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The order of a finite Coxeter group

Abstract. The Brianchon-Gram theorem leads to purely elementary calculations for the
order of the finite orthogonal groups generated by reflexions in hyperplanes, and for the
densities of the regular 4-dimensional star-polytopes.

1. Introduction

Let G be a finite group generated by reflexions in hyperplanes or mirrors in n-dimensional
euclidean space E". These hyperplanes must contain a common point; if we take this
point to be the origin o of coordinates, then G is an orthogonal group.

The images under G of the mirrors of the generated reflexions R; dissect the space E" into
congruent convex cones, which are fundamental regions for G, and whose number is
obviously the order | G| of G. Thus, to find | G|, it is only necessary to count these cones,
or, equivalently, measure their normalized volumes or angles. However, therein lies a
problem, since if n>4, no strictly elementary way of doing this has been available
hitherto.

Let us assume that G is irreducible, that is, acts irreducible on E". Then it is well known
(see [3, Chapter 11]) that G is generated by precisely n reflexions, whose mirrors may be
chosen to bound any one of the fundamental cones in the dissection of E” just described.
If these mirrors are H,, ..., H,, then for 1 <j<k<n, the dihedral angle between H; and
H, is n/p;, for some integer p;; >2, and if R; is the reflexion in H;(j=1, ..., n), then G has
the presentation

G=<(Ry,...,R,|(RRW*=E(1<j<k<n)),

where p;;=1for 1 <j< <n, and E is the identity. Abstract groups with such presentations
are known as Coxeter groups; Coxeter has shown (see [22]) that all finite Coxeter groups
are, in fact, isomorphic to reflexion groups (there is actually a more general result than
this, but we only need this case).

It is useful to denote G by its Coxeter diagram (see [3, 11.3]), which is a graph with a node
corresponding to each reflexion R; or mirror H;, with nodes j and k joined by a branch
labelled p;, if the dihedral angle between H; and H, is n/p;,; this formulation will later
permit fractional labels p;, > 1. It is customary to omit branches labelled 2, and, because
of their frequency, to omit labels 3 on branches. The condition that G be irreducible is
just that its Coxeter diagram be connected; if G is reducible, then it is the direct product
of the reflexion groups corresponding to the connected components of the Coxeter
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diagram. As an example (which we shall use in Section 3 below), the Coxeter diagram of
the infinite group T,=[3%%%] is

Let us briefly survey the currently known methods for calculating the order |G| of G.
First, we may associate with G a convex polytype, the numbers of whose faces of various
kinds are the indices [G: H] of certain subgroups H of G which are also generated by
reflexions. If n is odd, then Euler’s theorem (see, for example, [5, Chapter 8]) and the
knowledge of the orders | H| will yield |G| (see also the remarks in Section 4 below), so
that the actual polytope need not be constructed. When n is even, so that Euler’s theorem
on its own can only yield the ratios of the numbers of faces, a suitable polytope can often
be constructed by synthetic methods, and again the value of |G| results. (From an
historical point of view, of course, reflexion groups arise from polytopes, rather than other
way round.) In fact, various simplex dissection results (for examples, see Section 5 below;
see also [4], which contains many other useful references), enable us to avoid such
arguments in all but a very few cases; unfortunately, such cases are the most interest-
ing.

Second, for n=4, the order of the symmetry group of a regular polytope (which excludes
only one of the five cases, and this is in any event a subgroup of index 2 in one of the
others) can be calculated with the aid of a solution of a certain trigonometrical equation
(see Section 6). An alternative method involves the evaluation of certain integrals due to
Schléfli; since the most relevant one of these cannot be evaluated directly, recourse must
be had once more to the simplex dissection results (again, see [4]).

Finally, for other even n>6 (n=6 and n=28 are the only important cases), the group G
can be associated with a honeycomb, and | G| can be found from the relative numbers of
faces of this honeycomb. However, none of these last three methods is elementary; in
particular, the last depends upon the somewhat deep result (see [3, 9.8]) that these relative
numbers exist, and that the analogue of Euler’s theorem holds for them. (A variant of this
technique appears in [1], but it is used there with knowledge of the order of the group
[3, 3, 5] to calculate the densities of the regular 4-dimensional star-polytopes. It is de-
scribed in [3] as resting «on rather flimsy foundations»; however, see Section 5 below. The
Schifli function provides an alternative approach to calculating the densities; see [4] once
more.)

