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146 El. Math., Vol. 46, 1991
Uber die Payne-Polya-Weinbergersche Vermutung

Die Normalschwingungen einer Membran, welche in der Ruhelage das Gebiet D iiber-
deckt, sind von der Form exp[iwt]u(x), wobei u= w? die Eigenwerte und u(x) die
zugehorigen Eigenfunktionen des Problems

Au+pu=0 in D, u=0 auf 0D

sind. Es ist wohlbekannt, dass eine abzidhlbare Menge von Eigenwerten u; < p, < u3 <...
existiert, die sich im Unendlichen héufen.

1955 haben Payne, Polya und Weinberger in einer Comptes Rendues Note der Pariser
Akademie die folgende Vermutung ausgesprochen: u,/u, nimmt sein Maximum beim Kreis
an.

Sie leiteten die Abschidtzung u,/u,; <3 her, die nicht allzu weit vom vermuteten Wert
2.539 ... ist. Diese Vermutung ist keineswegs offensichtlich, denn nach der Ungleichung
von Rayleigh-Faber-Krahn nimmt unter allen Gebieten gleicher Fliche u, sein Mini-
mum und nach der Ungleichung von Szegd-Weinberger u, sein Maximum beim Kreis
an.

In den nachfolgenden Jahren wurde die Schranke fiir u,/u, verbessert. Brands erhielt
1964 dafiir den Wert 2.686, de Vries drei Jahre spéter 2.658 und Chiti kam 1983 auf 2.586.
Im letzten Jahr haben M. S. Ashbaugh und R. D. Benguria die Vermutung von Payne-
Polya-Weinberger inklusive das mehrdimensionale Analogon vollstindig bewiesen.
Der Beweis ist dusserst raffiniert. Er stiitzt sich einerseits auf die Ideen von Payne-Polya-
Weinberger und Chiti zusammen mit einer neuen Ungleichung iiber die Nullstellen von
Besselfunktionen.

C. Bandle, Mathematisches Institut der Universitit, Basel

Aufgaben

Aufgabe 1037. In der Ebene eines Dreiecks A BC mit Seitenldngen a, b, ¢ und Hoéhen-
schnittpunkt H sei ein von A4, B, C verschiedener Punkt O gegeben. Mit

x:=a/OA, y:=b/OB, z:=c¢/0C
beweise man die Ungleichung
X+y+z=2xyz

mit Gleichheit genau fiir O = H. Man diskutiere Spezialfille.
G. Bercea, Miinchen, BRD
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Solution. In the more usual triangle inequality notation, P is used for O (O is reserved for
the circumcenter) and the proposed inequality is the known one

a,R,R;+a,R;R, +a3;R R, >a,a,a, (1)
and is due to Hayashi (1913). A short history, a proof, and generalizations are given in
this journal [1]. It was noted there that there was equality if the triangle was equilaterial
and the point P corresponded to a vertex. Also, one can derive (1) as a dual inequality
by inversion from the polar moment of inertia inequality

a;R} +a,R3+a3R3>a,a,a,. )
There is equality in (2) iff P = I the incenter. It is not difficult to show that I transforms
into H and vice-versa under the inversion which gives the general equality condition for
(1). Another more direct way of getting the equality condition is to go back to the complex
number proof of (1) using the identity (2) in [1], i.e.,

2y23(2, — 23) + 232, (23 — 21) + 21 2,(2y —2)) = — (2, — 23) (23 — 24) (2, — z3). (3)
If z,,z,,z5, are now complex numbers from an arbitrary origin P (not a vertex) to the
vertices of a triangle 4, 4, A,, then (1) is immediately obtained by applying the triangle

inequality to (3). There is equality iff all the terms of (3) have the same argument. This
requires that

(zy—z3)zy =Avz, (23—2z))/z,=Arz, (21—2;)/z3=1A52

where the A;’s are positive real and z is a unit complex number. We then must also satisfy
(3), ie.,

(Al + 12 + 13)2 = - Al 2,2/1323.

Hence, z2 = — 1 which implies that the P must be the orthocenter. The resultant identity
AL+ A, + A3 = A, A, A5 is then equivalent to

tanA4, +tan A4, + tan A; =tan A, tan A, tan 4A,,
a well known identity for triangles.
The general polar moment of intertia inequality contains (1) and (2) as special cases.
This is simply
(W, R, +w, R, + w3 R;)* 20 C))

where R; is the vector from P to vertex A; and the w;’s are arbitrary real numbers.
Expanding out and simplifying, we obtain

Wy +w, +w3)(w; R+ w, R+ wR)) 2 wywiyal + wyw, a3 +wywyas. )
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There is equality iff the centroid of the weights w; at the corresponding vertices 4, is point
P. To obtain (1), simply let w, = a; R, R;, etc; to obtain (2), simply let w, = a,, etc.
Incidentally, (4) generalizes to polytopes in E™.

