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(see [3, 12.35]; of course, such an equation holds when p, g, r are not integers, except that
there may only be rational solutions h). However, h is also related to g by

64 h 4 4
——=12—p-2q—-r+—+—
g p r

(see [3, 12.81]). In view of our independent calculations for g, this last equation yields an
alternative way of finding h.

P. McMullen, University College London
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Kanonische Codierungen von IN*

Als erster brauchte Georg Cantor eine Codierung von N2, d.h. eine Bijektion zwischen
N und IN?. (Sie entspricht dem weiter unten angegebenen { ),.) Es gelang ihm, damit zu
beweisen, dass unendliche Mengen nicht durch endliches Anwenden des kartesischen
Produktes auf sich selbst vergrossert werden konnen, sondern eben immer dieselbe
Michtigkeit behalten (siehe [1] oder [2]). Heute ist sein Verfahren, das Cantorsche
Diagonalisierungsverfahren, allgemein bekannt und findet sich in vielen Lehrbiichern, die
sich mit dem Aufbau der Zahlensysteme befassen (z. B. [3], [4]). Andere Codierungen von
abzdhlbaren Mengen treten vielerorts in der Logik und Berechenbarkeitstheorie auf, zum
Beispiel als Godelnummern, wenn es darum geht, sowohl die Zahlen selbst, als auch die
Funktionen, die man auf sie anwenden kann, in einem einzigen Bereich darzustellen. Ein
neueres Beispiel dafiir liefern Modelle fiir den A-Kalkiil [5], in denen die ganze Berechen-
barkeitstheorie behandelt werden kann. Dieses letzte Beispel ist insofern bemerkenswert,
als es eines der wenigen ist, in denen die explizite Form einer Bijektion zwischen N? und
N tiberhaupt eine Rolle spielt. Fiir das Standard-Modell wahlt man gerade ¢ ),.
Unter einer Codierung von IN* verstehen wir nun jede bijektive Abbildung IN* — N,
mithin eine Abbildung, die jedem k-Tupel (n,, ..., n,) von IN* in eindeutiger Art und Weise
eine Zahl ¢ zuordnet, die wir als Code von (n,, ..., n,) bezeichnen.
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Eine tibliche Form, Codierungen von IN* nach N zu definieren, besteht darin, einmal eine
Codierung < >, fir N? explizite anzugeben

_ (m+nm+n+1)

{n,my,: 5

und die Definition dann induktiv durch
yseeis My k1= KAy e s MO My 12

weiterzufiihren.

Wir geben hier eine Familie von Codierungen an, die im Gegensatz zu obiger Variante,
direkt aus der geometrischen Anschauung des Diagonalisierens gewonnen sind, und
iiberraschende Eigenschaften, zum Beispiel einfache Darstellungen fiir die Projektionen
IN¥*1  IN* aufweisen. Des weiteren lassen sich die einzelnen Koordinaten n; eines Punk-
tes aus IN* sehr leicht aus seinem Code bestimmen.

Codierung

Im Gegensatz zur iiblichen Methode aus einer Codierung der Ebene IN? durch wieder-
holtes Anwenden der Paarbildung héherdimensionale IN* zu codieren, gehen wir direkt
von der geometrischen Idee der Diagonalisierung aus, allerdings auch, indem wir eine
hoherdimensionale Codierung auf eine niedrigerdimensionale zuriickfiihren.

Um nun ausgehend von einer schon bekannten Codierung von N¥ auch N**1! zu codie-
ren, unterteilen wir den Raum N**!= {(n,, ..., n,,,): n, € N} in Hyperebenen mit kon-
stanter Koordinatensumme s=n, + ... +n,,,, und ordnen diese Hyperebenen aufstei-
gend nach der Koordinatensumme an. Den Code eines Punktes (1, ..., n,, n, . ;) € N¥*1
erhalten wir dann, indem wir die Anzahl aller Punkte, die in ursprungsndaheren Hyper-
ebenen (mit entsprechend kleiner Koordinatensumme) liegen, zdhlen und den Code des
Punktes (n,, ..., n,) € N* beziiglich der schon bekannten Codierung IN* dazu addieren.
Die folgende Definition soll dieses Vorgehen formal erfassen.

