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Kleine Mitteilungen

Zur Ubereinstimmung der Mittelwertstellen
von Funktionen und ihren Ableitungen

Sei f:R — R eine zweimal stetig differenzierbare Funktion, fiir die sign (f’(x)) = ¢, und
sign(f”(x)) = ¢, mit ¢;,c,e{— 1,1} fiir alle xeIR gelte. Nach den Mittelwertsdtzen der
Integral- und Differentialrechnung sind dann die Mittelwertstellen W (x,a) und w(x,a)
gemadss (1) und (2) fiir x,aeR wohldefiniert:

FOW (%) = [ £ ()ds/(x — a) )
1w a@) = (f) — f @) — a). @

(Fir x = a sei W(x,a) = w(x,a) = x.)
Im allgemeinen unterscheiden sich beide Mittelwertstellen, fiir die Exponentialfunktion
f(x) = exp(x) stimmen sie offensichtlich immer iiberein. Es stellt sich die Frage, fiir
welche Funktionen f diese Stellen fiir jedes x und a iibereinstimmen. Dariiber gibt
folgender Satz Auskunft:
Satz: Fiir jedes x,aeR gelte

W(x,a) = w(x,a). 3)
Dann gibt es o, f + 0 und peR mit

J(x) = aexp(Bx) + p.
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Beweis:

i) Wir zeigen zunichst, dass f unendlich oft differenzierbar ist: Sei a fest. Der Einfachheit
halber schreiben wir im Folgenden w(x) statt w(x, a). Es gilt

x 1
jf(s)ds/(x~—a)=bff(a+t(x——a))dt. 4)

Aus (1) und (3) folgt daher

W(X)=f‘1<(f)f(a+t(x—a))dt),

woraus erkennbar ist, dass w ebenso oft differenzierbar ist wie f. Differentiation von (1)
nach x ergibt

w(x) = _l[f’(a+ t(x —a)tdt/f' (w(x)) >0.
0

Folglich hat w™!(y) dieselbe Differenzierbarkeitsordnung wie f. Sei nun x > a. Mit
y = w(x) > a folgt aus (2)

FO=Uw1e) - f@)/w ') —a.
Fir x > a hat also f’ dieselbe Differenzierbarkeitsordnung wie f. f ist somit dort unend-

lich oft differenzierbar. Da a beliebig ist, ist f iiberall unendlich oft differenzierbar und
auch w.

ii) Jetzt zeigen wir, dass die Ableitungen D* f(a) durch f (a), f’(a) und f” (a) eindeutig
bestimmt sind, genauer dass gilt

D*f(a)=D*g(a) fir k=0,1,...,
wobei
g(x)=Aexp(Bx)+ C mit B=f"(a)/f (a),
A= f'(a)/(Bexp(Ba)) und C=f(a)— Aexp(Ba).
Dies erkennt man wie folgt: Man rechnet nach, dass g die Bedingungen (1)—(3) erfiillt und

D* f (a) = D*g(a) fiir k =0,1,2 gilt.
Nun bleibt noch die Eindeutigkeit zu zeigen: Aus (1)—(3) folgt

Fow(x) = zf(a +t(x— a))dt )

' w) = j) f'a+t(x— a)de ©)
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n-maliges Ableiten von (5) und (6) nach x ergibt fir x = a:

1
D" (f°w)(a) = gD"f(a) t"dt = D" f (a)/(n + 1) 0

D"(f’°W)(a)=gD"“(a)t"dt=D"“f(a)/(n+ 1) )

Fiir n = 1 folgt aus (7) w'(a) = 1/2.
Auswertung der linken Seiten von (7) und (8) ergibt

(D" f)ew(a)(W (@)" + S,(a) + (D' f)°w(a) D" w(a) = D" f (a)/(n + 1) ©)

(D"*! f)ew(a)(W ()" + R,(a) + (D* f)° w(a) D"w(a) = D"*' f(a)/(n + 1) (10)

Dabei enthilt S, Ableitungen von f und w hochstens bis zur Ordnung n — 1 und R,
Ableitungen von f hochstens bis zur Ordnung n und von w maximal vom Grade n — 1.
Wegen [’ (a) + 0 und f” (a) + 0 kénnen (9) und (10) nach D" w(a) aufgelost werden. Man
erhalt

