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The Problem of the Circular Billiard

Jorg Waldvogel, ETH Ziirich

Jorg Waldvogel studierte an der ETH Ziirich. Nach seiner Promotion zum Dr. sc.
math. im Jahre 1966 war er lingere Zeit in den USA titig, zuerst von 1967 bis 1970
als Research Scientist bei Lockheed Missiles and Space Company in Huntsville,
Alabama und als part-time Assistant Professor an der University of Alabama at
Huntsville, und anschliessend von 1970 bis 1972 als Assistant Professor an der
University of Texas at Austin. 1972 kehrte er an die ETH Ziirich zuriick; er wurde
Lehrbeauftragter im Gebiete der numerischen und angewandten Mathematik und
iibernahm die Leitung der Numerikgruppe am Seminar fiir Angewandte Mathematik.
1985 erfolgte seine Ernennung zum Titularprofessor. Léangere Aufenthalte verbrachte
er als Gastprofessor an der Université de Paris VI (1980) und als Visiting Professor an
der University of South Florida in Tampa (1986). Seine Forschungsinteressen liegen
in den Gebieten Differentialgleichungen, Asymptotik, Geometrie und numerische
Algorithmen.

Das Billardspiel iibt auf viele Mathematiker (und Physiker) allein schon deswegen
eine grosse Faszination aus, weil es erlaubt, die — wenigstens im idealisierten Fall
- {iberschaubaren Stoss- und Reflexionsgesetze der Billardkugel im Experiment zu
testen. Dass sich der Mathematiker dann auch theoretisch mit diesem Spiel und den
Bewegungen der Billardkugel auseinandersetzt, liegt fast auf der Hand: eine spru-
deinde Quelle von reizvollen mathematischen Problemen ist damit entdeckt. Unter
diesen Problemen befinden sich ganz leichte und auch ganz schwierige, sogar solche,
die bis heute ungel6st sind. Obschon an sich geometrischer Art, fithren sie Sfter zu
Fragen, die auch andere mathematische Gebiete betreffen, und vielfach werden dann
unerwartete Verbindungen sichtbar, — Jorg Waldvogel betrachtet in seinem Beitrag
die Bewegungen einer (idealisierten) Billardkugel in einem Kreis. Die direkte rechne-
 rische Behandlung dieses scheinbar einfachen Problems fiihrt zu langen komplizierten
Formeln. J6rg Waldvogel zeigt, wie die Einfithrung von komplexen Zahlen, verbunden
mit geschickten geometrischen Uberlegungen, eine kurze und elegante Losung liefert.
Dabei werden auch berraschende Znaammenhknge mit der Geometrie von gewissen
.Kurven in der Ebene aufgedeckt, Im anschliessenden Beitrag von Nerbert Hungerbiihler
| wird das gleiche &Rm‘dpmblm aﬁf ebanfaﬂs sshr alegame Wexse :mt I—iﬁfe von rein
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In the mathematical literature various kinds of billiard problems have been considered
(see, e.g., [6]). The common feature is a billiard table in the shape of a given planar
region with an ideally reflecting boundary and a point-like billiard ball moving without
friction. Many interesting questions about the path of the bouncing billiard ball have
been discussed. Here we will be concerned with the problem of finding all possible
paths connecting two given points A,B on a circular billiard table of radius 1 via a
single bounce at the unknown point Z.

In a first approach [2] one is tempted to introduce the polar angle of Z as an unknown and
to set up the condition of equality of the reflexion angles at Z by means of trigonometry.
This approach, however, quickly leads to unwieldy equations, and in [2] it is suggested
to use computer algebra [1] in order to facilitate their simplification.

In this note we suggest to use complex notation for setting up the condition on the
reflexion point Z and for simplifying it.

Let therefore two points a,b € C, 0 <|a] < 1, 0 < |b| < 1 be given in the punctuated unit
disk by their respective complex coordinates. The problem is to find all reflexion points
o = €'® on the unit circle such that the segments (o —a and b — {, form the path of an
elastically bouncing billiard ball. We will present a short and elegant geometric-algebraic
method of deriving and discussing the condition to be satisfied by the reflexion point (p.

1 Geometry

We define L as the locus of all points z € L C C such that the angles ¥(a,z,0) and
¥(0,z,b) are equal (see Figure 1). Obviously, the reflexion points (y are the points of
intersection of L with the unit circle. L is given by the condition

w(257) = ;) o (U)o,

or equivalently

(z-a)z-b) _

72

(D r>0

where r is a real parameter. To find the coordinate equation of L we eliminate r by
combining Equ. (1) with its complex conjugate:

) r-ls—-—"—"—="__

By introducing the mirror image ¢ = 1/Z of z with respect to the unit circle Equ. (2)
is transformed into the quadratic relation

3) b C-abl -@+b) ¢C+@+b)¢=0.

Therefore the mirror image A of the locus L is a conic section: it is easily seen that A
is an equilateral hyperbola with asymptotes parallel to the directions ( = V+a b, i.e.
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parallel to the two (orthogonal) bisectors of the angle ¥(a,0,b). The center ¢ of the
hyperbola is

Fig. 1

_;_a‘afyﬁ ;(1 1) 1

=+=]= (a+ﬂ)9

4) c= 7)= 2

i.e. ¢ is the midpoint of the segment between the mirror images a =1/a, =1/ b of
a,b. The hyperbola A passes through the points ( =0, (=, { =0.

A geometrical proof of the theorem that the mirror image A of L is an equilateral
hyperbola has been given by N. Hungerbiihler [3]. In contrast to the simple nature of
A, the locus L is an algebraic curve of degree 3, as is seen by multiplying Equ. (2) by
z2Z? (see Figure 1).

Since the unit circle is pointwise invariant under the inversion z — { = 1/Z the reflexion
points (o are the points of intersection of the hyperbola A with the unit circle

) ({=1

2 Algebra

The reflexion points (y satisfy both Equs. (3) and (5). Multiplying (3) by ¢? and using
(5) yields the single 4th degree equation

(6) gq¢)=ab*-@+b)C+@+b)(-ab=0
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satisfied by (o. The same equation is satisfied by 1/ (,; therefore the solutions of (6)
occur either in inverse pairs, or they lie on the unit circle; only the latter ones are
solutions of the billiard problem.

To write Equ. (6) in real form we introduce the new variable ¢ according to

; 1+it %]
= 1(P= t: —_
@) (=e i1’ tan2,

where ¢ is the polar angle of (; furthermore we introduce the abbreviations
(8) s=s1+isy=a+b, p=pi+ipy=ab

for the sum and product of a and b, where s;, p1, Sz, p2 are the respective real and
imaginary parts. Then we obtain

g(¢) = =2i[(t* = 6t2 + Dpr + 4> = )py + (1> + D2t 51 + (12 = 1) s)l(1 =i )74,
and Equ. (6) becomes
S S
9) 2+ p2) t4+4(-21 +p,) £3 — 6p, t2+4(—21— —pl) f+(=s+p2)=0.

As a consequence of Section 1 it has always 2 or 4 real solutions #;, directly connected
with the arguments ¢y of the reflexion points by means of Equ. (7).

3 Example
To illustrate the computations involved we consider the example
~2+i 1
1 = , b==.
(10) a 3 3

According to (4) the center of the hyperbola A is ¢ = 0.4+0. 3i; the geometric situation
is shown in Figure 2. Incidentally, the polynomial (¢) in Equ. (6) may easily be factored

as
64(¢) = (2-1) C*+ (1 +20) C+(=1+2)) (+2-i = (C -DI(-2-1) (+(1+2i)]=0;
therefore we immediately obtain the following 4 solutions of the billiard problem:
, 1 . .
1D G=-i, Ga3=5FV3+i), G=0.8+0.6i.
Alternatively, Equ. (9) (after multiplication by 6) becomes
34— 103 —6t2+ 6t — 1= (t + 1)(t* -4t + )3t - 1) =0

with the solutions

1
(12) h=-l, h3=2%V3, t=3,
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Fig. 2

and, according to (7), the polar angles

T Sw ™ 3
pr=-2, @2="F, @s=¢, ps=arctan()=0.6435011088,

in perfect agreement with the complex values (11).

In general the 4th degree equations (6) or (9) must be solved by means of a polynomial
root finder. In the currently available mathematical software, e.g. [1,4,7], such algorithms
are readily available. Mostly, reliable algorithms like the QR transformation for solving
eigenvalue problems, tuned to high perfection, are implemented in these systems. Equ.
(9) is more efficient than Equ. (6) since it avoids complex arithmetic.

For the casual programmer the Newton-Raphson algorithm (see, e.g., [5]) is an adequate
numerical method: To find a zero {p of the function g({), choose a complex initial
approximation (© sufficiently close to {p and iterate

C(k+1) C(k) q(((k)) =0,1,..

where g'({) is the derivative of g((); then { = ’}im ¢®). The above example may serve
—300
as a test case.
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4 Double Roots

The closeness of the reflexion points (3,(s in this example calls for establishing the
condition for the existence of a double root in the polynomial g(¢). Many of the cur-
rently available symbolic computation systems, e.g. [1,7], allow to handle this otherwise
cumbersome task by means of the discriminant A(s, p) of the polynomial g(¢) (see Equs.
(6), (8)). The condition for the existence of a multiple root, written as A(s,p) = 0, is
obtained by eliminating ¢ from the simultaneous conditions 4({) = 0, g'({) = 0. The
result is

(13) A(s,p) = 4ls[5 + 6ls[*|p|> — 54Re* p?) + 192IsPIp|* - 256)p|° ,

whereas the discriminant of the polynomial in Equ. (9) is found to be (—2i)° - A(s, p). If
A <0, g(¢) has 4 distinct zeros on the unit circle. In the above example the discriminant
has the rather small value A =—1/108.
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