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(see [3,12.35]; of course, such an equation holds when p, q, r are not integers, except that
there may only be rational Solutions n). However, n is also related to g by

64h _ 4 4
12-p-2q-r+-+-

Q P r

(see [3,12.81]). In view of our independent calculations for g, this last equation yields an
alternative way of finding n.

P. McMullen, University College London
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Kanonische Codierungen von Nk

Als erster brauchte Georg Cantor eine Codierung von N2, d. h. eine Bijektion zwischen
N und N2. (Sie entspricht dem weiter unten angegebenen < >2.) Es gelang ihm, damit zu
beweisen, dass unendliche Mengen nicht durch endliches Anwenden des kartesischen
Produktes auf sich selbst vergrössert werden können, sondern eben immer dieselbe

Mächtigkeit behalten (siehe [1] oder [2]). Heute ist sein Verfahren, das Cantorsche

Diagonalisierungsverfahren, allgemein bekannt und findet sich in vielen Lehrbüchern, die
sich mit dem Aufbau der Zahlensysteme befassen (z.B. [3], [4]). Andere Codierungen von
abzählbaren Mengen treten vielerorts in der Logik und Berechenbarkeitstheorie auf, zum
Beispiel als Gödelnummern, wenn es darum geht, sowohl die Zahlen selbst, als auch die
Funktionen, die man auf sie anwenden kann, in einem einzigen Bereich darzustellen. Ein
neueres Beispiel dafür liefern Modelle für den A-Kalkül [5], in denen die ganze
Berechenbarkeitstheorie behandelt werden kann. Dieses letzte Beispel ist insofern bemerkenswert,
als es eines der wenigen ist, in denen die explizite Form einer Bijektion zwischen N2 und
N überhaupt eine Rolle spielt. Für das Standard-Modell wählt man gerade < >2.
Unter einer Codierung von Nk verstehen wir nun jede bijektive Abbildung N* -» M,
mithin eine Abbildung, die jedem fc-Tupel (nl9..., nk) von IN* in eindeutiger Art und Weise

eine Zahl c zuordnet, die wir als Code von (ni9..., nk) bezeichnen.
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Eine übliche Form, Codierungen von IN* nach N zu definieren, besteht dann, einmal eine
Codierung < >2 fur IN2 explizite anzugeben

(m + ri)(m + n + l)
(n,m}2 +n

und die Definition dann induktiv durch

<nx, ,nk+x}k + x =«n1? ,nk}k,nk + x}2

weiterzufuhren
Wir geben hier eine Familie von Codierungen an, die im Gegensatz zu obiger Variante,
direkt aus der geometrischen Anschauung des Diagonahsierens gewonnen sind, und
überraschende Eigenschaften, zum Beispiel einfache Darstellungen fur die Projektionen
jsj* +1 _? ]N\ aufweisen Des weiteren lassen sich die einzelnen Koordinaten nx eines Punktes

aus Nk sehr leicht aus seinem Code bestimmen

Codierung

Im Gegensatz zur üblichen Methode aus einer Codierung der Ebene IN2 durch wiederholtes

Anwenden der Paarbildung hoherdimensionale IN* zu codieren, gehen wir direkt
von der geometrischen Idee der Diagonahsierung aus, allerdings auch, indem wir eine
hoherdimensionale Codierung auf eine medngerdimensionale zurückfuhren
Um nun ausgehend von einer schon bekannten Codierung von N* auch N*+ * zu codieren,

unterteilen wir den Raum N* +1 {(nx, ,nk+x) n.eN} in Hyperebenen mit
konstanter Koordinatensumme s nx+ +nk + x, und ordnen diese Hyperebenen aufsteigend

nach der Koordinatensumme an Den Code eines Punktes (nx, nk, nk + x) e IN* + *

erhalten wir dann, indem wir die Anzahl aller Punkte, die in ursprungsnaheren
Hyperebenen (mit entsprechend kleiner Koordinatensumme) liegen, zahlen und den Code des

Punktes (nx, ,nk)e N* bezuglich der schon bekannten Codierung IN* dazu addieren
Die folgende Definition soll dieses Vorgehen formal erfassen

