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As we have seen, property (a) is strong enough to prove the asymptotic result of Theo-
rem 2. The advantage of part (b) is that it can be applied to obtain sharper lower bounds
when a fairly good initial construction — like D, 5 — is available.
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Klassische Beleuchtungsgeometrie im E? (d=2)
I1. Kinematik in der Beleuchtungsgeometrie des E¢ (d=2)

In Teil I (vgl. [6]) wurden im R? (d=2) Scharen aus isophotischen Flichenelementen
beziiglich einer klassischen Zentralbeleuchtung (g, 1) — d.i. Lichtstirke 1 in jeder von der
in ¢ placierten Lichtquelle ausgehenden Richtung — konstruiert. Geméss einer in [5]
«kinematisch» genannten Vorgehensweise lassen sich nun aus der Zentralbeleuchtung
(¢, 1) und solch einer Schar isophotischer Elemente neue isophotische Scharen erzeugen.
Diese Methode wird hier, nach kurzer Darlegung, verwendet, um Zusammenhéinge zwi-
schen Kurvenklassen aufzudecken, die die klassische Beleuchtungsgeometrie im E? (d =2)
aufgrund ihres dimensionsabhidngigen Beleuchtungsstirkegesetzes liefert.

1. Ein kinematisches Erzeugungsprinzip
Hat das orientierte Flichenelement (x, n) mit Trégerpunkt x und Einheitsnormalenvek-

tor n die Beleuchtungsstirke E >0 beziiglich der Zentralbeleuchtung (g, 1), so auch das
Element (g, —n) beziiglich der Beleuchtung (x, 1). Die Ersetzung

((q’ 1): (x: n)) =¥ ((x’ 1)’ (q9 —”))
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werde «Wechsel der Beleuchtung» genannt; man kann sie durch Spiegelung von Licht-
quelle ¢ und Element (x, n) am Punkt m:=1(x + ¢) realisieren. Sei nun

{x@), n@)|v=(vy,...,0) € V}

eine auf einem gewissen Bereich V' definierte isophotische Element-k-Schar beziiglich der
Beleuchtung (¢, 1). Dann liefert «Wechsel der Beleuchtung» eine Menge M aus Paaren

zugeordneter Beleuchtungen (x, 1) und mit der festen Beleuchtungsstirke E versehener
Elemente (¢, —n):

M = {((x(v), 1)s (q9 _n(v)))lv € V} .

Ist z.B. n(v)= —ny= const., wie in dem in Teil I hergeleiteten und nachstehend unter (A)
referierten Beispiel, so liefert « Wechsel der Beleuchtung» mit (x(v), 1) Stellen, an denen
eine allseitig mit Lichtstdrke 1 strahlende Lichtquelle angebracht werden kann, damit das
feste Flichenelement (g, n,) stets die Beleuchtungsstirke E erhilt. In jedem Fall ldsst sich
aus der Menge M eine Schar beziiglich einer einzigen Zentralbeleuchtung (¢*, 1) isophoti-
scher Elemente dadurch herstellen, dass man jedes Paar ((x, 1), (g, —n)) € M einer (von v
abhingigen) Bewegung des R? unterwirft, welche x nach ¢* bringt, wobei die verbleiben-
den Freiheitsgrade geometrisch sinnvoll ausgeniitzt werden konnen. Hier wird (wie in [5])
allein folgender spezieller Fall betrachtet. Von der isophotischen Schar {(x, n)} werde
vorausgesetzt, dass sie einem Streifen angehort: Mit den wiinschenswerten analytischen
Eigenschaften sei x=x(t), n=n(t), <X,n)=0, t €0, 1]. Zur Trigerkurve gebe es ein
begleitendes d-Bein von Vektorfunktionen b, ..., b, derart, dass b, (¢), ..., b,(t) fiir jedes
t € [0, 1] ein orthonormiertes d-Tupel sei und dass fiir j=1, ..., d die j-te Ableitung x*’(t)
in dem durch b, (¢), ..., b;(t) aufgespannten Unterraum liege. Es sei B die Bewegung des
R?, die das d-Bein zu x(0) =: ¢* als Rastkreuz und das von t abhingige begleitende d-Bein
der Tragerkurve als Gangkreuz besitzt (das entspricht dem Beispiel «Gleiten einer
Kurventangente» in [8], S. 17ff.). Die Umkehrbewegung B~ !, also das Gleiten der Triger-
kurve durch eines ihrer d-Beine, leistet das Gewiinschte: Die Elemente (B~ 'q, —B~n)
sind beziiglich der Zentralbeleuchtung (¢*, 1) isophotisch. Wir wollen sie (bzw. ihre Tréger-
menge) das natiirlich-kinematische Erzeugnis der isophotischen Schar {(x, n)} nennen.