The method which we shall describe here is, in a vague sense, related to the last of these
methods (we shall make the connexion more explicit later), but the result to which we
shall appeal (the Brianchon-Gram theorem) relies only on the ordinary Euler theorem
(in E*~'). We shall give this result, and a closely related one, in Section 2, and then apply
them to our problem of determining the orders of reflexion groups in the following
Sections.
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It 1s worth making an additional remark at this stage. Our calculations will be purely
geometric; in other words, though we often use the language of group theory, we do not
really make use of the fact that the cones whose sizes we find are the fundamental regions
of groups. What we do use is the fact that certain hyperplanes, with given angles between
them, determine either simplicial cones or finite euclidean simplices; the criteria which
must be satisfied (the Schéfli determinant condition, for which see [3, 7.7]; we shall take
its particular applications for granted) pay no regard to whether the reflexions in these

hyperplanes generate a finite or discrete group. We shall refer to this again several times
later.

2. Two angle-sum relations

Let K be an n-dimensional polyhedral set in E*, and let F be a non-empty face of K. The
(inner) angle o(F, K) of K at F is that proportion of a sufficiently small ball centred at a
relatively interior point x of F which lies in K:

.. V(B(x,9nK)
(F K) = m = B(x. 0)

where B(x, g) is the ball of radius ¢ >0 with centre x, and V denotes volume. We shall
employ two angle-sum relations:

Theorem 1 (Brianchon-Gram). If n>1 and P is an n-polytope in E", then

Z(=)i"Fa(FP)=0.
F

Theorem 2 (Sommerville). If C is a polyhedral cone in E", then
> (=) Fa(F, C) = (—1)"a(4, O),
F

where A is the face of apices of C.

In both theorems, the sums extend over all non-empty faces F.

A common generalization of these theorems to arbitrary polyhedral sets is proved in [7];
it is perhaps worth noting that there it is made clear that the results hold on the level of
equidissectability (in Sommerville’s theorem, the cone C must be replaced by its negative
on the right of the equation). Further details about the background to these results can
be found there and in [5, 14.1]; for an easy proof of Theorem 1, see [8]. In our applications,
a cone C will always be pointed (with a single apex).

3. The crystallographic groups

We call a reflexion group G crystallographic if G is a subgroup of an infinite discrete group
G generated by reflexions (in the same space). Similar considerations to those in Section 1
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apply, and the mirrors of all the reflexions in G dissect E" into fundamental regions, which
are simplices if G (or even G) is irreducible. We shall apply Theorem 1 to these simplices.
Let T be such a simplex, bounded by the hyperplanes Hy, ..., H,, which are the mirrors
of the reflexions R,, ..., R,. We shall always be able to suppose that G=(R,, ..., R, ),
and that any subgroups generated by other proper subsets of the R; are isomorphic to
subgroups of G (that is, that G is the special subgroup of G in the sense of [3, p. 191]); some
of these subgroups may actually be isomorphic to G itself. In any event, for each proper
subset J < N:={0,...,n}, G;:=<R;|jeJ) is a finite subgroup of G, which leaves
invariant the flat H, := () {H;|j e J}, and hence the face T; := H; n T of T.(The discrete-
ness of G ensures that all these subgroups G, are actually finite, but we emphasize once
again that we shall be performing pure angle calculations, which do not depend on this
discreteness.)

Let us write g, := | G,|. The discussion of Section 1, and the definition of angle in Sec-
tion 2, show at once:

Lemma 1. For each J = N,

1
a(’I:b T) =
94

Note here that for the case J=@, we have Ty=T and gy=1. Theorem 1 and Lemma 1
yield at once:

Theorem 3. Let G be an irreducible discrete infinite reflexion group in E", with generating
reflexions Ry, ..., R, in the bounding hyperplanes of its fundamental region T. For each
J N, let G;:=<{R;|je ), and let g;:=|G;|. Then

__q)cardJ
Z (__L_ =0.
J 95

We shall only give three examples of this result, because although its character is elemen-
tary, the calculations involved in its application are lengthy (in n-dimensions, there are
2"*1_1 terms in the expression above). The interested reader will easily determine which
infinite discrete reflexion group has a given finite crystallographic reflexion group as its
special subgroup (the list in [3, Table IV] is arranged to make this straightforward). Let
us find the orders of the groups [3, 3, 4], [3, 4, 3] and E (we use the notation of [3] here
and elsewhere). (We should remark that the order of [3, 3, 4] can be found more simply
with the aid of the generic simplex dissection results we shall discuss later; [3, 4, 3] can be
dealt with by another generic simplex dissection which we shall not need here, but Eg
provides a problem of a deeper kind.)

