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Problem

Offen bleibt die Frage, ob ein analoges Verfahren gefunden werden kann, um &hnlich
regulire Codierungen von Z* anzugeben.

Mein Dank gilt den Herren J. Schmid und J. Binz, die mich bei der Ausarbeitung mit Rat
und Tat unterstiitzt haben, sowie dem Schweizerischen Nationalfonds.
M. Wymann-Boni, Math. Institut der Universitit Bern
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Maximal frequencies of elements in second-order linear
recurring sequences over a finite field

1. Introduction

Linear recurring sequences form a widely studied class of sequences of elements of a finite
field. They have a wealth of special properties such as periodicity properties. A general
exposition of the basic properties of linear recurring sequences over a finite field can be
found in [2, Chapter 8]. A lot of attention has been devoted to the problem of how the
elements of the underlying finite field are distributed over the period of a given linear
recurring sequence. Results on the distribution behavior of linear recurring sequences are
of interest in various applications, €.g. in algebraic coding theory and in the theory of
pseudorandom numbers; see [2, pages 462—464] for a brief survey of the theory and the
applications of distribution properties of linear recurring sequences over a finite field. In
this paper we are interested in the maximal number of occurrences of a field element in
a full period of a linear recurring sequence, and we shall deal mostly with the case of a
second-order linear recurring sequence.

Let F, be a finite field with g elements and characteristic p. Let w(a,b) = (w) be a
second-order linear recurring sequence over F, satisfying the relation

wn+2=awn+1~bwn (1)
with initial terms wq, w,. It is known (see [1, pages 344—345]) that if b & 0, then w(a, b)

is purely periodic. Throughout this paper we shall assume that b 4 0. The sequence
w(a, b) is called regular if the vectors (wy, w,) and (w,, w,) are linearly independent over
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F,. If de F, let A(d) denote the number of times that d appears in a full period of the
sequence w(a, b). The principal aim of this paper will be to obtain improved upper bounds

for A(d).
Let

f(x)=x*—ax+b )
be the characteristic polynomial associated with w(a, b) and let £; and &, be its charac-
teristic roots. If w(a, b) is regular, it is well-known (see [2, Theorem 8.21 and Remark 8.23))
that for &, £ ¢&,,

w, =0y 1+, &5, &)
where o, a,€ F,(¢;) and a; a, + 0, and for {; = ¢,,

w, =(cyn+¢y) LY, “)

where ¢,,c,€F, and ¢, #0.

2. Preliminaries
Let M denote the period of w(a, b). It is easy to see that all regular sequences satisfying
the recursion relation (1) have the same period. (See [8, Lemma 9].) The following theorem

determines the period of a regular sequence and will be necessary for our later work.

Theorem 1: Let w(a, b) be a regular sequence with characteristic roots &, ,, and period M.
@) If &, +¢&,, then

M =lcm(ord (&,), ord (&,)), &)

where ord (£,) denotes the multiplicative order of £, in F,(¢,).

M =p-ord(Sy). (6)
Proof: Part (i) is proved in [7, page 606). Part (ii) is proved in [8], Theorem 4].

Niederreiter [3] (see also [2, Theorem 8.82]) has proven the following result regarding A4 (d)
which is specialized to second-order recurrences.

Theorem 2: Let w(a, b) be a second-order linear recurring sequence over F, for which b + 0.
Let de F,. Then

<qg-—1.

Pw~ﬂ
q
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3. The Main Theorem

Theorem 3 will sharpen the upper bound given for 4 (d) in Theorem 2. Note that Theo-
rem 2 guarantees that A (d) > 1 for all d € F, only if w(a, b) has a maximal period of g*> — 1.

Theorem 3: Let w(a, b) be a second-order linear recurring sequence over F, for which b # 0.
Then

A(d) <min(g,?2 - ord (b)) (7)
for d =0 and
A(0) <min(g—1,2 - ord (b)). 8)

Proof: Let de F,. Let M be the period of w (a, b). If w(a, b) is irregular, then it immediately
follows that 4(d) =0 or 1. It thus suffices to assume that w(a, b) is regular.