2. Natiirlich-kinematische Erzeugung isophotischer Elementscharen aus ebensolchen

Als Ausgangspunkt setzen wir die in [6] hergeleiteten Aussagen fiir Zentralbeleuchtung
mit Quelle im Ursprung o des R? und konstanter Lichtstédrke 1:

(A) Eine aus der Elementmenge {(x,n)|x € R*, n=(—1,0, ..., 0)} ausgesonderte isopho-
tische Elementschar konstanter Stellung mit Beleuchtungsstirke E (>0) hat die x,-Achse
zur Symmetrale und ihre Trdgermenge ist durch die Meridianschnitte

2E2(x3+x3) =x3+x,|x,| (1)

in der x,, x,-Ebene, welche in der abgeschlossenen Halbebene x,2>0 liegende Bldtter
Clairautscher Multiplikatrizen mit Index d—1 sind, bestimmt. []
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(B) Ein beziiglich der Beleuchtungsstirke E (>0) isophotischer 1-Streifen der Gestalt
{(x(v,), n(v,)) | x;=u;=0 fiir i=3,...,d} hat alsl Trdgerkurve in der x,, x,-Ebene (ent-

weder einen Kreis mit Zentrum o und Radius E'~4 oder) eine Cassinoide vom Index d—1
mit der (auf die x,-Achse bezogenen) Polargleichung

cos(@d—1)(y—¥o)=Er'™!, yYoeR. O )]

Satz 1: Die isophotische Elementschar konstanter Stellung ny=(—1,0, ..., 0) ldngs der
durch (1) gegebenen Triigerkurve ist bis auf Kongruenz das natiirlich-kinematische Erzeug-
nis des in (B) gegebenen Streifens.

Beweis : Es sei (2) mit Y, =0 auf das Gangkreuz (¢; e, , e,) bezogen. Zum Beschreiben der
Polbahn einer durch ihr begleitendes Zweibein geschobenen Cassinoide tritt als Polar-
winkel der Bahnpunkte der orientierte Winkel ¢ zwischen Kurvennormale und dem
negativen Polstrahl von x in Erscheinung. Er ist bei der in Polkoordinaten r=r(y)

r r
gegebenen Cassinoide bestimmt durch sin ¢ = ———— bzw. tan ¢ = —. Weil nach (2)
explizit r? 472 r

%) = (B~ cos(d—1) Y171

gilt, ergibt dies tan ¢ = ;= —tan(d—1) y bzw. o =(1 —d) Y + hn mit h € Z. Der Vergleich
mit (2) zeigt, dass die gesuchte Polbahn beziiglich des Rastkreuzes die Polargleichung

X
cos ¢ =Er?! hat, was wegen E>0, r=0 und =% =cos ¢ mit (1) gleichwertig ist. [
r

3. Natiirlich-kinematische Korrespondenz allgemeinerer Kurvenklassen

Cassinoiden mit d —1 Brennpunkten ordnen sich in die umfassendere Kurvenklasse der
Sinusspiralen ein. Setzt man in (2) anstelle von d — 1 eine beliebige reelle Zahl k, dann ist
durch

Er*=cosky, keR, (3)

eine (fiir irrationales k transzendente) Sinusspirale s, mit Index k und o als Pol beschrie-
ben. Die Klasse der Sinusspiralen ist aus verschiedenster Sicht interessant (siche [2],
§ 37-§ 46, [7], § V.18, und [9], § 18). Beispielsweise sind diese Kurven durch folgende (bei
Ersetzung von d—1 durch k aus dem vorangegangenen Beweis ableitbare) Eigenschalft
charakterisiert:

Bewegt sich der Radiusvektor einer Sinusspirale mit konstanter Winkelgeschwindigkeit
um ihren Pol, so dreht sich die zugehorige Kurventangente mit konstanter (diesbeziiglich
(k+ 1)-facher) Winkelgeschwindigkeit um den Beriihrpunkt. Des weiteren ist die Inverse
einer in (3) gegebenen Kurve in bezug auf ihren Pol wiederum eine Sinusspirale (vom
Index —k), wihrend ihre Fusspunktkurve beziiglich o ebenfalls eine solche (mit Index

versehene) Kurve ist. Bild 1 zeigt bekannte, in einer anschliessenden Tabelle na-

mentlich aufgefiihrte Reprdsentanten dieser Kurvenklasse.
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k Bezeichnung
-3 Inverse der Kiepert-Kurve
-2 gleichseitige Hyperbel

1

Parabel

——i— Tschirnhausen-Kubik
0 logarithmische Spirale *
1 Cayley-Sextik
3 Kardioide * Fiir die Einordnung der logarithmischen
2 Bernoulli-Lemniskate Spirale unter Umgehung von (3) sei auf [9],
3 Kiepert-Kurve S. 225, verwiesen.

Andererseits motiviert die vollstindige Klassifikation der Clairautschen Multiplikatrizen
in [3] (vgl. ergdnzend [4], § 7, und [7], § V.11) auch fiir diese Kurvenklasse die allgemeine
Betrachtungsweise, durch

Erf=cosp, keR, (@)

eine Multiplikatrix mit Index k und Pol o zu charakterisieren.

Die Untersuchung dieser Kurvenklasse geht vor allem auf Alexis Clairaut zuriick, der
1726 (als Zwolfjahriger) mit Blick auf das Delische Problem ihre wesentlichen Eigenschaf-
ten der Pariser Akademie vorstellte. Jedoch sind zahlreiche Reprisentanten durch andere
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Gesichtspunkte, z. B. physikalisch-technische Anwendungen, bekannt geworden (vgl. [3],
§ 6). Die Inverse einer Multiplikatrix m, gehort (mit dem Index — k) zur gleichen Kurven-
klasse.