Definition 1. Wir definieren Funktionen { »,: N*—»N gemdiss

k L n+(i—1)
pyom = 3 (Z, ui ( ) (1)
Wir schauen an einem Beispiel, was diese Definition in der Dimension 3 liefert:
0,0, m>, = 0 N 0 N m _ m(m+1)(m+2)
0.0,mps =\, 2 3 - 6
m m+1 m+2 _ mim+1) mm+1)(m+2)

{m,0,0>, —-(1)+( ) )+< 3 ) =m+ 3 + 5

2 1 3m+2 2m(2m+1 3m@Bm+1)(3m+2
(m,m,m>3=(T)+( m2+ )+( m3 >=m+ m 5 )+ ( 6)( ).
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Wir betrachten einige Eigenschaften dieser Funktionen. Offenbar kann man die Funk-
tionen < ), darstellen mittels

2

ni+...+n+k
(nl,...,nk,nk+1)k+1=(n1,...,nk>k+( k+1 )

k+1

Mit den Abkiirzungen s; = }'j_, n;, die wir kiinftig als Partialsummen bezeichnen, erhalt
man als dquivalente dritte Darstellungsform:

gy, =4K85101+ <0, 50,4+ ... +<0,...,0,5. (3)
In dieser Form wird klar, dass bei fester Koordinatensumme s fiir einen Punkt
(ny, ..., n) gilt:

<n1, ...,n'+1,..., n,_l,..., nk>k> <n1,...,nj,..., nl,..-, nk>k. (4)

Dadurch kann man den Bereich der Codes von Punkten der Hyperebene mit konstanter
Koordinatensumme s angeben: Fiir alle Punkte mit Koordinatensumme s gilt

0, ..., 0,55 <<Nyy e M <45, 0,...,0. (5)

Ebenso werden Punkte mit grosserer Koordinatensumme auf grossere Nummern abge-
bildet:

(50,...,00,+1=<0,...,0,s+1),. (6)
Ist s, <s,, soist {ng,...,m) <{Npy.eo, My (7
Mit diesen Eigenschaften fillt der Beweis des folgenden Satzes nicht schwer.

Satz 2. Die Funktionen { »,: N*>NN gemdss Definition 1 bilden eine Familie von Codierun-
gen fiir N¥,

Wir fiihren den Beweis mit Induktion iiber die Dimension k der Codierung:
n
Offensichtlich ist (n;), =( ;) =n,, also ist { ), bijektiv. Dies liefert uns den Induk-

tionsanfang. Wir nehmen nun an, bis zur Dimension k seien alle Funktionen < ), bijektiv
und leiten daraus ab, dass dann auch < >,,, bijektiv und somit eine Codierung im
definierten Sinne ist.

Unter den obigen Voraussetzungen ist € >, ., injektiv:

Sei {Nyyeees My 1 Dke1=NYseees Mey 10K+ 1- Wegen (7) miissen die Koordinatensummen
libereinstimmen: s=s". Dann gilt wegen (2)

s+(k—1)
<n1;--’ank+1>k+1=<n1""’nk>k+< k >
s+ (k-1
=(n'1,...,n;‘)k+< (k ))=<n'1,...,n;¢+1>k+1
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also auch {ny,...,n = (ny,...,n», und aus der Induktionshypothese folgt n,=n; fir
1<i<k. Zum Schluss ergibt

! I3 ’ 4
nk+1=S"‘n1... —‘nk=s —nl"“ --._nk=nk+1

die Injektivitat von { >, .
{ Dx+1 ist auch surjektiv:
s+k
Eine Zahlung der k + 1-Tupel mit Koordinatensumme s ergibt ( " Moglichkeiten. Da

die Nummern dieser Punkte alle im Intervall [€0,...,0,5),4,,¢s,0,...,0>,.,] liegen,
das ebenfalls

s+k+1 s+k s+k

Zahlen enthdlt und < ), ., injektiv ist, muss es auch surjektiv sein. []

Decodierung

Wir betrachten nun ein Verfahren, um aus dem Code eines Punktes (n,, ..., n,) wieder die
einzelnen Koordinaten n; zuriickzugewinnen. Diese lassen sich aus dem Code auf (primi-
tiv) rekursive Weise berechnen. Wir geben eine Beschreibung dieses Algorithmus in
Pseudocode.

