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Kleine Mitteilungen

Zur Übereinstimmung der Mittelwertstellen
von Funktionen und ihren Ableitungen

Sei/:R -? R eine zweimal stetig differenzierbare Funktion, für die sign(/'(x)) cx und

sign(/"(x)) c2 mit cx,c2e{— 1,1} für alle xeR gelte. Nach den Mittelwertsätzen der

Integral- und Differentialrechnung sind dann die Mittelwertstellen W(x,a) und w(x,a)
gemäss (1) und (2) für x,aeR wohldefiniert:

f(W(x,a)) )f(s)ds/(x-a) (1)
a

f (w (x, a)) (f(x) - f (a))/(x - a). (2)

(Für x a sei W(x, a) w (x, a) x.)
Im allgemeinen unterscheiden sich beide Mittelwertstellen, für die Exponentialfunktion
/(x) exp(x) stimmen sie offensichtlich immer überein. Es stellt sich die Frage, für
welche Funktionen / diese Stellen für jedes x und a übereinstimmen. Darüber gibt
folgender Satz Auskunft:

Satz: Für jedes x, a e R gelte

W(x,a) w(x,a). (3)

Dann gibt es ol, ß + 0 und p e R mit

f(x) ocexp(ßx) + p.
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Beweis:

i) Wir zeigen zunächst, dass / unendlich oft differenzierbar ist: Sei a fest. Der Einfachheit
halber schreiben wir im Folgenden w(x) statt w(x,a). Es gilt

Sf(s)ds/(x -a) lf(a + t(x - a))dt. (4)
a 0

Aus (1) und (3) folgt daher

w(x) f-1(\f(a + t(x-a))dt\

woraus erkennbar ist, dass w ebenso oft differenzierbar ist wie /. Differentiation von (1)
nach x ergibt

i
w'(x) J/'(fl + t(x - a))tdt/f'(w(x)) > 0.

0

Folglich hat w~*(y) dieselbe Differenzierbarkeitsordnung wie / Sei nun x > a. Mit
y w(x)>a folgt aus (2)

f'(y) (f(™-l(y))-f(a))l(v-l(y)-a).

Für x > a hat also /' dieselbe Differenzierbarkeitsordnung wie / / ist somit dort unendlich

oft differenzierbar. Da a beliebig ist, ist / überall unendlich oft differenzierbar und
auch w.

ii) Jetzt zeigen wir, dass die Ableitungen Dkf(a) durch f(a), f'(a) und f"(a) eindeutig
bestimmt sind, genauer dass gilt

Dkf(a) Dkg(a) für /c 0,l,...,

wobei

0(x) _4exp(£x) + C mit B f"(a)/f'(a),

A f (a)/(B exp (B a)) und C / (a) - A exp (B a).

Dies erkennt man wie folgt: Man rechnet nach, dass g die Bedingungen (l)-(3) erfüllt und
Dkf(a) Dkg(a) für k 0,1,2 gilt.
Nun bleibt noch die Eindeutigkeit zu zeigen: Aus (l)-(3) folgt

f(w(x)) )f(a + t(x-a))dt (5)
o

f'{vt(x)) lf'(a + t{x-a))dt (6)
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n-mahges Ableiten von (5) und (6) nach x ergibt fur x a

Dn(fow)(a) ]Dnf(a)tndt Dnf(a)/(n + 1) (7)
o

Dn(f'°w)(a) )Dn + 1(a)tndt Dn + 1f(a)/(n + 1) (8)
o

Fur n 1 folgt aus (7) w' (a) 1/2
Auswertung der linken Seiten von (7) und (8) ergibt

(Dn f) o w (a) (w' (a)f + Sn (a) + (D1 f) ° w (a) Dn w (a) Dnf (a)/(n + 1) (9)

(Dn + 1f)°w (a) (w' (a))n + Rn (a) + (D2 f) ° vv (a) Dnw(a) Dn + 1f (a)/(n + 1) (10)