Definition 1. Wir definieren Funktionen < >k _N*-»]N gemäss

<.„ •*>.-.?,(s-Y*"") (1)

Wir schauen an einem Beispiel, was diese Definition in der Dimension 3 liefert

/0\ /0\ /m\ m(m+l)(m + 2)
<0,0(m>3 =(1j + (2) + f *

_ _v .m\ A"+l\ (m + 2\ m(m+l) m(m+l)(m + 2)
<m,0,0>3 +

2 J +
3 j =m + -^—+l / V 2 / V 3 / 2 6

N /m\ (2m+\\ /3m + 2\
<»,^»>,.(1j+( 2 )+[ 3 y

2m(2m+l) 3m(3m4-l)(3m-f 2)
;m+ +
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Wir betrachten einige Eigenschaften dieser Funktionen Offenbar kann man die
Funktionen < >k darstellen mittels

<nx, ,nk,nk + x>k+x=(nx, ,nk)k+l *

k +
1*+1 ^

Mit den Abkürzungen sx z\!j=in}> die wir künftig als Partialsummen bezeichnen, erhalt
man als äquivalente dritte Darstellungsform

<nx, ,nk\ <*!>_+<0,s2>2+ + <0, ,0,sk\ (3)

In dieser Form wird klar, dass bei fester Koordinatensumme 9 fur einen Punkt
(nx, nk) gilt

(nx, ,n, + l, ,n,-l, ,nkyk><nx, n., ,nx, nk>k (4)

Dadurch kann man den Bereich der Codes von Punkten der Hyperebene mit konstanter
Koordinatensumme s angeben Fur alle Punkte mit Koordinatensumme s gilt

<0, ,0,s>k <_<*!, ,nk>k<<[s,0, ,0}k (5)

Ebenso werden Punkte mit grosserer Koordinatensumme auf grossere Nummern
abgebildet

<s,0, ,0>k + l <0, ,0,s + l>k (6)

Ist sk<s'k, so ist <nl5 ,nk>k<<n;, nk>k (7)

Mit diesen Eigenschaften fallt der Beweis des folgenden Satzes nicht schwer

Satz 2. Die Funktionen < >k IN*->IN gemäss Definition 1 bilden eine Familie von Codierungen

für IN*

Wir fuhren den Beweis mit Induktion uber die Dimension k der Codierung
/nx\

Offensichtlich ist <n1>1=I 1 =nx, also ist < }x bijektiv Dies liefert uns den

Induktionsanfang Wir nehmen nun an, bis zur Dimension k seien alle Funktionen < >, bijektiv
und leiten daraus ab, dass dann auch < >k+1 bijektiv und somit eine Codierung im
definierten Sinne ist

Unter den obigen Voraussetzungen ist < >k+1 injektiv
Sei <nx, ,nk+x}k+x= <n'x, n'k + x>k + x Wegen (7) müssen die Koordinatensummen
übereinstimmen s s' Dann gilt wegen (2)

<»i> ,«„ + i>* + i =<"i> ,«*>* +
k

I

,v /s'+(fc-l)\
<"l> Ok + I

k
<«!. >"*+l>k+l



El Math Vol 46, 1991 133

also auch <{nx, nk}k <[n'x, nk>k und aus der Induktionshypothese folgt nx n'x fur
1 < i < k Zum Schluss ergibt

nk + i s-nx -nk s'-n'x- -n'k n'k+x

die Injektivität von < >k+1

< >k+1 ist auch surjektiv
/s + k\

Eine Zahlung der k +1-Tupel mit Koordinatensumme s ergibt I Möglichkeiten Da

die Nummern dieser Punkte alle im Intervall [<0, 0, s>k + 1, <s, 0, 0>k+1] liegen,
das ebenfalls