First, [3, 3, 4] is the special subgroup of the group [4, 3, 3, 4]. Applying Theorem 3 to the
simplex
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yields for the order g:

2+2+1 2 1 4 2 1+2+2+6 5+1—0
g 9 64 48 24 16 12 8 8 6 4 2

(We have substituted in the (assumed known) orders of the lower-dimensional groups,
and used the fact that disconnected Coxeter graphs correspond to direct products; see
Section 1.) From this easily follows g=384.

In turn, [3, 4, 3] is the special subgroup of [3, 3, 4, 3]. Theorem 3 applied to the simplex

. » S >~——o
yields for the order g:

1t 7+ 1t 1 1 2 1 1 5 1 1 3 6 5

e e ey e ek = 0,
g 384 96 36 48 48 24 16 12 8 8 6 4 2

from which follows g=1152.

Finally, we come to E4=[3%'%'!]. This is the special subgroup of T, = [3%'%'2] (see Sec-
tion 1 for its diagram), and assuming that we have already found the orders of the
lower-dimensional groups (| 4,|=(k+1)! and |B,|=2*"!'-k! for k=4 or 5 are the only
extra orders we need; see [3, Table 1V]), the order g satisfies

3 3 1 3 6 3 6 3 6 3 1 15 9 1

771440 T216 720 72 1920 240 96 1120 736 192 124 a8 16

6 18 11+6+15 7+1_0
24 12 8 6 4 2 7

which yields g=72.6!.

4. The odd dimensional case

If the dimension n is odd, then Theorem 2 gives us an alternative approach, because for
an n-dimensional pointed polyhedral cone C with apex o, it states

1 .
a({o}, C)=-2— > (=1 a(F C).

F # {0}

(When n is even, the terms a ({0}, C) in which we are interested cancel.) The implication
for groups is:

Theorem 4. Let n be odd, and let G={R,, ..., R,) be a finite reflection group of order
g=|G|. For each J= N={1,...,n} let G;=(R;|je J) and g,=|G,|. Then

1 (_l)cardl
15 6
JeN 9

1
9
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For example, if n=3, p, q are integers, and G, , has Coxeter diagram

*>-——e——s
p q

then g, ,=|G, .| is given by
o _1ft 1.1 3
doa 2 12p 29 4 2

1 1+1 1
"4 0p q 2|

a formula familiar from [3, 5.43]. We stress here that, if we interpret the left side of this
expression as an angle, we do not actually have to assume that p and q are integers (or
even rationals).

5. The group [3, 3, 5]

The non-crystallographic reflexion groups were not dealt with in the preceding sections.
However, the only group which actually escaped our treatment was [3, 3, 5], the group
of the regular 120-cell (or 600-cell) in E*. We shall now see that even this group is
amenable to our approach; as a bonus, we shall also be able to calculate the densities of
the regular star-polytopes in E*. (The precise geometric meaning of density is defined in
[3, page 94], and we shall not concern ourselves with it overmuch. In any event, we are
performing pure angle computations.)

For convenience, let us denote by S(p,, ..., p,—,) the simplicial cone or simplex

r——— — - — - ————@
P Pn-1
and let a(py, ..., p,— ;) denote its angle (which is taken as O for a euclidean simplex). (We

shall only use the cases n=4 or 5. Our basic result, which is just Theorem 1 with
substitution for the angles of products of cones of dimension at most 3, is:

Theorem 5. Let S(p, q, r, s) be a euclidean 4-simplex. Then

101 1 1 1 2
“(P,q,r)-i'd(q,r,s):—-s— ;+'&'+;‘+‘;_‘5§—1 .

(The result of [1] which Coxeter held in [3, Chapter XIV] to «rest on rather flimsy founda-
tions» is basically this, interpreted in terms of orders of groups and densities.)

We now apply Theorem 5 to various simplices arising in the dissection of E* by the
fundamental cones of [3, 3, 5]. But first we need some simplex dissection results; we refer
to these as generic, because they do not depend on our working in any particular group
(in fact, the simplices involved do not have to correspond to any group). Those we use
all occur in [4].
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Theorem 6. Let p>2. Then

a) a (3, p, —g) =4ua(3, 3, p).

b) « (p, g, p) =6a(3, 3, p).

To see this, we merely observe that the simplicial cone whose dihedral angles are all 2 /p
can be dissected into 24 cones S(3, 3, p), 6 cones S (3, D, £>, or 4 cones S (p, B, p). The
result follows at once. [ 2 2
As a useful convention, whenever p>1 we shall define p’ by

1 1

p p
Then we have

Theorem 7. Let C be the simplicial cone in E* with dihedral angles n/p;; (1 <j<k<4), and
let C' be the cone obtained by replacing p;, by pj, for j=1,2, 3. Then

1 1 1 1
2 (C)+a(C) =— + + —1>.
4 (P12 Pis DPas

The two cones C and C’ fit together along their common 4th face, to form the product
of a line with a 3-dimensional cone D whose dihedral angles are n/p;;for 1 <j <k <3. Thus
a(C)+ a(C’) is the angle of this product cone, which is just that of D, and so the number
given in the theorem. []

We shall need two consequences of Theorem 7.