Algorithmus 3
1 function Decode (Dimension, Code) returns (n,,n,, ..., Apimension)
2 ¢ := Code
3 for i:= Dimension to 1 by —1 do
4 [:=0
I+(—-1)+1
5 while _ <c do
i
6 l:=1+1
7 endwhile
8 s;i=1
(si + (- 1))
9 ¢ i=¢C—
i
10 endfor
11 for i := Dimension to 2 by —1 do
12 n,-:=Si--S,-__1
13 endfor
14 nl = Sl
15 return (nl sPps--es nDimension)

16 endfunction Decode.
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Das wesentliche geschieht in den Zeilen 3 bis 10. Hier werden sukzessive die Zahlen
se=max{l:<0,...,0, 1D, < <ny,...,m}
Se-1=max{:<0,..., 0, D <y, midi— <0, ., 0, 50}
s; = max {I: €0,...,0,1D;, <<ny, ..., m D — f=i+1<0v~’ 0, 5,55}

berechnet. Ihre Bezeichnung soll darauf hinweisen, dass diese Maxima gerade mit den
Partialsummen iibereinstimmen. Wir konnen nidmlich aus den Gleichungen (2) und (6)
sowie der Ungleichung (5) die folgende Beziechung zusammensetzen:

s+Hk—1
(k k )=<Os°"709sk>kS<n1""9nk>k

+k
<{s,0,...,0%, =<0,...,0, sk+1>k—1=<s" )—1.

Man erhdlt also tatsdchlich s, als Maximum aller Zahlen, fiir die <0, ..., 0, [, = <l+k 1)
<Ny, ..., M, ist. k
Die s, werden der Reihe nach, beginnend mit k gleich der Dimension des codierten
Raumes IN*, behandelt. Gleichung (2) erlaubt uns, wenn wir ein s; gefunden haben, die
Decodierung mit dem neuen Code

<n1,...,ni_1>i_.1= <n1,..., n,-),-—- <0,...,0, Si>i

fortzusetzen. Dies geschieht im Algorithmus in Zeile 9.
Im zweiten Teil, von Zeilen 11 bis 14, wird dann noch das Gleichungssystem

Sl=n1

82 = nl + n2
Sk=n1+n2+-..+nk
nach den Koordinaten n; aufgelost.

Die folgende Tabelle stellt die Laufzeit ! der obigen Decodierungsfunktion angewandt auf
den Code n in der Dimension k dar.

! Die Laufzeiten wurden in allen Experimenten mit einem Modula-2-Programm, das fast wortlich Algorith-
mus 3 entspricht, auf einem IBM PS/2 gemessen. Die Masseinheit ist eine Hundertstelsekunde.
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n=100 1000 10 000 100 000 1000 000 10 000 000

k=2 0.19 0.41 1.20 4.61 14.41 43.96
3 0.19 0.32 0.57 1.28 3.15 6.56

4 0.21 0.30 0.57 1.06 1.78 3.81

5 0.27 0.38 0.57 0.82 1.39 2.03

6 0.32 0.40 0.60 1.06 145 2.27

7 0.40 0.49 0.76 1.15 1.45 2.03

8 0.45 0.65 0.76 1.12 1.44 1.86

9 0.54 0.70 1.01 1.14 1.72 2.79

10 0.62 0.65 0.87 1.33 1.97 2.33

Man stellt ein recht unregelmassiges Laufzeitverhalten fest. Dies liegt daran, dass es vor
allem von der Grosse Y 7_, s; bestimmt ist, da dies die Anzahl Schritte ist, in denen die
innerste Schleife des Algorithmus (Zeilen S bis 7) durchlaufen wird. Diese Grosse kann
aber von einem Code n (bei gleicher Dimension) zum darauf folgenden stark variieren.
Sie nimmt z.B. fiir n=<0, ..., 0, m)>, den Wert m an und firn—1={(m—1,0,...,0), den
Wert k(m— 1). Im allgemeinen ist es so, dass der Aufwand bei gleichbleibender Dimension
mit dem Code wichst, da grossere Codes auch grossere Koeffizientensummen haben.
Dieses Wachstum ist aber aus dem oben erwdhnten Grund nicht regelmaissig.