/„ r, v fs + k+l\ /s + k\ (s + k
<o, ,o)S+i>t+1-<o, ,a.>.+1=( fc+1 )-{k+l) {k

Zahlen enthalt und < >k+1 injektiv ist, muss es auch surjektiv sein

Decodierung

Wir betrachten nun ein Verfahren, um aus dem Code eines Punktes (nx, nk) wieder die
einzelnen Koordinaten nx zurückzugewinnen Diese lassen sich aus dem Code auf (primitiv)

rekursive Weise berechnen Wir geben eine Beschreibung dieses Algorithmus m
Pseudocode

Algorithmus 3

i function Decode (Dimension, Code) returns (nx,n2, »«Dimension)

2 c Code

3

4

7

8

9

10

u for / Dimension to 2 by — 1 do

12 nx =sx-sx_x
13 endfor
14 nx sx

is return (nl9n2, ,nDimension)

16 endfunction Decode

for i Dimension to 1 by --1 do

ll°('+('-i,+i) < c do

\ * /
/ =/+i

endwhile

s, =/
c =C l i

endfoi
\ ' J
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Das wesentliche geschieht in den Zeilen 3 bis 10. Hier werden sukzessive die Zahlen

sk max {/: <0,..., 0, />k < {nx,..., nk>k}

sk_t max{/: <0,..., 0, />k_! < <n1?..., nk>k- <0,..., 0, sk>k}

sx max{l:(0,...,0,l)x<<:nx,...,nkyk-^k=x+x<:0,...,0,sJ}J}

berechnet. Ihre Bezeichnung soll darauf hinweisen, dass diese Maxima gerade mit den
Partialsummen übereinstimmen. Wir können nämlich aus den Gleichungen (2) und (6)
sowie der Ungleichung (5) die folgende Beziehung zusammensetzen:

Su + k—1\
k

<0,...,0,sk>k<<n1,...,nk>k

<<Sk,o,...,o>k <o,...,o,Sk+i>k-i ^/c')-i.
/l+k-i

Man erhält also tatsächlich sk als Maximum aller Zahlen, für die <0,..., 0, />k I

<(nx,...,nkykist V k

Die sk werden der Reihe nach, beginnend mit k gleich der Dimension des codierten
Raumes N*, behandelt. Gleichung (2) erlaubt uns, wenn wir ein sx gefunden haben, die

Decodierung mit dem neuen Code

(nx,..., nx_ !>,_!= <nx,..., nt>, - <0,..., 0, sxyx

fortzusetzen. Dies geschieht im Algorithmus in Zeile 9.

Im zweiten Teil, von Zeilen 11 bis 14, wird dann noch das Gleichungssystem

sx nx

s2=nx + n2

sk nx + n2+... + nk

nach den Koordinaten nx aufgelöst.
Die folgende Tabelle stellt die Laufzeit * der obigen Decodierungsfunktion angewandt auf
den Code n in der Dimension k dar.

1 Die Laufzeiten wurden in allen Experimenten mit emem Modula-2-Programm, das fast wörtlich Algonthmus

3 entspricht, auf einem IBM PS/2 gemessen Die Masseinheit ist eine Hundertstelsekunde
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n 100 1000 10 000 100 000 1000 000 10 000 000

fc 2 019 041 120 4 61 14 41 43 96
3 019 0 32 0 57 128 315 6 56

4 021 0 30 0 57 106 178 3 81

5 0 27 0 38 0 57 0 82 139 2 03
6 0 32 040 0 60 106 145 2 27

7 040 049 0 76 115 145 203
8 0 45 0 65 0 76 112 144 186
9 0 54 0 70 101 114 172 2 79

10 0 62 0 65 0 87 133 197 2 33

Man stellt ein recht unregelmassiges Laufzeitverhalten fest Dies hegt daran, dass es vor
allem von der Grosse £?= x sx bestimmt ist, da dies die Anzahl Schritte ist, in denen die

innerste Schleife des Algorithmus (Zeilen 5 bis 7) durchlaufen wird Diese Grosse kann
aber von einem Code n (bei gleicher Dimension) zum darauf folgenden stark variieren
Sie nimmt z B fur n <0, 0, m>k den Wert m an und fur n — 1 <m — 1,0, 0>k den
Wert k(m— 1) Im allgemeinen ist es so, dass der Aufwand bei gleichbleibender Dimension
mit dem Code wachst, da grossere Codes auch grossere Koeffizientensummen haben
Dieses Wachstum ist aber aus dem oben erwähnten Grund nicht regelmassig