(D" f (@)/(n + 1) — (D" f)ow(@) (W ()" — S,(@))/D" f (a)
=((1/(n+1)—(1/2")D"** f (a) — R, (a))/D* f (a) (11)
Fiir n > 2 kann (11) nach D"*! f (a) aufgelost werden, damit diese Ableitung als Funktion
niedrigerer Ableitungen berechnet werden (man beachte, dass wegen (9) die k-te Ablei-

tung von w eine Funktion der ersten k Ableitungen von f ist). Insgesamt sind also alle
Ableitungen durch den Funktionswert und die ersten beiden Ableitungen bestimmt.

(iii) Es bleibt zu zeigen, dass f sogar analytisch ist, weil der Identitdtssatz dann die
Behauptung liefert. Die Analytizitdt folgt wegen der Konstanz des Vorzeichens von
B = B(a) und A = A(a) unmittelbar aus dem

Satz von Bernstein (vgl. [1], S. 267):

Sei g auf I = (— r,r) unendlich oft differenzierbar und gelte fiir alle grossen n entweder
D"g(x) > 0 fiir alle xe I oder (—1)" D" g(x) =0 fiir alle x€ I, so wird g auf I durch seine
Taylorreihe dargestellt.

Entweder sind ndmlich (nach evtl. Multiplikation mit — 1) alle Ableitungen von f positiv
oder alternierend im Vorzeichen.

Lothar Kranz, Klaus Thews,
FH Wiirzburg-Schweinfurt, Abteilung Schweinfurt
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Uber die Payne-Polya-Weinbergersche Vermutung

Die Normalschwingungen einer Membran, welche in der Ruhelage das Gebiet D iiber-
deckt, sind von der Form exp[iwt]u(x), wobei u= w? die Eigenwerte und u(x) die
zugehorigen Eigenfunktionen des Problems

Au+pu=0 in D, u=0 auf 0D

sind. Es ist wohlbekannt, dass eine abzidhlbare Menge von Eigenwerten u; < p, < u3 <...
existiert, die sich im Unendlichen héufen.

1955 haben Payne, Polya und Weinberger in einer Comptes Rendues Note der Pariser
Akademie die folgende Vermutung ausgesprochen: u,/u, nimmt sein Maximum beim Kreis
an.

Sie leiteten die Abschidtzung u,/u,; <3 her, die nicht allzu weit vom vermuteten Wert
2.539 ... ist. Diese Vermutung ist keineswegs offensichtlich, denn nach der Ungleichung
von Rayleigh-Faber-Krahn nimmt unter allen Gebieten gleicher Fliche u, sein Mini-
mum und nach der Ungleichung von Szegd-Weinberger u, sein Maximum beim Kreis
an.

In den nachfolgenden Jahren wurde die Schranke fiir u,/u, verbessert. Brands erhielt
1964 dafiir den Wert 2.686, de Vries drei Jahre spéter 2.658 und Chiti kam 1983 auf 2.586.
Im letzten Jahr haben M. S. Ashbaugh und R. D. Benguria die Vermutung von Payne-
Polya-Weinberger inklusive das mehrdimensionale Analogon vollstindig bewiesen.
Der Beweis ist dusserst raffiniert. Er stiitzt sich einerseits auf die Ideen von Payne-Polya-
Weinberger und Chiti zusammen mit einer neuen Ungleichung iiber die Nullstellen von
Besselfunktionen.

C. Bandle, Mathematisches Institut der Universitit, Basel

Aufgaben

Aufgabe 1037. In der Ebene eines Dreiecks A BC mit Seitenldngen a, b, ¢ und Hoéhen-
schnittpunkt H sei ein von A4, B, C verschiedener Punkt O gegeben. Mit

x:=a/OA, y:=b/OB, z:=c¢/0C
beweise man die Ungleichung
X+y+z=2xyz

mit Gleichheit genau fiir O = H. Man diskutiere Spezialfille.
G. Bercea, Miinchen, BRD
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