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Dissections into equilateral triangles

Abstract. In a recent paper [El. Math., Vol. 46/4] H. Kaiser proved that every non-equilateral
triangle has a dissection into finitely many (at most eight) similar but pairwise incongruent triangles.
In this note we show that an equilateral triangle — and, more generally, any convex polygon — has
no finite dissection into incongruent equilateral triangles. We also prove that the maximum number
f(n) of distinct sizes of equilateral triangles in a dissection into n parts is equal to cn — o (n) for
some constant ¢ > 5/7.

1. Introduction

Let IT and IT' be polygons in the Euclidean plane. A dissection of II into II' is a
decomposition of IT into finitely many, internally disjoint polygons IT', ..., II, (n > 2)
such that all of the II; are similar to II'. A dissection is perfect if the IT; are pairwise
incongruent. Those IT; will be called the tiles of the dissection. The symbol 4 will be a
shorthand for «equilateral triangle» (possibly with distinct side lengths at different
places).

In the past fifty years it was extensively studied how squares and rectangles can be
dissected into smaller squares. A detailed account on the history of this problem, with
numerous references, can be found in the survey [2].

Relatively little is known, however, about dissections of polygons other than the square.
Tutte [4, § 2] proved that a 4 has no perfect dissection into smaller A’s (this result was
stated without proof in the classic paper [1]), and quite recently Kaiser [3] observed that
in fact 4 is the only «exceptional case», i.e. every non-equilateral triangle has a perfect
dissection (into at most eight tiles).

In this note, applying an argument much shorter than the original one in [4], we prove
the following extension of Tutte’s theorem.

Theorem 1. Every dissection of a convex polygon into equilateral triangles contains two
triangles of the same size.

Knowing that every finite dissection of 4 contains at least two congruent tiles, it is natural
to raise the following problem.

Problem 1. Given a positive integer n > 6, dermine the largest number f (n) of distinct side
lengths in a dissection A, U ... U 4, = A of an equilateral triangle A.
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Figure 1 shows that f(n) is well-defined for every n > 6, and also that f(n) > 2. (The
dissection into 4 tiles is unique, with f(4) = 1, and no dissection exists with 5 tiles.) Here
we prove

Theorem 2. There is a positive constant ¢, 5/7 < c¢ <1, such that f(n)=cn—o(n) as
n — 0.

It would be interesting to determine the exact value of lim f (n)/n. In particular, decide
whether or not the limit is less than 1. n o
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Figure 1. Dissection into an odd or even number of triangles.

We note that 4 has a «perfect dissection» into countably many tiles whose total area is
equal to the area of 4. The idea to show this fact is that a large part of a «longy» trapezoid
can be filled with finitely many 4’s of nearly equal (but distinct) side lengths. It remains
an open problem, however, to prove or disprove that no dissection into pairwise incon-
gruent A’s is locally finite apart from the neighborhoods of a finite number of points.

2. Proofs

Proof of Theorem 1.

Consider a dissection 4, U ... u 4, =1II of a convex polygon II into n > 2 internally
disjoint 4’s. We say that a 4, is split if a vertex of a 4; is an internal point of some side
of 4;. If none of the 4; is split, then the (one, two, or three) neighbors of each 4; have the
same size as 4; itself, and the connectedness of the dissection implies that all 4; are
congruent. Hence, from now on we assume that there is at least one split triangle. Note
that, by the assumption on convexity, each internal point splitting a side of some 4; is the
vertex of precisely three tiles.

Suppose that 4, = ABC is the smallest split triangle. We prove that an internal point of
some side of 4, is the vertex of two triangles 4,, 4; of the same size.

A triangle 4; is said to overhang 4, at A if the boundary of 4; entirely contains the side
ABor ACof 4;,and A is not a vertex of 4;. Certainly, at each vertex of a triangle at most
one neighboring triangle can overhang, and if 4; overhangs 4, then | 4,| > | 4;| (where | 4]
denotes any measure — side length, area, etc.).
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We find two 4, of the same size, depending on the distribution of vertices on the periphery
of 4, . In the first three of the four possible cases we assume that each side of 4, contains
at most one internal vertex. In order to simplify some technical details of the argument,
and to insure that each tile be surrounded completely by its neighbors, we artificially
place an «external» 4 on each side of IT. Note that placing or removing external 4’s does
not change the status of split triangles in the dissection.

Case 1: The periphery of 4, contains just one internal vertex.

Say, D is an internal vertex on AB. The two neighbors of 4, containing C cannot be
smaller than 4,. Suppose that both of them are larger than 4, . Since at most one of them
can overhang at C, the other must overhang at, say, A4 (see Fig. 2(a)). Then 4 D is the side
of some triangle 4; = ADE. Since |4;| <|4,], 4; is not split by the choice of 4,. More-
over, at most one neighbor of 4; can overhang at E. Thus, AE or DE is the side of two

triangles of the same size.
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Figure 2.

Case 2: The periphery of 4, contains precisely two internal vertices, on distinct sides.

Let D and E be internal vertices in AC and BC, respectively. Since the edge AB is not
split, some neighbor 4, of 4, entirely contains 4B, and if |4, # | 4| then 4; overhangs
4, at, say, B (see Fig. 2(b)). Then the triangle BEF is in a similar situation as ADE in
Case 1, so that it has a neighbor of the same size.