Dabei enthalt Sn Ableitungen von / und vv höchstens bis zur Ordnung n — l und Rn

Ableitungen von / höchstens bis zur Ordnung n und von w maximal vom Grade n — l
Wegen /' (a) + 0 und /" (a) + 0 können (9) und (10) nach Dn w (a) aufgelost werden Man
erhalt

(Dnf(a)/(n + 1)-(D»f)ow(a)(w'(a))n - Sn(a)W f(a)

((l/(n + 1) - (l/2f)Dn^f(a) - Rn(a))/D2 f(a) (11)

Fur n > 2 kann (11) nach Dn+1 f (a) aufgelost werden, damit diese Ableitung als Funktion
niedrigerer Ableitungen berechnet werden (man beachte, dass wegen (9) die k-te Ableitung

von w eine Funktion der ersten k Ableitungen von / ist) Insgesamt sind also alle

Ableitungen durch den Funktionswert und die ersten beiden Ableitungen bestimmt

(in) Es bleibt zu zeigen, dass / sogar analytisch ist, weil der Identitatssatz dann die

Behauptung liefert Die Analytizitat folgt wegen der Konstanz des Vorzeichens von
B B(a) und A A(a) unmittelbar aus dem

Satz von Bernstein (vgl [1], S 267)

Sei g auf I=(— r,r) unendlich oft differenzierbar und gelte für alle grossen n entweder

Dng(x)>0 für alle xel oder — l)nDng(x) > 0 für alle xel, so wird g auf I durch seine

Taylorreihe dargestellt

Entweder sind namhch (nach evtl Multiplikation mit — 1) alle Ableitungen von/positiv
oder alternierend im Vorzeichen

Lothar Kranz, Klaus Thews,
FH Wurzburg-Schweinfurt, Abteilung Schweinfurt
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Über die Payne-Polya-Weinbergersche Vermutung

Die Normalschwingungen einer Membran, welche in der Ruhelage das Gebiet D
überdeckt, sind von der Form exp[icot]u(x), wobei ß co2 die Eigenwerte und u(x) die
zugehörigen Eigenfunktionen des Problems

Au + pu 0 in D, u 0 auf dD

sind. Es ist wohlbekannt, dass eine abzählbare Menge von Eigenwerten px< p2< p3<
existiert, die sich im Unendlichen häufen.
1955 haben Payne, Pölya und Weinberger in einer Comptes Rendues Note der Pariser
Akademie die folgende Vermutung ausgesprochen: p2/px nimmt sein Maximum beim Kreis
an.
Sie leiteten die Abschätzung p2/px < 3 her, die nicht allzu weit vom vermuteten Wert
2.539... ist. Diese Vermutung ist keineswegs offensichtlich, denn nach der Ungleichung
von Rayleigh-Faber-Krahn nimmt unter allen Gebieten gleicher Fläche pix sein Minimum

und nach der Ungleichung von Szegö-Weinberger \x2 sein Maximum beim Kreis
an.
In den nachfolgenden Jahren wurde die Schranke für u2/px verbessert. Brands erhielt
1964 dafür den Wert 2.686, de Vries drei Jahre später 2.658 und Chiti kam 1983 auf 2.586.

Im letzten Jahr haben M. S. Ashbaugh und R. D. Benguria die Vermutung von Payne-
Pölya-Weinberger inklusive das mehrdimensionale Analogon vollständig bewiesen.

Der Beweis ist äusserst raffiniert. Er stützt sich einerseits auf die Ideen von Payne-Pölya-
Weinberger und Chiti zusammen mit einer neuen Ungleichung über die Nullstellen von
Besselfunktionen.

C. Bandle, Mathematisches Institut der Universität, Basel

Aufgaben

Aufgabe 1037. In der Ebene eines Dreiecks ABC mit Seitenlängen a, b, c und
Höhenschnittpunkt H sei ein von A, B, C verschiedener Punkt O gegeben. Mit

x:=a/OA, y:=b/OB, z:=c/OC

beweise man die Ungleichung

x + y + z >xyz

mit Gleichheit genau für O — H. Man diskutiere Spezialfälle.

G. Bercea, München, BRD
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