Many special cases of (5) where point P coincides with O, I, G, ©, N, etc., and for various
weights w; are already given in the literature. In particular, see [2] which is the most
comprehensive reference on inequalities of the triangle.

M. S. Klamkin, Edmonton, Alberta
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Weitere Losungen sandten F. Bellot (Valladolid, Spanien), W. Janous (Innsbruck, A),
K. Schiitte (Miinchen, BRD), M. Vowe (Therwil).

Aufgabe 1038. Man bestimme alle ganzzahligen Losungen (x, y) der Gleichung

(x+2=x"+2).
H. Alzer, Johannesburg, Siidafrika

Losung. Offenbar sind alle (x, 1) mit xeZ Losungen von (1). Sei also (x,y)eZ x Z mit
y #1 eine weitere Losung. Aufgrund des Mittelwertsatzes ist

2 =(x +2F — X’ =2yw !

mit ganzzahligem we(x,x + 2), also w = x + 1.
Fiihren wir die Hilfsfunktion

fO:=A+1/t)y -1 —1/t); t+ —1,0,1

ein, so lautet (1) nunmehr: f(x + 1) = 2.

a)t<0,dht< —2: Aus
(1+1/tfle und (1 —1/t))1/e fir t|— o0

folgt f(t)>e—(3/2)"2> 2.
b) t > 0: Entwickelt man f (t) mit Hilfe des binomischen Satzes, so sicht man unmittelbar,
dass f(t) = 2 mit Gleichheit genau fir t =2, d.h. x=1, y=2.

Zusammengefasst hat sich somit ergeben: Die Paare (x, 1) mit xeZ sowie (x,y) = (1,2)
sind genau die Losungen von (1).

W. Janous, Innsbruck, A



El. Math., Vol. 46, 1991 149

Weitere Losungen sandten A. A. Jagers (Enschede, NL), Kee-Wai Lau (Hong Kong),
O. P. Lossers (Eindhoven, NL), K. Schiitte (Miinchen, BRD), H.-J. Seiffert (Berlin, BRD).

Aufgabe 1039. Mit ke N und m,ne N U {0} sei

j=0 J __1

a) Zeige: Es gibt eine Zahl ne N U {0}, so dass
ak,mn)=0 fir n>N wundalle k,m.
b) Man ermittle
N
btk,m):= 3 a(k,mn).
n=0
J. Binz, Bolligen

Losung (mit Verallgemeinerung). Bei k, pe N ist

k (k\ [k —1—pj
c(k,p,q);=§0(_1y(j)( T ’”)

der g-te Taylorkoeffizient von
Jep(@i=(1—27"1 =27

um z = 0. Dies erkennt man aus der in |z| < 1 giiltigen Formel

© =k /=2 AN e (R (Hi=1) 0,
f,‘,p(z)=<i§0(——1)( i )z)(j§0(~1)’(j>z )“5( 1)’(}.)( 1 )Zi

dabei wurde

=k [(k+i-1\ [(k+i-1
=(3)-()-()
verwendet. Wegen f; ,(z2) =(1 +z + ... + z?~ )" verschwindet c(k, p, q) fir ¢ > k(p — 1)
und es gilt

ﬁoc(k,p, D =fi,1)=p" *)
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Wegen a(k,m,n) = c(k,2™,n + 2) ergibt sich aus den bisherigen Feststellungen die Auf-
gabenldsung; insbesondere ist nach (*)

e ¢

bkmy:= Y ak,mn) =Y c(k2"q)=2""—1—(1-0, )k
n=0 2

q=

mit dem Kronecker-Symbol 6.
B. Bundschuh, K6ln, BRD

Weitere Losungen sandten A. A. Jagers (Enschede, NL), O. P. Lossers (Eindhoven, NL).

Neue Aufgaben

Die Losungen sind getrennt nach den einzelnen Aufgaben in Maschinenschrift erbeten bis
10. April 1992 an Dr. H. Kappus. Dagegen ist die Einsendung von Losungen zu den mit
Problem ... A, B bezeichneten Aufgaben an keinen Termin gebunden.