Corollary 7.1
1 {1 1 1
a(p, g, 1) =7 {;"‘E‘"z—} —a(p, g, 7).
Corollary 7.2
(p.q,r)=0a( )+1 S
s 4 » = yq, T XA T (*
x(p,q,r)=alp, q 412 ¢

Corollary 7.1 is a direct application of Theorem 7, which also yields

1 1

1 (1
' _d 4 _____1 . , r’
a(p,q,r) 4{p+2+2 } a(p, q,7)

and Corollary 7.2 follows at once from Corollary 7.1. []
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We now employ these results to calculate g :=|[3, 3, 5]| and the densities of the related
regular star-polytopes. We begin by defining two numbers d, and d, by

@(,3,5) =d,a(3,3,5),
«(3,3,)=d,a(3,3,9).

It is worth stressing at this point that we shall make no prior assumption that d, or d,
is even rational, let alone an integer. (Of course, [6] shows that they must both be integers,
because the regular star-polytopes {3, 3, 5} and {3, 3, 3} have the same symmetry group
[3, 3, 5] as {3, 3, 5}, but that paper is completely independent of the present one.) We shall
take for granted [3, 14.14], which we can read as saying that certain simplices are
euclidean.

Since the simplex S(%, 3, 3, 5) is euclidean, we have

1(2 11 1 4
3,3, +0(3,3,5) =< { =ttt 1,
2(,3,3) +2G,3,9) 8{5+3+3+5 25 }

and hence

d,+1 1 192

g 75 14400°

Next, the simplex S(3, 2, 5, 3) is euclidean, and so

’2’

1(1 2 1 1 2 1
“(3’2’5”“(3’5’%):?{?+§+§+T§“l}=—1so'
Now,

s 4
#(3,5,3) = 42(,3,5) =

from Theorem 6, while

1 {1 2 1
0((3, 2° )=z {_+*-_}_a(39 24

375 2
7

- —44(3,3,3
120 4

_ 1 44,
120 g’

from Corollary 7.1 and Theorem 6. Substituting, we have

d,-1 1 (7 11 19 19
g 4120 180( 1440 14400
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We deduce immediately that g=14 400 and d, =191.
If we write

d(p,q,r)=go(p, q,r)=14400a(p, g, 1)

for the density of S(p, g, r) (for appropriate p, g, r), we have the obvious values

d(3,5,3) =4

s, 3,5 =

from Theorem 6, while that result and Corollaries 7.1 and 7.2 yield

1 4

1
di,5, 3 =14 400{cx(§, 2, §)+Z[E“§]} = 6d,—1080 = 66,

@, *

’2’

7
5) =14 400 — — 4d, = 76,
) 120 .

where in the last equation we have not repeated our previous calculations.
It remains to find d,. Since the simplex S(3, 3, 5, 3) is euclidean, we have

1{2 1 1 2 8 1
a(§,3,5)+a(3,5,%)=—§{§+§+g+§—2—5-—-1}=—‘f.5,
and hence

1
=14 400 ———4 = 20.
d 0 600

This completes our calculations. We may observe that we have not used the euclidean

simplices S(5 5,2,5) or $(5, 3,2, 5), which yield no new information.

6. The Petrie polygon

We end by briefly discussing the trigonometric calculation for g when n =4 mentioned in
Section 1. The length h of the Petrie polygon (see [3, 12.4] for the definition) of the regular
convex polytope {p, g, r} is the integer solution of the equation

, T , 7 , T , T ,T LT
cos? — — cos?— )| cos?——cos?— ) = cos?— cos?—
h P h r h q
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(see [3, 12.35]; of course, such an equation holds when p, g, r are not integers, except that
there may only be rational solutions h). However, h is also related to g by

64 h 4 4
——=12—p-2q—-r+—+—
g p r

(see [3, 12.81]). In view of our independent calculations for g, this last equation yields an
alternative way of finding h.

P. McMullen, University College London
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Kanonische Codierungen von IN*

Als erster brauchte Georg Cantor eine Codierung von N2, d.h. eine Bijektion zwischen
N und IN?. (Sie entspricht dem weiter unten angegebenen { ),.) