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In Bild 5 ist dargestellt, wie man so aus dem Ovoid bzw. «falschen Keplerschen Ei» m* ([4],
S. 247) mit der Gleichung

y3x=E(y2x + y2)

die bekannte Cayley-Sextik s\9 festgelegt durch

E[4E(x\+ x\)-xx] 21 (x2+ x2)2,

erhält, welche auch als Ort aller Scheitel von Parabeln aufgefasst werden kann, die einen
Kreis berühren und einen festen Punkt auf dessen Peripherie als Brennpunkt haben.

G. Geise, Sektion Mathematik, TU Dresden
H. Martini, Sektion Mathematik, PH Dresden

LITERATURVERZEICHNIS

[1] Braude, L Über Roll- und Fusspunktkurven Rendic Circ Mat Palermo 35, 280-287 (1912)
[2] Cesäro, E Kowalewski, G Vorlesungen uber naturliche Geometne Leipzig und Berlin, 1926

[3] de Jans, C Les multiphcatnces de Clairaut Gent 1912

[4] Fladt, K Analytische Geometne spezieller ebener Kurven Frankfurt am Main, 1962

[5] Geise, G Martini, H Natürlich-kinematische Erzeugung isophotischer Elementscharen aus ebensolchen bei

klassischer geometrischer Zentralbeleuchtung Beitr Algebra Geom 20,137-147(1985)
[6] Geise, G Martini, H Klassische Beleuchtungsgeometrie im Ed (t/^2), Teil I El Math 46, No 3, 73-78

(1991)
[7] Loria, G Spezielle algebraische und transzendente ebene Kurven, Band 1 Leipzig, 1910

[8] Muller, H R Kinematik Sammlung Goschen, Band 584/584a, Berlin, 1963

[9] Wieleitner, H Spezielle ebene Kurven Leipzig, 1908

© 1991 Birkhauser Verlag, Basel 0013-6018/91/060158-08$! 50 + 0 20/0

Kleine Mitteilungen

Constructing the Neumann series - an example

Constructing the Neumann series is a way of finding the Solution of the linear integral
equation of the second kind with the parameter as a series in powers of that parameter
[2, 3].

In this note, we shall construct the Neumann series for the Fredholm type integral
equation

0(ö 0o + vj0(e)K(&6)<fe, (1)
o

where <f is a real constant, 0 < <f < + oo; 0O is a finite real (or complex) constant; v is a

complex parameter; £ and e are the real variables

0<£,e<S; (2)



166 El Math Vol 46 1991

0(£) is the unknown function and

K(£,e) {£ife>{,e_fe<£} (3)

The integral equation (1) anses in the theory of the inviscid, incompressible, weightless
planar jet flowing from a nozzle onto the surface of a heavy liquid, the reader is referred
to the equation (2 3) and the Figures 1 and 2 of the reference [5] for details
In the general form, the Neumann senes for the equation (1) may be written as

O(£) 0O + OO £ v"JXm({,e)&, (4)
m=l 0

where Kx (£, e) K (<*, e) and Km (£, e) (m 2,3, are the m-th iterated kerneis

Km(U) \K(^,x)Km.x(x,E)dx, m 2,3, (5)
o

[3] (The Solution of the integral equation (1) as the series (4) is obtained by using the
method of successive approximations [3] The series (4) converges, to the Solution of (1),
for all v such that |v| is smaller than a certain positive number [2]}
To «transform» the Neumann series (4) to its concrete form, we have to evaluate the
integrals of (4)
For the integral of (4) with m 1 we have

JKx(£,e)de=-2-(?;2-2a) (6)
o

Now, from (5) it follows that

\Km(U)dE \K(i,x)dx\Km.x(x,ß)dß for m 2,3, (7)
0 0 0

Using (7), one obtains

fJ__«,e)& ^(_4-4^3 + 8^ö (8)
0 ZA

and then

jK3(t,a)de =-^(Z6-6a5+40SH3-96 f5® (9)

Next, we rewnte (6), (8) and (9) as
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)K2(£,e)de

\K3(Z,E)dE

41

(2tf
6'

2t) \2t) *\2t

2// \2t) Vit) Vit

(11)

(12)

Now we can show that the integrals (10)—(12) may be expressed in terms of the Euler
polynomials (For the definition of the Euler polynomials and the description of their
properties, the reader is referred to [1,4])
Namely, the expressions for the Euler polynomials Em (t) with m 2, 4 and 6 are [4]

E2(t) t2-t, E4(t) t*-2t3 + t, E6(t) t6-3t5 + 5t3-3t

From (10)-(13), it follows that

t (—ir / <_

\Km(U)dt \^(2t)2™E2m[t ^\ for m 1,2 and 3
o (2m)' 2t

(13)

(14)

Now we shall use induction on m to prove that the result (14) is vahd for any positive
integer m

Let us assume that (14) is vahd for a certain positive integer m Then, substituting (14) into
the equation (7) with m replaced by (m + 1), one finds

$Km+x(Z,s)de \—^(2t)2mIm,
o (zmy

where

J„ jK«,T)E2_(t=^)_T

Taking into account (3), we rewnte the equation (16) as

_m (202/ml+2^_m2,

where

«20 1/2

J-i= 1 tE2m(t)dt, Jm2= J E2m{t)dt
0 «/(20

From the identity [1, 4]

E'm+1{t) (m + \)EJt), m 0,1,2,

it follows that

£2_(t) (2m+l)-1£'2_+1(0, m 0,l,2,

(15)

(16)

(17)

(18)

(19)

(20)



168 El Math Vol 46, 1991

After substituting the expression (20) for E2m(t) into the integrand ofthe integral ImX and
integrating by parts, we obtain

1 T <_ / <_ \ m2^ 1

'«-T^np*™(t=-/j- i£—m\- (2i)

Further, from (19) we get

E2m+x(t) (2m + 2)-1E'2m+2(t)9 m 0,l,2,.... (22)

We also have [1, 4]

Fm(0)=-2(m + l)-1(2-+1-l)Bm+1, m l,2,..., (23)

where Bm+X are the Bernoulli numbers.
Since all the Bernoulli numbers with odd indices greater than 1 are equal to zero
[1, 4], we find

£2m+2(0) 0, m l,2,.... (24)

After substituting into the integrand ofthe integral of (21) the expression for the polynomial

E2nx+X(t) from (22), integrating and taking into account (24), one obtams

/ml (2^^Tl)-7£2m+1V _7J_(2m+l)(2m + 2)£2ra+2V _7J- (25)

Now, since [1, 4]

£m(l/2) 2-m£_, m 0,l,2,..., (26)

where £_ are the Euler numbers, and since all the Euler numbers with odd indices are
equal to zero [1], we find

£2m+1(l/2) 0, m 0,1,2,.... (27)

Taking into account (20) and (27), we get

1

l£2m+1V~2/j-/m2 ~2^TT£2m+1,f ^'- (28)

From (17), (25) and (28), it follows that

t+2(t~2t)Im ~ ~ ^Tm^+2)E2m+2''" :-' (29)
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and upon substituting this result for Im into the equation (15), we get

fKm+^,s)^=(~^ (30)
o (2m 4-2)! \ 2t)

It is seen that (30) is (14) with m replaced by m + 1; thus, we have proved that (14) is valid
for any positive integer m.
We now Substitute (14) into (4) and take into account that E0(t) 1 [4] to find

oo (A v fl\m l\
fl<a«\Lo<-i> wMt=27> (31)

The expression (31) is the Neumann series for the integral equation (1), in its concrete
form.
With respect to (31), let us make two comments.
First, the series (31) may be summed. Namely, if we use the expansion 6.3.4.2 of [4], we
find that

0(ö 0(& V) ÖoSec^/vYcos^fv(t - ö. (32)

It is possible to verify that the function 9 (£, v), by (32), is the Solution of the integral
equation (1) for v ^ v., where

Vj [(2j-l)n/(2t)]2, 1,2,.... (33)

The values v v, are the characteristic values of the kernel K (£, e). [The easiest way to
find those values - or to find the Solution 9 (£) 9 (£, v) of (1) - is, of course, to first reduce
(1) to the boundary-value problem for the ordinary differential equation (of the second

order) and then to consider that problem, instead of considering the integral equation (1)

directly].
The Neumann series (31) may be restored, starting from (32), by writing out the series

expansion of the function 9 (£, v) in powers of v.

Second, since the series (31) is the Maclaunn series with respect to v ofthe function 9 (£, v),

it is evident that it converges [absolutely, to 9(£, v)] if |v| < n2/(2t)2 vx and that it
diverges if |v| > vx.

David S. Tselnik,
North Dakota State University, Fargo
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Comment on curves in 2- and 3-dimensional Minkowski Space

This article presents a correction and discussion of the results published by Graciela
Silvia Birman in the paper «On L2 and L3» (see [2]). The result given there for L3 is shown
to be wrong. Furthermore, the kind of four-vertex-theorem proved there is trivial and it
will be shown here that a more suitable version could be formulated, which is easy to see

as well, but contains more Information on the geometry ofthe curve under consideration.

Preliminaries

As in [2] we consider Rn for n 2,3 with the Minkowski or Lorentzian inner product

n

<x,y>:= -xxyx+ £ xxyi9
i l

where x (xl9...,xn) and y (yx, ...,yn). A vector x is called light-like or null, if
<x, x> 0. Similarly it is called space-like respectively time-like if this quantity is > 0

respectively < 0. Considering simultaneously the Standard Euchdean scalar product on
Rn9 this can be described by the Euchdean angle between x and the hyperplane H spanned
by the last n — l coordinate axes: If this angle ranges in (f ,f] resp. [0, J), then x is time-like
respectively space-like, if it is just ~, then the vector is light-like.

Curves in Minkowski 3-space

In [2] a Classification is proposed of regulär curves in Minkowski 3-space which have

light-like tangents only. The author states that these are exactly the light-like straight
lines, i.e., the light-like geodesics of Minkowski 3-space. The proof of this Statement must
contain an error, because it is not true as can be seen from the following example: Let

öt: R -^ R39 a(t): (t9 cos t9 sin t),

be a helix of constant (Euchdean) slope 1 with respect to the (x2,x3)-plane H. Then,
interpreted in Minkowski geometry, this is a curve with light-like tangents everywhere
that is different from a straight line.

Keeping in mind the Euchdean interpretation of light-like vectors different from o, we
get that the curves with light-like tangents everywhere are exactly the curves of constant
slope 1 with respect to H. These curves have been studied very frequently in classical
differential geometry (see e.g. [1], [4]).

Curves in the Minkowski plane

In [2] a formula for the Lorentzian curvature for a nowhere light-like curve in the
Minkowski plane has been developed which should indicate that in the light-like limit its
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curvature does not exist. But it is not immediately clear that the limit does not exist
though the expression given there is not defined at points with light-like tangent. Furthermore

the existence of at least four points with light-like tangent for a simply closed convex
curve is presented in [2] as a Lorentzian version of the four-vertex-theorem.
The latter Statement can easily be shown for every closed curve in the Minkowski plane,
even if it has self-intersections: Let a: S1 -> R2 be a closed regulär curve. Then, according
to our Euchdean picture, the points ofa having light-like tangents are exactly those where
its Euchdean unit normals have the form e(l,l) respectively e(l, — 1) with &e{— 1,1}.
These points are characterized by the property that the derivative of the function

hx (t): ctx (t) + <x2 (t) respectively h2 (t): ocx (t) — oc2 (t)

vanishes. S1 being compact we get at least two such points for each function, giving at
least four light-like tangents of a, because the derivatives of hx and h2 cannot vanish
simultaneously.
For a strictly convex smooth curve in the Minkowski plane we have exactly four light-like
tangents. If tx,..., t4 e S1 are the corresponding parameter values, then each of the four
arcs between tx and t2,t2 and t3,t3 and t4,t4 and tx is of constant causal character, i.e.

time-like or space-like everywhere. The curvature is defined for each of these arcs and it
will be shown that it attains an extremal value on each of them. This will give a Lorentzian
analogue of the four-vertex-theorem.
Without loss of generality let a: [a, b] -+ R2 be a strictly convex smooth regulär curve
having light-like tangents at the parameter values a and b and time-like tangents on (a, b).