Wir werden uns im folgenden bemuhen, die Partialsummen sx auf direktere Art und Weise

zu bestimmen
Fur die Codierung von Paaren < >2 lassen sich die Koordinaten sehr direkt finden Wir
wissen aus (5), dass <0, nx + n2>2<<n1, n2>2< <n1-hn2,0>2 ist Also suchen wir eine

x(x + l)
<0, x>2, was auf die GleichungUmkehrfunktion zuxh

x(x + l) 2y (8)

fuhrt, welche in den natürlichen Zahlen die folgende Losung hat

r-i+i/i+8jn (9)

([ ] ist hier die Gauss'sche Klammer) Also gilt

; "l + "2
-l+]/l+%{nx,n2y2

(10)

und wir erhalten nx und n2 als

w1=<0,s>2-<n1,n2>2

n2=<nx,n2y2-<[s90y2
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Um dies auf eine beliebige Dimension k auszudehnen, müssten wir nun zu jedem k die

fx + (k-l)\Umkehrfunktion von xk J finden. Wir versuchen es mit einer Abschätzung:

Mit (8) erhalten wir

x2<x(x + l) 2y<(x + l)2

und daraus ebenfalls die Umkehrfunktion (eingeschränkt auf natürliche Zahlen), und es

gilt:
s n1 + n2=[|/2<n1,n2>2]. (11)

Diese Art der Abschätzung können wir nun verallgemeinern:

Lemma 4. Es gilt

n — 3\n n — lV
x+——) <x(x + l)...(x + (n-l))< x +

2 / v ' v v " \ 2

für n> 1. Dabei ist rechte Ungleichung für alle natürlichen Zahlen x gültig, die linke unter

¦fder Bedingung x > | (n — l)2.

Wir führen einen induktiven Beweis durch:

Offensichtlich gelten die Ungleichungen

(x-|)2<x(x + l) <(x+\?
x3<x(x + l)(x + 2)<(x + l)3

für alle x e N. Dies liefert uns den Induktionsanfang. Wir nehmen nun an, die Aussage
des Lemmas sei wahr für n, und erhalten

n—1V / n +1V
x + -—--- <x(x + l)...(x + (n-l))(x + n)< x +

2 ' v v 7/ v ' V 2

indem wir die Induktionshypothese und x +1 statt x verwenden. Weiter gilt dann

n-lV / n+lV
x + —— ]x(x + n + l)<x(x + l)...(x + n)(x + n + l)<(x+-—— I x(x + n-hl).

Die gewünschte Ungleichung

/ n-lV+2 / n + lV+2
(X + ~2~j <x(x + 1) •••(* + » + *)<( *+-2~)



El Math Vol 46, 1991 137

gilt also, wenn nur

n-lV / n + 1^2
x + -^r~ I <x(x + n + l)<lx+-—-

Die rechte Ungleichung ist immer erfüllt und die linke gilt, sobald x>|(n —l)2.

Also kann man in den vielen Fällen die Partialsummen eines Codes <n1?..., nk>k wie folgt
abschätzen:

Satz 5. Für alle Partialsummen sx (1 <i<k) des Codes eines Punktes (nx, ...,nk) gilt

s-l<lji\(nx,...,nxyx-1-^- (12)

^Ji\inx,...,nxyx-l^-<sx + l falls sx>±(i-l)2. (13)

Zum Beweis bemerken wir, dass

1

<0,...,sxyx -sx(sx + l)...(sx + i-l)
V.

ist. Nach Ungleichung (5) und dem obigen Lemma gelten also die Abschätzungen

i\<:nx,...,nxyx<i\<:0,...,sx + iyx sx(sx + l)...(sx + i-l)< [sx + l +
2

und unter der Nebenbedingung s->|(i —l)2 auch

sI-l + ^-J<i!<0,...,0,sl>I</!<n1,...,nlX.

