsecke auf geeigneten Clustern bewegen. Aber der Umfang

der Bewegung ist offensichtlich beschränkt. Es ist also nicht zu erwarten, dass

solche Bewegungen ausreichen, um alle Isomorphietypen eines Isomers zu erzeugen. Im
folgenden Beispiel wird das Tetraedernetz von C2% aus Abb.2 als Ausgangspunkt einer
Konstruktion benutzt. In einem ersten Zwischenschritt (Abb. 18 a) wird die Eckenzahl

erniedrigt, damit im darauf folgenden Übergang von C2$ zu C2% an einer neuen Stelle
mit p2h\ h-> p2h2 ein Sechseck eingefügt werden kann (Abb. 18 b). Mit p2h2 «-» p2h2,

an geeigneter Stelle angewendet, finden wir ein weiteres Muster vom Typ C2% (Abb. 18

c). Es zeigt sich nun bereits in diesen eher einfachen Fällen, dass die Zuordnung der

gefundenen Beispiele zu ihren Isomorphietypen nicht mehr offensichtlich ist.
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Fig. 18 Konstruktion von Isomeren zu C2\

Die beiden Netze (b,c) gleichen sich stark. Sie sind jedoch nicht isomorph, wie die
folgende Überlegung zeigt. In beiden Clustern treten zwei Paare von Sechsecken auf,
die sich längs einer Kante berühren. Darum ist der Umriss jeder der beiden Teilfiguren
ein Zehneck. Zwischen den beiden Zehnecken gibt es genau zwei verbindende Kanten
("Brücken"). Der Rand der Zehnecke werde so orientiert, dass das Innere zur Linken
liegt. Startet man nun in einem Randpunkt, von dem aus eine "Brücke" abzweigt und
zählt die Zahl der Kanten bis zur Abzweigung der inneren Kante, welche das Zehneck
in zwei Sechsecke teilt, so sind es im einen Fall zwei, im andern drei Kanten. Diese
Zahlen sind Invarianten des Isomorphietyps.
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Es ist bemerkenswert, dass es für C2s zwei spiegelsymmetrische Isomere gibt, die nicht
isomorph sind (Chiralität). Insgesamt wurden also drei nicht isomorphe Isomere für C2%

gefunden. Es ist mir aber bisher nicht gelungen nachzuweisen, dass es keine andern als

diese gibt.
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Fig 19 Chirale Isomere bei C2%

Offene Fragen
1. Lassen sich alle Isomorphietypen von Clustern aus dem Dodekaeder durch lokale

Modifikationen gewinnen?

2. Angenommen, zwei Cluster haben dieselbe Eckenzahl. Gibt es eine Folge von lokalen
Modifikationen (mit nicht notwendig gleichbleibender Eckenzahl), die den einen in
den andern Cluster transformieren?

3. Wir nennen zwei Cluster bewegungsäquivalent, wenn es eine Folge von lokalen
Modifikationen gibt, die den einen Cluster in den andern überführt, wobei die Anzahl
der Ecken in jedem Schritt unverändert bleibt. Welches sind die Klassen
bewegungsäquivalenter Cluster? Sind es die Isomerieklassen?

Eine positive Antwort auf (1) würde auch (2) beantworten, da sogar jeder Cluster mittels
lokaler Modifikationen auf dem Umweg über das Dodekaeder in jeden andern transformiert

werden könnte.
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