After a possible change of the orientation of the coordinate axes we may assume that the

tangent at £(a) is a positive multiple of (1, — 1) and that at £(b) a positive multiple of (1,1).
Let ß denote the reparametrization of a|(a b) by time-like arc length s (proper time), i.e.

£(t) ß(s(t)). The Lorentzian angle y(s(t)) ofthe tangent ofa with the first axis is defined
by

dß
ds

(cosh y (s (t)), sinh y (s (t)))
s{t)

(see [3]). Our assumptions on a imply that its tangent image — °sL b) Covers all of the
ds

branch of the Lorentzian unit circle which contains (1,0). Furthermore, the second

component of this map is strictly monotonically increasing. This implies

lim y (s (t)) — oo, and lim y (s (t)) oo. (1)
t-+a,t>a t-+ b,t<b

Like in the Euchdean case the curvature x of £ is given by the change of the angle of its

tangent with a given fixed direction, i.e.

K(s(t)) dJ
ds s(t)

As usual the chain rule implies



172 El Math Vol 46 1991

From (1) we get for arbitrary ce(a,b)

ccd(y°s)j M(y°s) _hm f——- dt oo, hm j-^—-dt =oo
t-*a x>a x Ut T_>j, t<b c dt

Because y ° s is monotonically increasing with t9 this implies

hm -—r~dt oo, hm -~—- oo
t-*at>a ut t^bt<b dt

Therefore, since the expression
get from (2)

d£ d£
~dt'~dt is continuous on [a, b] and hence bounded, we

hm x(s(t)) oo,
-*a t>a

hm x (s (t)) ¦¦

t->b t<b
00

This implies that x(s(t)) must attain at least one minimum on (a,b) giving the desired
vertex of a The case of a strictly convex space-like arc with hght-hke tangents at its end
points is handled similarly Hence we have shown the following

Proposition: Let £be a strictly convex smooth arc in the Lorentzian plane having hght-hke
tangents at its endpoints Then there is at least one vertex on £

Remark 1: From the relativistic point of view the implication of the preceding proposition

is clear The curve a, as considered in the proof, descnbes the world line of a matenal
particle moving on a straight line and bemg observed in the given inertial system from
the inertial time a to b At these boundary times it behaves like a photon but moves into
opposite directions The curvature of £ is a measure for the acceleration of the particle
This must be «infinite» to «pass» within finite inertial time from the photon State to the
matenal State This is the case at both boundary points Hence the acceleration must
attain a mmimum somewhere between these two values For the background of this
Interpretation see [3]
As already stated above, the proposition implies the desired four-vertex-theorem

Corollary: The curvature ofa closed strictly convex smooth curve in the Lorentzian plane
attains at least four extrema

Remark 2: The considerations above may be extended to nonconvex smooth curves
which are simply closed They also can be extended to closed convex curves in geodesi-
cally convex domains of Lorentzian 2-mamfolds If self-intersections are allowed, then
there may be two extrema for the curvature only As an example consider the figure
«eight» having the coordinate axes as axes of symmetry and Stretch it in a suitable way
such that only four hght-hke tangents are possible Taking into account the sign of the

curvature, only two vertices will occur

B Wegner, Fachbereich Mathematik, TU Berlin
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Aufgaben

Aufgabe 1040. Durch

£ fn\fm + n + z\-1 m + n + 1 + z fm + zV1
/(*):= £ •

und 0(z):==
j=o\jJ\ m+j m + l+z \ m

sind für feste natürliche Zahlen m, n zwei komplexe Funktionen /, g gegeben; D sei der
Durchschnitt ihrer Definitionsbereiche. Man zeige, dass

f(z) g(z); zeD.
J. Binz, Bolligen

Hj. Stocker, Wädenswil

Solution. / (z) can be rewritten as

f(z) m\nlz\(m + n + z)r1 £ fm+J\{z+^-J

Note that for non-integral X,(X)\ is to be interpreted as T(X + 1). Then using the known
identity [1]

T (m +7VZ + n ~~j\ ^fm + z + n + 1

h\ J A n-j J v

and T(X + 1) XT(X), it follows that f(z) g(z).
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