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The Problem of the Circular Billiard

Jörg Waldvogel, ETH Zürich

Jörg Waldvogel studierte an der ETH Zürich. Nach seiner Promotion zum Dr. sc.

math. im Jahre 1966 war er längere Zeit in den USA tätig, zuerst von 1967 bis 1970
als Research Scientist bei Lockheed Missiles and Space Company m Huntsville,
Alabama und als part-time Assistant Professor an der University of Alabama at

Huntsville, und anschliessend von 1970 bis 1972 als Assistant Professor an der

University of Texas at Austin. 1972 kehrte er an die ETH Zürich zurück; er wurde

Lehrbeauftragter im Gebiete der numerischen und angewandten Mathematik und
übernahm die Leitung der Numenkgruppe am Seminar für Angewandte Mathematik.
1985 erfolgte seine Ernennung zum Titularprofessor. Längere Aufenthalte verbrachte

er als Gastprofessor an der Universitö de Paris VI (1980) und als Visiting Professor an
der University of South Florida in Tampa (1986). Seine Forschungsinteressen liegen
in den Gebieten Differentialgleichungen, Asymptotik, Geometrie und numerische

Algorithmen.

Bas Billardspiel übt auf viele Mathematiker (und Physiker) allein schon deswegen
eine grosse Faszination aas, weil es erlanbt, die — wenigstens im idealisierten Fall
— überschaubaren Stoss- imd Reflexionsgesetze der Btllanlkngel im Experiment zu
testen* Dass rieh der Mathematiker dmm aach theoretisch mit diesem Spiel und den

Bewegungen der Bitodfaiigel auseinandersetzt» liegt fast auf der Hand: eine
sprudelnde Quelle von retssvollen mathematischen Problemen ist damit entdeckt Unter
diesen JftoMemen befinden sieh ganz leichte und auch ganz schwierige, sogar solche,

*M,kM^MOU..Mp«M.A«tt»i.<l_.
fragen» die auch andene mathematische Gebiete betreffen» wd viel!ach werden dann

anerwarieie VetMndsingen sichtbar* — Jörg Waldvogel betrachtet in seinem Beitrag
die Bewegatige» einer (idealisierten) Bfllardfaigel ta einem Kreis* Die direkte rechne-
riiclie Behan#iag Äeses scheinbar einfachen Problems fSfart xu langen kompBrierten
Formel»» Jiig WWtvopl üigt* wie die EMÖhriing von komplexen Zahlen* verbanden
mit geschickten geometrischen Überlegungen, eine kante und elegante Lösung liefert*
Dabei werden auch überraschende Zusammenhänge mit der Geometrie von gewissen
Kimmiii<te ISm*aitf^Wte* Im «icWI@i^iidtei ietitagvon Norbert ItongeiWWer
wird das gleiche Billardproblem mt ebenfalls sehr elegante Weise mit Hilfe von rein
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In the mathematicai literature various kinds of billiard problems have been considered

(see, e.g., [6]). The common feature is a billiard table in the shape of a given planar
region with an ideally reflecting boundary and a point-like billiard ball moving without
friction. Many interesting questions about the path of the bouncing billiard ball have
been discussed. Here we will be concerned with the problem of finding all possible
paths connecting two given points A9B on a circular billiard table of radius 1 via a

Single bounce at the unknown point Z.
In a first approach [2] one is tempted to introduce the polar angle of Z as an unknown and

to set up the condition of equality of the reflexion angles at Z by means of tngonometry.
This approach, however, quickly leads to unwieldy equations, and in [2] it is suggested
to use Computer algebra [1] in order to facilitate their simplification.

In this note we suggest to use complex notation for setting up the condition on the

reflexion point Z and for simplifying it.

Let therefore two points a,b e C, 0 < |a| < 1, 0 < |b| < 1 be given in the punctuated unit
disk by their respective complex coordinates. The problem is to find all reflexion points
£o et(p on the unit circle such that the segments (o-a and b - £o form the path of an

elastically bouncing billiard ball. We will present a short and elegant geometric-algebraic
method of deriving and discussing the condition to be satisfied by the reflexion point (o-

1 Geometry
We define L as the locus of all points zeLcC such that the angles <(ß,z,0) and

<(0,z,b) are equal (see Figure 1). Obviously, the reflexion points £o are the points of
intersection of L with the unit circle. L is given by the condition

(z-a\ z \ /(z-a)(z-b)\

or equivalently

(i) (2-fl)f-*U>o
zz

where r is a real parameter. To find the coordinate equation of L we eliminate r by
combining Equ. (1) with its complex conjugate:

ab a+b ab ä+b
(2) r - 1 -y z_r * ~^~ •

z2 z z z

By introducing the mirror image 1 /z of z with respect to the unit circle Equ. (2)
is transformed into the quadratic relation

(3) ab C2-ab(2-(ä + b)( + (a + b)( 0.