Bild 2 zeigt auch hier bekannte Vertreter mit anschliessender namentlicher Auffithrung.

-\

. 4)(7 1
s
) —_7
’/ // /(='7
P
et

II. Bild 2
k Bezeichnung
-2 Inverse der Playfair-Kurve **
-1 Kampyla des Eudoxus
-1 kubische Duplikatrix
0 Gerade durch o (E<1)
% folium si'n'lp'le (OVOid) ** Diese Kurve ist zugleich als besondere
% Doppeleilinie von Miinger Halphénsche Kurve bekannt geworden
2 Kurve des Playfair ([7], S. 123).

Ersetzt man d—1 im Beweis von Satz 1 durch k, so ergibt sich

Satz 2: Ldsst man eine Sinusspirale vom Index k € R durch eines ihrer begleitenden Zwei-
beine (x; é,, ;) gleiten, so durchlduft ihr Pol eine Clairautsche Multiplikatrix mit gleichem
Index und Pol x.

Eine beleuchtungsgeometrische Interpretation liegt nahe. Ersetzt man ndmlich fiir eine
Zentralbeleuchtung (o, 1) im R? das klassische Beleuchtungsgesetz ohne Bezug auf die
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Raumdimension hypothetisch durch
E(x,nm) =1 r ¥ (cos ¢ +|cos 9],

so sind (3) und (4) fiir E> 0 Trigerkurven isophotischer planarer Streifen bzw. isophoti-
scher Elementscharen fester Stellung

n=(—1,0,...,0).

Das Ergebnis von Satz 2 findet sich u. W. einzig in einer Fussnote zur Einleitung in [3],
als nachgetragene Erwdhnung eines von Braude an de Jans libermittelten Resultats.
Ausfiihrlich wird in der Literatur nur die (dazu dquivalente) Tatsache dargestellt, dass das
Abrollen der Evolute einer Sinusspirale auf einer Geraden als deren Polbahn eine Multi-
plikatrix hervorbringt (vgl. [1]).

Die folgenden Bilder verdeutlichen die in Satz 2 gegebene kinematische Korrespondenz
fiir spezielle Kurvenpaare. Bild 3 zeigt die Erzeugung der (auch als Radiale einer Parabel
darstellbaren) kubischen Duplikatrix m(_y der Gleichung

x3=(x}+x2) E?

aus der Tschirnhausen-Kubik s -1 mit

4 3
27(y§+y%)=—E<y1+—h:> ,

welche bekanntlich Katakaustik einer Parabel bei achsparallelem Lichteinfall ist und
selbige Parabel als Rollkurve hat.

/
I 8ild3 |
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Bild 4 zeigt die Clairautsche Quartik m; mit der Gleichung

E(x?+ x%)? =x,
als Erzeugnis der Kiepert-Kurve s;, gegeben durch

E(y?+y)?=y,(vi—3y)).

Fasst man umgekehrt den im Pol einer Multiplikatrix m, angreifenden Normalenvektor
ihrer Polachse als Tangentenvektor einer kinematisch zu erzeugenden Kurve auf, wobei
die Multiplikatrix durch den Ursprung der Rastebene gleiten soll, so entsteht als Polbahn
dieses Zwangslaufes eine Sinusspirale s,. Bei dieser Erzeugungsart erscheint m,, aufge-
fasst als bewegliche starre Kurve, beleuchtungsgeometrisch als Ort der Lichtquellen, die
in dem im Pol von m, mitbewegten gewihlten Linienelement stets die gleiche Beleuch-
tungsstirke erzeugen; dieses bewegte Linienelement ist in jedem Stadium der Bewegung
Tangentialelement an s, .

X4

r

II. Bild 5
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In Bild 5 ist dargestellt, wie man so aus dem Ovoid bzw. «falschen Keplerschen Ei» m: ([4],
S. 247) mit der Gleichung

yi=EQi+y)
die bekannte Cayley-Sextik s:, festgelegt durch
E[4E(X?+ x3)—x,] = 27(x3+ x3)?,

erhélt, welche auch als Ort aller Scheitel von Parabeln aufgefasst werden kann, die einen
Kreis beriihren und einen festen Punkt auf dessen Peripherie als Brennpunkt haben.

G. Geise, Sektion Mathematik, TU Dresden

H. Martini, Sektion Mathematik, PH Dresden
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Kleine Mitteilungen

Constructing the Neumann series — an example

Constructing the Neumann series is a way of finding the solution of the linear integral
equation of the second kind with the parameter as a series in powers of that parameter
[2, 3].

In this note, we shall construct the Neumann series for the Fredholm type integral
equation

4
0(%) = 6, +v£0(s)K(é,s)ds, 1)

where ¢ is a real constant, 0 < £ < + o0; 6, is a finite real (or complex) constant; v is a
complex parameter; ¢ and ¢ are the real variables

0<ée<?; 2
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