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As we have seen, property (a) is strong enough to prove the asymptotic result of Theorem

2. The advantage of part (b) is that it can be applied to obtain sharper lower bounds
when a fairly good initial construction - like D15 - is available.
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Klassische Beleuchtungsgeometrie im Ed (d^2)
IL Kinematik in der Beleuchtungsgeometrie des Ed (d^2)

In Teill (vgl. [6]) wurden im R* (d 2) Scharen aus isophotischen Flächenelementen
bezüglich einer klassischen Zentralbeleuchtung (q91) - d.i. Lichtstärke 1 in jeder von der
in q placierten Lichtquelle ausgehenden Richtung - konstruiert. Gemäss einer in [5]
«kinematisch» genannten Vorgehensweise lassen sich nun aus der Zentralbeleuchtung
(q91) und solch einer Schar isophotischer Elemente neue isophotische Scharen erzeugen.
Diese Methode wird hier, nach kurzer Darlegung, verwendet, um Zusammenhänge
zwischen Kurvenklassen aufzudecken, die die klassische Beleuchtungsgeometrie im Ed (d 2)

aufgrund ihres dimensionsabhängigen Beleuchtungsstärkegesetzes liefert.

1. Ein kinematisches Erzeugungsprinzip

Hat das orientierte Flächenelement (x9 ri) mit Trägerpunkt x und Einheitsnormalenvektor

ii die Beleuchtungsstärke E>0 bezüglich der Zentralbeleuchtung (q91), so auch das
Element (q9 —ri) bezüglich der Beleuchtung (x91). Die Ersetzung

((q9l)9(x9n)) -> ((x9l)9(q9-n))
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werde «Wechsel der Beleuchtung» genannt; man kann sie durch Spiegelung von Lichtquelle

q und Element (x, ri) am Punkt m := \ (x + q) realisieren. Sei nun

{(x(v),n(v))\v (vx,...,vk)eV}

eine auf einem gewissen Bereich V definierte isophotische Element-Jc-Schar bezüglich der
Beleuchtung (q, 1). Dann liefert «Wechsel der Beleuchtung» eine Menge M aus Paaren
zugeordneter Beleuchtungen (x, 1) und mit der festen Beleuchtungsstärke E versehener
Elemente (q, —ri):

M {((x(v),l),(q,-n(v)))\veV}.

Ist z.B. n(v)= — n0= const., wie in dem in Teil I hergeleiteten und nachstehend unter (A)
referierten Beispiel, so liefert «Wechsel der Beleuchtung» mit (x(v), 1) Stellen, an denen
eine allseitig mit Lichtstärke 1 strahlende Lichtquelle angebracht werden kann, damit das
feste Flächenelement (q, n0) stets die Beleuchtungsstärke E erhält. In jedem Fall lässt sich

aus der Menge M eine Schar bezüglich einer einzigen Zentralbeleuchtung (q*, 1) isophotischer

Elemente dadurch herstellen, dass man jedes Paar ((x, 1), (q, —ri))eM einer (von v

abhängigen) Bewegung des R* unterwirft, welche x nach q* bringt, wobei die verbleibenden

Freiheitsgrade geometrisch sinnvoll ausgenützt werden können. Hier wird (wie in [5])
allein folgender spezieller Fall betrachtet. Von der isophotischen Schar {(jc, ri)} werde

vorausgesetzt, dass sie einem Streifen angehört: Mit den wünschenswerten analytischen
Eigenschaften sei x x(t), n n(i), <x, w>=0, te [0,1]. Zur Trägerkurve gebe es ein

begleitendes d-Bein von Vektorfunktionen bx,...,bd derart, dass bx(t), ...,bd(t) für jedes
t e [0,1] ein orthonormiertes ./-Tupel sei und dass für j=l, ...,d die^-te Ableitung x{j)(t)
in dem durch bx(t),..., b3(t) aufgespannten Unterraum liege. Es sei B die Bewegung des

Rd, die das d-Bein zu x(0) =: q* als Rastkreuz und das von t abhängige begleitende d-Bein
der Trägerkurve als Gangkreuz besitzt (das entspricht dem Beispiel «Gleiten einer
Kurventangente» in [8], S. 17ff). Die Umkehrbewegung B~l, also das Gleiten der Trägerkurve

durch eines ihrer d-Beine, leistet das Gewünschte: Die Elemente (B~1q, —B~ln)
sind bezüglich der Zentralbeleuchtung (q*, 1) isophotisch. Wir wollen sie (bzw. ihre
Trägermenge) das natürlich-kinematische Erzeugnis der isophotischen Schar {(x, ri)} nennen.