Next we show that A(d)<q for d+0 and A(0) < q— 1. Note that the state vec-
tors (w,,w,,) are all distinct and non-zero for 0 <n <M — 1. Consider those n,
0 <n< M —1, for which w, =d. Then for the corresponding state vectors (w,,w,,,)
= (d,w,,), it follows that the terms w,, ; must all be distinct and w,,, , + 0if d = 0. The
claim now follows.

Now let m = ord (b), m; = ord (¢,), and m, = ord (£,). We shall show that for every residue
r (mod m), there exist at most two integers n satisfying 0 £ n < M and n = r (mod m) such
that w, = d. The theorem will then follow. We consider two cases.

Case 1: Assume that ¢, = £,. Then by (5), M = lcm (m,, m,). If n = r (mod m), we obtain
by (3) the equations

wp=0, 81 +a,é3=d, ==V,
which give for an ¢ = + 1,

éri___})x/al’ ;='))__8/(Z2, (9)
where

(x—yp)x—y-)=x>—dx+baa,.
If for a fixed ¢, this system of equations (9) has a solution n, (¢), then every other solution
satisfies n = ny(¢) (modm,) for i =1,2. Hence, n = n,(¢) (mod M). Since there are two
possibilities for ¢, the claim follows.

Case 2: Assume that £, = £,. Then by (6),

M=pm,.
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Further, since ¢2 = b, we have that

e M
“gedm,2)’

If n =r (mod m), we have n =r + em (mod m,) for ¢ = 0 or 1. If for a fixed ¢, the equation
w, = d has a solution ny, = r + ¢ m (mod m, ), then by (4), every other such solution satisfies

(cyn+c) & m=(cyng +cy) €™

Hence, n = n, (mod p) since p is the characteristic of F,. Thus, n = n, (mod M). Since there
are at most two possibilities for ¢, the claim follows.

Remark 1: Schinzel [4] and Somer [5] and [6] have proven this theorem for the sequences
w(a,1) and w(a, — 1) over F, for the case in which the initial terms are w, =0, w, = 1.
Note also that if 2| g and &, = ¢&,, it follows from the proof of Theorem 3 that A (d) < ord (b)
for all de F,.

Remark 2: Let w(a,,a,,..., a,) denote a non-zero kth-order linear recurring sequence
over F, satisfying the relation

Wpak =01 Wpik1 — Q2 Wpigx—2+ ... (=D 1aw,

with a; % 0. It follows from an argument similar to that in the proof of Theorem 3 that
Ad<qg!

for d + 0 and
AQ)<g- 1 —1.

Remark 3: The upper bounds for inequalities (7) and (8) in Theorem 3 are the best
possible and hold for a wide class of second-order linear recurring sequences. If w(a, b)
has a maximal period of g> — 1, then we have equality in (7) and (8), since

> Ad=q¢*-1=q@g@—-1)+(@-1).

deF,

H. Niederreiter, Institute for Information Processing, Vienna
A. Schinzel, Institute of Mathematics, Polish Acad. of Sciences, Warsaw
L. Somer, Departement of Mathematics, Catholic University of America, Washington
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Kleine Mitteilungen

Zur Ubereinstimmung der Mittelwertstellen
von Funktionen und ihren Ableitungen

Sei f:R — R eine zweimal stetig differenzierbare Funktion, fiir die sign (f’(x)) = ¢, und
sign(f”(x)) = ¢, mit ¢;,c,e{— 1,1} fiir alle xeIR gelte. Nach den Mittelwertsdtzen der
Integral- und Differentialrechnung sind dann die Mittelwertstellen W (x,a) und w(x,a)
gemadss (1) und (2) fiir x,aeR wohldefiniert:

FOW (%) = [ £ ()ds/(x — a) )
1w a@) = (f) — f @) — a). @

(Fir x = a sei W(x,a) = w(x,a) = x.)
Im allgemeinen unterscheiden sich beide Mittelwertstellen, fiir die Exponentialfunktion
f(x) = exp(x) stimmen sie offensichtlich immer iiberein. Es stellt sich die Frage, fiir
welche Funktionen f diese Stellen fiir jedes x und a iibereinstimmen. Dariiber gibt
folgender Satz Auskunft:
Satz: Fiir jedes x,aeR gelte

W(x,a) = w(x,a). 3)
Dann gibt es o, f + 0 und peR mit

J(x) = aexp(Bx) + p.
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