Bei Redaktionsschluss dieses Heftes sind noch ungeldst: Problem 601 A (Band 25, S. 67),
Problem 625 B (Band 25, S. 68), Problem 645 A (Band 26, S. 46), Problem 672 A (Band 27,
S. 68), Aufgabe 680 (Band 27, S. 116), Problem 724 A (Band 30, S. 91), Problem 764 A
(Band 31, S. 44), Problem 862 A (Band 36, S. 68).

Aufgabe 1055. Man betrachte das hypothetische Tonsystem, das aus einer verhéltnisglei-
chen Teilung der Oktave in n Intervalle hervorgeht (n > 2; charakteristisches Verhéltnis
'{/5) und denke sich dann analog wie beim Zwolftonsystem n-Ton-Reihen gebildet.

a) Man zeige: Allintervall-Reihen existieren nur fiir gerade Indizes n.

b) Man zeige: Die Differenzen-Reihen zu den n-Ton-Allintervall-Reihen haben stets ein
Anfangsglied, das von ;n verschieden ist.

¢) Anstelle der Allintervall-Reihen vom Index # kann man auch die Differenzen-Reihen
betrachten, aus denen Allintervall-Reihen hervorgehen. Es sind dies in der Sprache
der Kombinatotik bestimmte injektive Worter der Lange n — 1 iiber dem Alphabet
1,2,...,n— 1 (Permutationen mit einer sehr speziellen Art von eingeschriankter Stel-
lenbelegung). Zu jeder solchen Differenzen-Reihe gehort eine Klasse aus n Allinter-
vall-Reihen, die durch Transponieren aus einer einzelnen Allintervall-Reihe erhalten
werden konnen.
Man zeige: Unter den Differenzen-Reihen, die Allintervall-Reihen vom Index n festle-
gen, gibt es je gleichviele, die mit a und mit n — a beginnen, wobei

n n -
1,2,...,-——1,-+1,...,n—1,.
ae{ ,2, 2 2+ n 1}

d) Zur Zeit ist noch keine Formel fiir die Anzahl f, der Differenzen-Reihen bekannt, die
Allintervall-Reihen vom Index » implizieren. Man kann daher die Zahlen f nur auf
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dem Umweg iiber eine vollstindige Auflistung der betreffenden Figuren-Mengen
bestimmen.

Man stelle einen Auflist-Algorithmus fiir die Differenzen-Mengen zu den Allintervall-
Reihen vom Index n auf.

Anmerkung

Rohmaterial einer Zwolfton-Komposition ist eine sog. Zwolfton-Reihe aus den 12 ver-
schiedenen Tonen unseres temperierten Tonsystems. In einer solchen Reihe wird kein
Ton wiederholt; sie besteht also aus genau 12 TOnen.

Den 12 Tonen liegt eine verhaltnisgleiche Teilung der Oktave zugrunde, d. h. das charak-
teristische Frequenzverhdltnis zwischen aufeinanderfolgenden Tonen ist Qﬁ.
Innerhalb einiger zuldssiger Verdnderungen der Grund-Zwdolfton-Reihe darf jeder Ton
im Verlaufe eines Stiickes in jeder Oktav-Lage auf- oder abwirts erscheinen; die Tone der
Grund-Reihe legen also gewissermassen nur Oktav-Klassen fest. Dementsprechend ist es
ublich, Zwolfton-Reihen mit den Zahlen 1,2, ..., 12 zu beschreiben, wobei die 1 fiir
unsere Zwecke willkiirlich vergeben werden kann.

Beispiel einer Zwolfton-Reihe:

a b dis h e fis ¢ cis g gs d f
1 2 7 3 8 0 4 5 11 12 6 9
——

—— e w——“—v—! —— e e S e
Differenzen-Reihe 1 5 8 5 2 6 1 6 1 6 3
(Intervalle)

Die jeweiligen Differenzen modulo 12 kennzeichnen die vorkommenden Intervalle.
Man spricht nun von einer Zwdélfton-Allintervall-Reihe, wenn in der zugehdrigen Diffe-
renzen-Reihe alle moglichen Intervalle auftreten.

Beispiel einer Zwolfton-Allintervall-Reihe:

1 6 2 3 5 9 12 10 4 11 8 7

R e e e e e e e i e Ve

5 8 1 2 4 3 10 6 7 9 11
M. Jeger, Ziirich/Luzern

Aufgabe 1056. Let 1 > 0,0 < « < 1 and let (a,) be a real sequence recursively defined by
a, =« and

a,,,=a,(1—al); n=0,1,2,....
Show that

a,~un)~ for n- .

A. A. Jagers, Enschede, NL
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