2. Natürlich-kinematische Erzeugung isophotischer Elementscharen aus ebensolchen

Als Ausgangspunkt setzen wir die in [6] hergeleiteten Aussagen für Zentralbeleuchtung
mit Quelle im Ursprung o des Rd und konstanter Lichtstärke 1:

(A) Eine aus der Elementmenge {(x, n)\x e Rd, « — 1, 0,..., 0)} ausgesonderte isophotische

Elementschar konstanter Stellung mit Beleuchtungsstärke E (>0) hat die xx-Achse
zur Symmetrale und ihre Trägermenge ist durch die Meridianschnitte

2E2(x2 + x2)d x2 + xx\xx\ (1)

in der xx,x2-Ebene, welche in der abgeschlossenen Halbebene xx=0 liegende Blätter
Clairautscher Multiphkatrizen mit Index d— 1 sind, bestimmt.
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(B) Ein bezüglich der Beleuchtungsstärke E (>ö) isophotischer 1-Streifen der Gestalt
{(x(vx)9n(vx))|xx ut 0 für i 3,...,d} hat als Trägerkurve in der xx, x2-Ebene

(entweder einen Kreis mit Zentrum o und Radius Ex~d oder) eine Cassinoide vom Index d — 1

mit der (auf die xx-Achse bezogenen) Polargleichung

cos(d-l)(i//-il/0) Erd-19 ij,0eR. D (2)

Satz 1: Die isophotische Elementschar konstanter Stellung n0 (— 1, 0,..., 0) längs der
durch (1) gegebenen Trägerkurve ist bis aufKongruenz das natürlich-kinematische Erzeugnis

des in (B) gegebenen Streifens.

Beweis: Es sei (2) mit \j/0 0 auf das Gangkreuz (q; ex, e2) bezogen. Zum Beschreiben der
Polbahn einer durch ihr begleitendes Zweibein geschobenen Cassinoide tritt als
Polarwinkel der Bahnpunkte der orientierte Winkel cp zwischen Kurvennormale und dem
negativen Polstrahl von x in Erscheinung. Er ist bei der in Polkoordinaten r r(\jj)

f f
gegebenen Cassinoide bestimmt durch sin cp -——z==z bzw. tan cp —. Weil nach (2)

explizit ]/r2 + f2 r
i

rftW [E-1cos(d-l)\j/]d-i

f
gilt, ergibt dies tan cp — — tan (d—l)\j/ bzw. cp (l—d)\jj + hn mit h e TL. Der Vergleich

mit (2) zeigt, dass die gesuchte Polbahn bezüglich des Rastkreuzes die Polargleichung
xx

cos cp Erä * hat, was wegen F>0, r_0 und — =cos cp mit (1) gleichwertig ist.
r

3. Natürlich-kinematische Korrespondenz allgemeinerer Kurvenklassen

Cassinoiden mit d — 1 Brennpunkten ordnen sich in die umfassendere Kurvenklasse der
Sinusspiralen ein. Setzt man in (2) anstelle von d—1 eine beliebige reelle Zahl k, dann ist
durch

Erk cos ki//, JcelR, (3)

eine (für irrationales k transzendente) Sinusspirale sk mit Index k und o als Pol beschrieben.

Die Klasse der Sinusspiralen ist aus verschiedenster Sicht interessant (siehe [2],
§ 37—§ 46, [7], § VI8, und [9], § 18). Beispielsweise sind diese Kurven durch folgende (bei
Ersetzung von d—1 durch k aus dem vorangegangenen Beweis ableitbare) Eigenschaft
charakterisiert:
Bewegt sich der Radiusvektor einer Sinusspirale mit konstanter Winkelgeschwindigkeit
um ihren Pol, so dreht sich die zugehörige Kurventangente mit konstanter (diesbezüglich
(k+ l)-facher) Winkelgeschwindigkeit um den Berührpunkt. Des weiteren ist die Inverse
einer in (3) gegebenen Kurve in bezug auf ihren Pol wiederum eine Sinusspirale (vom
Index — k)9 während ihre Fusspunktkurve bezüglich o ebenfalls eine solche (mit Index

k
versehene) Kurve ist. Bild 1 zeigt bekannte, in einer anschliessenden Tabelle na-

k+1
mentlich aufgeführte Repräsentanten dieser Kurvenklasse.
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E. Bild 1

k Bezeichnung

-3 Inverse der Kiepert-Kurve
-2 gleichseitige Hyperbel
__i

2
Parabel

1

3
Tschirnhausen-Kubik

0 logarithmische Spirale *
1

3 Cayley-Sextik
1

2
Kardioide

2 Bernoulli-Lemniskate
3 Kiepert-Kurve

* Für die Einordnung der logarithmischen
Spirale unter Umgehung von (3) sei auf [9],
S. 225, verwiesen.

Andererseits motiviert die vollständige Klassifikation der Clairautschen Multiphkatrizen
in [3] (vgl. ergänzend [4], § 7, und [7], § V.ll) auch für diese Kurvenklasse die allgemeine
Betrachtungsweise, durch

Erk cos cp, fcelR, (4)

eine Multiplikatrix mit Index k und Pol o zu charakterisieren.
Die Untersuchung dieser Kurvenklasse geht vor allem auf Alexis Clairaut zurück, der
1726 (als Zwölfjähriger) mit Blick auf das Delische Problem ihre wesentlichen Eigenschaften

der Pariser Akademie vorstellte. Jedoch sind zahlreiche Repräsentanten durch andere
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Gesichtspunkte, z.B. physikalisch-technische Anwendungen, bekannt geworden (vgl. [3],
§ 6). Die Inverse einer Multiplikatrix mk gehört (mit dem Index — k) zur gleichen Kurvenklasse.