Durch Ziehen der i-ten Wurzel folgt der Satz.

Nachdem die sx bekannt sind, können aus ihnen wieder die Koordinaten n{ berechnet
werden. Wir realisieren dieses Abschätzungsverfahren in einer Variante des Algorithmus

3:

Algorithmus 6

i function Decode2 (Dimension, Code) returns (nx,n2,...,nDimemwn)

i c := Code
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10

ll
12

13

14

15

16

for i := Dimension to 1 by — 1 do

while < c do

l:=l+l
endwhile

5,:=/
'«, + (*-1)>

i
endfor

for / := Dimension to 2 by — 1 do

endfor

nx:=sx
return (nx, n2,..., nDimension)

endfunction Decode 2.

c := c-

Dabei wurde / in Zeile 3 mit unserem Schätzwert initialisiert. Wegen Satz 5 wissen wir,
dass die kritische Schleife (Zeilen 5 bis 7) nur in Ausnahmefällen mehr als zweimal
durchlaufen wird, nämlich wenn der Wert von st kleiner ist als | (/—l)2.
Hier die Resultate eines Experimentes für den verbesserten Algorithmus 6:

« 100 1000 10 000 100 000 1 000 000 10 000 000

k=2 0.15 0.10 0.13 0.16 0.15 0.16
3 0.21 0.26 0.27 0.21 0.26 0.27
4 0.37 0.38 0.37 0.37 0.38 0.37
5 0.54 0.52 0.54 0.52 0.51 0.51
6 0.68 0.70 0.71 0.71 0.73 0.73
7 0.90 0.90 1.01 0.93 0.92 0.93
8 1.14 1.14 1.15 1.17 1.18 1.20
9 1.36 1.42 1.42 1.44 1.42 1.41

10 1.67 1.67 1.72 1.72 1.72 1.75

Da der Berechnungsaufwand einer einzelnen Partialsumme si9 dank der meist gut
zutreffenden Schätzung - falls die Nebenbedingung des Satzes erfüllt ist, kommen nur zwei
Zahlen für st in Frage - praktisch konstant ist, hängt er praktisch nicht mehr vom Code
ab. Das Wachstum des Aufwandes in der Dimension war in diesem Experiment nur
wenig stärker als hnear.
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Problem

Offen bleibt die Frage, ob ein analoges Verfahren gefunden werden kann, um ähnlich
reguläre Codierungen von _Z* anzugeben.

Mein Dank gilt den Herren J. Schmid und J. Binz, die mich bei der Ausarbeitung mit Rat
und Tat unterstützt haben, sowie dem Schweizerischen Nationalfonds.

M. Wymann-Böni, Math. Institut der Universität Bern
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Maximal frequencies of elements in second-order linear
recurring sequences over a finite field

1. Introduction

Linear recurring sequences form a widely studied class of sequences of elements ofa finite
field. They have a wealth of special properties such as periodicity properties. A general
exposition of the basic properties of linear recurring sequences over a finite field can be

found in [2, Chapter 8]. A lot of attention has been devoted to the problem of how the
elements of the underlying finite field are distributed over the period of a given linear
recurring sequence. Results on the distribution behavior of linear recurring sequences are
of interest in various apphcations, e.g. in algebraic coding theory and in the theory of
pseudorandom numbers; see [2, pages 462-464] for a brief survey of the theory and the

apphcations of distribution properties of linear recurring sequences over a finite field. In
this paper we are interested in the maximal number of occurrences of a field element in
a füll period of a linear recurring sequence, and we shall deal mostly with the case of a
second-order linear recurring sequence.
Let F_ be a finite field with q elements and characteristic p. Let w(a,b) (w) be a

second-order linear recurring sequence over Fq satisfying the relation

w„+2 öwfl+1-bw„ (1)

with initial terms w0, wx. It is known (see [1, pages 344-345]) that if b + 0, then w(a,b)
is purely periodic. Throughout this paper we shall assume that b + 0. The sequence
w(a9b) is called regulär if the vectors (w09wx) and (wX9w2) are linearly independent over
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