Wir werden uns im folgenden bemiihen, die Partialsummen s; auf direktere Art und Weise
zu bestimmen.

Fiir die Codierung von Paaren ¢ ), lassen sich die Koordinaten sehr direkt finden: Wir
wissen aus (5), dass {0, n, + n,»,<<{n;,n,y,<<{n,;+n,, 0>, ist. Also suchen wir eine

_ x(x+1)
Umkehrfunktion zu x +—

= (0, x),, was auf die Gleichung

fiihrt, welche in den natiirlichen Zahlen die folgende Losung hat:

SRty

9
: ©)
([ ] ist hier die Gauss’sche Klammer.) Also gilt
14114 84n,, 1
S=n1+n2=[ +l/ +2 <n1 n2>2:] (10)

und wir erhalten n, und n, als

n;=<0,>,—<ny,ny»,
ny=<_ny,n,5,—<s0),.
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Um dies auf eine beliebige Dimension k auszudehnen, miissten wir nun zu jedem k die
x+(k—1

Umkehrfunktion von x ( (k )) finden. Wir versuchen es mit einer Abschidtzung:

Mit (8) erhalten wir

x2<x(x+1)=2y <(x+1)?
und daraus ebenfalls die Umkehrfunktion (eingeschrankt auf natiirliche Zahlen), und es
ilt:
: s=ny+ny=[)/2<n;,n,),]. (11)
Diese Art der Abschidtzung konnen wir nun verallgemeinern:

Lemma 4. Es gilt

(x +n—;3—)n< x(x+1)...(x+(n—1))<(x+ n_—z:l)"

fiir n> 1. Dabei ist rechte Ungleichung fiir alle natiirlichen Zahlen x giiltig, die linke unter
der Bedingung x> (n—1)>.

Wir fiihren einen induktiven Beweis durch:
Offensichtlich gelten die Ungleichungen

(x—1H2<x(x+1) <(x+3)’

B<x(x+1)x+2) <(x+1)?

fiir alle x € N. Dies liefert uns den Induktionsanfang. Wir nehmen nun an, die Aussage
des Lemmas sei wahr fiir n, und erhalten

n

(x + n—;—l>n< x(x+1)...(x+(n—1)) (x+n)<(x+ —ri—;——l—)

indem wir die Induktionshypothese und x+1 statt x verwenden. Weiter gilt dann

n

(x+ n;l)"x(x+n+1)< x(x+1)...(x+n)(x+n+1)<(x+ _n_:;—_l) X(x+n+1).

Die gewiinschte Ungleichung

_ n+2 1 nt2
(x +_n__2__1_) < x(x+1)...(x+n+1)<(x+ f—-}—)
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gilt also, wenn nur

n—1)\? n+1\?
x + 5 <x(x+n+l)<|x+——} .

2
Die rechte Ungleichung ist immer erfiillt und die linke gilt, sobald x>1 (n— 12 O

Also kann man in den vielen Fillen die Partialsummen eines Codes {n,, ..., n,», wie folgt
abschitzen:

Satz 5. Fiir alle Partialsummen s; (1 <i<k) des Codes eines Punktes (n,,...,n,) gilt:
. i—1
si—1<ildng,...,np; — 5 (12)
i/ i—1 1 (; 2
ﬁ(nl,...,ni>i———2—<si+1 Jalls  s;> g (i—1)". (13)

Zum Beweis bemerken wir, dass
1 .
<0, cray Si>,- - —i—'—S,-(Si+1)... (S,+l—1)
ist. Nach Ungleichung (5) und dem obigen Lemma gelten also die Abschiatzungen

._1 i
i! <n1,...,ni>i<i! <0,...,S,+1>,=S,(Si+1)...(Si+i—-1)<(Si+1+l—2———>

und unter der Nebenbedingung s;>1 (i—1)? auch

._1 i
(si—1+l—2—) <il<0,...,0, s, <il{nyy...,n);.