Bild 2 zeigt auch hier bekannte Vertreter mit anschliessender namentlicher Aufführung.

üX7 'k

k—k

k-1^!£*•«»f \\

w --•.... k-2I /*W k k—3

/ \

\ *s^ „,«••

_T. Bild Z

k Bezeichnung

-2 Inverse der Playfair-Kurve**
i
i Kampyla des Eudoxus
i
3

kubische Duplikatrix
0 Gerade durch o(E^l)
1

3
folium simple (Ovoid)

1

2 Doppeleilinie von Münger
2 Kurve des Playfair

** Diese Kurve ist zugleich als besondere

Halphensche Kurve bekannt geworden
([7], S. 123).

Ersetzt man d—1 im Beweis von Satz 1 durch k9 so ergibt sich

Satz2: Lässt man eine Sinusspirale vom Index /ceR durch eines ihrer begleitenden Zweibeine

(x; ex, e2) gleiten, so durchläuft ihr Pol eine Clairautsche Multiplikatrix mit gleichem
Index und Pol x.

Eine beleuchtungsgeometrische Interpretation liegt nahe. Ersetzt man nämlich für eine

Zentralbeleuchtung (o, 1) im Rd das klassische Beleuchtungsgesetz ohne Bezug auf die
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Raumdimension hypothetisch durch

E(x, ri) \ r~k(cos cp + |cos cp\),

so sind (3) und (4) für E > 0 Trägerkurven isophotischer planarer Streifen bzw. isophotischer

Elementscharen fester Stellung

« (-1,0,...,0).
Das Ergebnis von Satz 2 findet sich u. W. einzig in einer Fussnote zur Einleitung in [3],
als nachgetragene Erwähnung eines von Braude an de Jans übermittelten Resultats.
Ausführlich wird in der Literatur nur die (dazu äquivalente) Tatsache dargestellt, dass das

Abrollen der Evolute einer Sinusspirale auf einer Geraden als deren Polbahn eine

Multiplikatrix hervorbringt (vgl. [1]).
Die folgenden Bilder verdeutlichen die in Satz 2 gegebene kinematische Korrespondenz
für spezielle Kurvenpaare. Bild 3 zeigt die Erzeugung der (auch als Radiale einer Parabel
darstellbaren) kubischen Duplikatrix n\-§ der Gleichung

xx (xx +x2) E

aus der Tschirnhausen-Kubik S(_i) mit

27 (y2 + yl) -E "+E
welche bekanntlich Katakaustik einer Parabel bei achsparallelem Lichteinfall ist und
selbige Parabel als Rollkurve hat.

H)

*/ mf-t/// //
Yi

M Bild 3



164 El Math Vol 46 1991

Bild 4 zeigt die Clairautsche Quartik m3 mit der Gleichung

Ei \Xi i X2f —— xx

als Erzeugnis der Kiepert-Kurve s3, gegeben durch

E(yi + y22)3 yi{yi-^y2z)

Fasst man umgekehrt den im Pol einer Multiplikatrix mk angreifenden Normalenvektor
ihrer Polachse als Tangentenvektor einer kinematisch zu erzeugenden Kurve auf, wobei
die Multiplikatrix durch den Ursprung der Rastebene gleiten soll, so entsteht als Polbahn
dieses Zwangslaufes eine Sinusspirale sk Bei dieser Erzeugungsart erscheint mk, aufgefasst

als bewegliche starre Kurve, beleuchtungsgeometrisch als Ort der Lichtquellen, die

in dem im Pol von mk mitbewegten gewählten Linienelement stets die gleiche
Beleuchtungsstarke erzeugen, dieses bewegte Lmienelement ist m jedem Stadium der Bewegung
Tangentialelement an sk

f \

w
/ \/ mV

F Bildk

II *1

^\
m

Yi

^ /

_Z BildS
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In Bild 5 ist dargestellt, wie man so aus dem Ovoid bzw. «falschen Keplerschen Ei» m* ([4],
S. 247) mit der Gleichung

y3x=E(y2x + y2)

die bekannte Cayley-Sextik s\9 festgelegt durch

E[4E(x\+ x\)-xx] 21 (x2+ x2)2,

erhält, welche auch als Ort aller Scheitel von Parabeln aufgefasst werden kann, die einen
Kreis berühren und einen festen Punkt auf dessen Peripherie als Brennpunkt haben.

G. Geise, Sektion Mathematik, TU Dresden
H. Martini, Sektion Mathematik, PH Dresden
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Kleine Mitteilungen

Constructing the Neumann series - an example

Constructing the Neumann series is a way of finding the Solution of the linear integral
equation of the second kind with the parameter as a series in powers of that parameter
[2, 3].

In this note, we shall construct the Neumann series for the Fredholm type integral
equation

0(ö 0o + vj0(e)K(&6)<fe, (1)
o

where <f is a real constant, 0 < <f < + oo; 0O is a finite real (or complex) constant; v is a

complex parameter; £ and e are the real variables

0<£,e<S; (2)
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