Case 3: The periphery of 4, contains precisely three internal vertices, on pairwise distinct
sides.

Let D, (i = 1,2, 3) be the internal vertices on the periphery of 4,. Consider the triangles
whose boundaries contain the segments CD, and CD,. Some of them does not contain
C as an internal point of its side; say, 4;,= CD, E, is a triangle of the dissection (see
Fig. 3). By our assumptions, 4; is not split. Thus, if CD, E, has no neighbor of the same
size, then some triangle overhangs at each of its vertices. We denote by 4,. the triangle
that overhangs at C. The presence of 4,. implies that CD, is the side of some triangle
CD,F,,ie. EF, is a side of 4,.. Repeating this argument for the triangles incident to A
and B, we obtain that the three vertices of 4, are internal points on the peripheries of
three triangles 4,., 4,., 4,. as exhibited in Fig. 3.
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Figure 3.

Observing the six neighbors of 4, we obtain |CD,| = |CE,|,|CD,| = |CF,|, etc., imply-
ing |E\F\| + |E, F,| + |E3F;| = |AB| + |BC| + |CA| and [4,.| + |4,.| + |45 =3]4,|.
On the other hand, since 4, is a smallest split triangle, [4,.| > |4,| holds for 1 <i < 3.
Consequently, |4,| =|4,|for 1 <i < 3,i.e. the dissection contains four mutually congru-
ent triangles.

Case 4. There are at least two internal vertices on the same side of 4,.

Let D, E be two consecutive internal vertices in A B (see Fig. 2(c)). Since the triangle DE F
is not split, and at most one of its neighbors can overhang at F, its other neighbor has
the same size. This fact completes the proof of Theorem 1. [J

Proof of Theorem 2.

We prove the theorem in the slightly different — but equivalent — form that the limit

lim (f () — 1)/(n—1)

exists. Put g(n) = (f (n) — 1)/(n — 1). We are going to show that
c:=liminfg(n) > g (k)

for all k > 6. This inequality will imply the theorem.
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Suppose that two dissections D, and D, are available, where D, (i = k, n) has i tiles with
f (i) distinct sizes. Substituting D, into the smallest triangle of D,, we obtain a dissection
D, .-, withn+ k —1tiles and f (n) + f (k) — 1 or f (n) + f (k) distinct sizes; the number
of sizes after substitution is f (n) + f (k) if and only if the smallest size in D, occurs at least
twice. Applying this substitution ¢ times, we obtain:

(@) Forevery k,t,and n, f(n+ kt—t)> f(n)+t f(k)—t, and
(b) if there is a dissection of 4 into k tiles of f (k) distinct sizes such that the smallest size
occurs at least twice, then f(n+kt—1t)> f(n)+ ¢t f(k)— 1.

The reason is that the size of every triangle in the image of D, is strictly smaller than the
sizes in D,.

Fixing the value of k (k>6), let n=(t + 1)(k—1)+i, 0 <i <k — 2, with ¢ tending to
infinity. Then (a) implies

gm) =(f(n)—1D/n—1)
>(fli+k—1)—1+t(f()—D))/i+k—1+t(k—1)
=(f (k) =Dtk = 1) —o(1)
=g(k) —o(1).

This inequality holds independently of the value of i, so that liminfg(n) > g (k) follows,
implying f (n) = cn + o(n) for some constant c.

The lower bound of ¢ > 5/7 is obtained by repeatedly substituting the dissection D, —
taken from [4] — with 10 distinct sizes (the smallest one occurring twice), shown in

Fig.4. [
/\
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Figure 4. The dissection D,,.
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As we have seen, property (a) is strong enough to prove the asymptotic result of Theo-
rem 2. The advantage of part (b) is that it can be applied to obtain sharper lower bounds
when a fairly good initial construction — like D, 5 — is available.
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Klassische Beleuchtungsgeometrie im E? (d=2)
I1. Kinematik in der Beleuchtungsgeometrie des E¢ (d=2)

In Teil I (vgl. [6]) wurden im R? (d=2) Scharen aus isophotischen Flichenelementen
beziiglich einer klassischen Zentralbeleuchtung (g, 1) — d.i. Lichtstirke 1 in jeder von der
in ¢ placierten Lichtquelle ausgehenden Richtung — konstruiert. Geméss einer in [5]
«kinematisch» genannten Vorgehensweise lassen sich nun aus der Zentralbeleuchtung
(¢, 1) und solch einer Schar isophotischer Elemente neue isophotische Scharen erzeugen.
Diese Methode wird hier, nach kurzer Darlegung, verwendet, um Zusammenhéinge zwi-
schen Kurvenklassen aufzudecken, die die klassische Beleuchtungsgeometrie im E? (d =2)
aufgrund ihres dimensionsabhidngigen Beleuchtungsstirkegesetzes liefert.

1. Ein kinematisches Erzeugungsprinzip
Hat das orientierte Flichenelement (x, n) mit Trégerpunkt x und Einheitsnormalenvek-

tor n die Beleuchtungsstirke E >0 beziiglich der Zentralbeleuchtung (g, 1), so auch das
Element (g, —n) beziiglich der Beleuchtung (x, 1). Die Ersetzung

((q’ 1): (x: n)) =¥ ((x’ 1)’ (q9 —”))
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