Durch Ziehen der i-ten Wurzel folgt der Satz. O
Nachdem die s; bekannt sind, konnen aus ihnen wieder die Koordinaten »; berechnet

werden. Wir realisieren dieses Abschidtzungsverfahren in einer Variante des Algorith-
mus 3:

Algorithmus 6

1t function Decode 2 ( Dimension, Code) returns (n,, n,, .

2 ¢ := Code

L nDimension)
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3 for i:= Dimension to 1 by —1 do
. - i+ 1
4 l:=[,'/i!‘c—l—; ]
I+(G(—-1)+1
5 while(+(l ) )+ )Sc do
i
6 l[:=1+1
;) endwhile
8 Si = l
<S,-+(i-— 1))
9 c:=C— i
i
10 endfor
11 for i := Dimension to 2 by —1 do
12 ni = Si—-S,-._l
13 endfor
14 n1 = Sl
15 return (nl ’ n2’ ¥y nDimension)

16  endfunction Decode 2.

Dabei wurde / in Zeile 3 mit unserem Schéitzwert initialisiert. Wegen Satz 5 wissen wir,
dass die kritische Schleife (Zeilen 5 bis 7) nur in Ausnahmefillen mehr als zweimal
durchlaufen wird, ndmlich wenn der Wert von s; kleiner ist als £ (i— 1)2.

Hier die Resultate eines Experimentes fiir den verbesserten Algorithmus 6:

n=100 1000 10 000 100 000 1 000 000 10 000 000

k=2 0.15 0.10 0.13 0.16 0.15 0.16
3 0.21 0.26 0.27 0.21 0.26 0.27

4 0.37 0.38 0.37 0.37 0.38 0.37

3 0.54 0.52 0.54 0.52 0.51 0.51

6 0.68 0.70 0.71 0.71 0.73 0.73

7 0.90 0.90 1.01 0.93 0.92 0.93

8 1.14 1.14 1.15 1.17 1.18 1.20

9 1.36 1.42 1.42 1.44 1.42 1.41

10 1.67 1.67 1.72 1.72 1.72 1.75

Da der Berechnungsaufwand einer einzelnen Partialsumme s;, dank der meist gut zutref-
fenden Schitzung — falls die Nebenbedingung des Satzes erfiillt ist, kommen nur zwei
Zahlen fiir s; in Frage — praktisch konstant ist, hingt er praktisch nicht mehr vom Code
ab. Das Wachstum des Aufwandes in der Dimension war in diesem Experiment nur
wenig stirker als linear.
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Problem

Offen bleibt die Frage, ob ein analoges Verfahren gefunden werden kann, um &hnlich
regulire Codierungen von Z* anzugeben.

Mein Dank gilt den Herren J. Schmid und J. Binz, die mich bei der Ausarbeitung mit Rat
und Tat unterstiitzt haben, sowie dem Schweizerischen Nationalfonds.
M. Wymann-Boni, Math. Institut der Universitit Bern
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Maximal frequencies of elements in second-order linear
recurring sequences over a finite field

1. Introduction

Linear recurring sequences form a widely studied class of sequences of elements of a finite
field. They have a wealth of special properties such as periodicity properties. A general
exposition of the basic properties of linear recurring sequences over a finite field can be
found in [2, Chapter 8]. A lot of attention has been devoted to the problem of how the
elements of the underlying finite field are distributed over the period of a given linear
recurring sequence. Results on the distribution behavior of linear recurring sequences are
of interest in various applications, €.g. in algebraic coding theory and in the theory of
pseudorandom numbers; see [2, pages 462—464] for a brief survey of the theory and the
applications of distribution properties of linear recurring sequences over a finite field. In
this paper we are interested in the maximal number of occurrences of a field element in
a full period of a linear recurring sequence, and we shall deal mostly with the case of a
second-order linear recurring sequence.

Let F, be a finite field with g elements and characteristic p. Let w(a,b) = (w) be a
second-order linear recurring sequence over F, satisfying the relation

wn+2=awn+1~bwn (1)
with initial terms wq, w,. It is known (see [1, pages 344—345]) that if b & 0, then w(a, b)

is purely periodic. Throughout this paper we shall assume that b 4 0. The sequence
w(a, b) is called regular if the vectors (wy, w,) and (w,, w,) are linearly independent over
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