Therefore the mirror image A of the locus L is a conic section: it is easily seen that A
is an equilateral hyperbola with asymptotes parallel to the directions \/±a b, i.e.
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parallel to the two (orthogonal) bisectors of the angle <(a,0,_). The center c of the

hyperbola is

(4)
1 ä + b 1 i\ 1\ 1

„N

i.e. c is the midpoint of the segment between the mirror images a-l/a, ß l/b of
a,b. The hyperbola A passes through the points 0, £ a, (,-ß-
A geometrical proof of the theorem that the mirror image A of L is an equilateral
hyperbola has been given by N. Hungerbühler [3]. In contrast to the simple nature of
A, the locus L is an algebraic curve of degree 3, as is seen by multiplying Equ. (2) by
z2z2 (see Figure 1).

Since the unit circle is pointwise invariant under the inversion z —> £ 1 /z the reflexion
points Co are the points of intersection of the hyperbola A with the unit circle

(5) CC=1

2 Algebra
The reflexion points Co satisfy both Equs. (3) and (5). Multiplying (3) by £2 and using
(5) yields the Single 4th degree equation

(6) q(Q:=abc?-(a+b)(3 + (a + b)C~ab 0
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satisfied by Co- The same equation is satisfied by 1 / Co» therefore the Solutions of (6)
occur either in inverse pairs, or they lie on the unit circle; only the latter ones are
Solutions of the billiard problem.

To write Equ. (6) in real form we introduce the new variable t according to

(-<>-{%. —f.
where tp is the polar angle of C; furthermore we introduce the abbreviations

(8) s =S\+i s2 a + b, p -p\+i p2-ab

for the sum and product of a and b, where Si, px, s2, p2 are the respective real and

imaginary parts. Then we obtain

q(0 -2i[(t4-6t2 + l)p2 + 4(t3-t)pl+(t2+l)(2ts1+(t2-l)s2)](l-it)-4,

and Equ. (6) becomes

(9) (s2 + P2)t4 + 4(^+Pl) t3-6p2t2 + 4(^-Pl) t+(-s2 + p2) 0.

As a consequence of Section 1 it has always 2 or 4 real Solutions tk, directly connected

with the arguments ty of the reflexion points by means of Equ. (7).

3 Example
To illustrate the computations involved we consider the example

(io) a -^T' h \-
According to (4) the center of the hyperbola A is c 0.4 + 0.3i; the geometrie Situation
is shown in Figure 2. Incidentally, the polynomial q(Q in Equ. (6) may easily be factored
as

6q(O (-2-i)(4 + (l+2i)(3 + (-l+2i)C + 2-i=({3-i)[(-2-i)( + (l+2i)] 0;

therefore we immediately obtain the following 4 Solutions of the billiard problem:

(11) Ci=-*> C2,3 ^(Tv/3 + /), C* 0.8 + 0.61.

Alternatively, Equ. (9) (after multiplication by 6) becomes

3t4 - I0t3-6t2 + 6t -1 0 + l)(t2-4t + l)(3t - 1) 0

with the Solutions

(12) h=-l, t2t3=2±y/3, U=l-,
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and, according to (7), the polar angles

Vi=- 2 ' (p2 —9 (p3 - <p* arctan f - J 0.6435011088

in perfect agreement with the complex values (11).

In general the 4th degree equations (6) or (9) must be solved by means of a polynomial
root finder. In the currently available mathematicai Software, e.g. [1,4,7], such algorithms
are readily available. Mostly, reliable algorithms like the QR transformation for solving
eigenvalue problems, tuned to high perfection, are implemented in these Systems. Equ.

(9) is more efficient than Equ. (6) since it avoids complex arithmetic.

For the casual programmer the Newton-Raphson algorithm (see, e.g., [5]) is an adequate
numerical method: To find a zero Co of the function q(Q, choose a complex initial
approximation C(0) sufficiently close to Co and iterate

Ak+l) - Ak) _
q(((k))

q'(Ck)) ' fc=0,l,...,

where q'(Q is the derivative of tf(Q; then Co lim C(fc)- The above example may serve

as a test case.
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4 Double Roots

The closeness of the reflexion points C3>C* in lhls example calls for establishing the
condition for the existence of a double root in the polynomial q(Q. Many of the cur-
rently available symbolic computation Systems, e.g [1,7], allow to handle this otherwise
cumbersome task by means of the discriminant A(s, p) of the polynomial q(Q (see Equs
(6), (8)). The condition for the existence of a multiple root, wntten as A(s,p) 0, is
obtained by eliminating C from the simultaneous conditions q(Q 0, q'(Q 0 The
result is

(13) A(s,p) 4|s|6 + 6|s|4|p|2 - 54Re(s4 p2) + I92\s\2\p\4 - 256\pf

whereas the discriminant of the polynomial in Equ. (9) is found to be (-2z)6 A(s,p) If
A < 0, q (C) has 4 distinct zeros on the unit circle In the above example the discriminant
has the rather small value A -1 /108
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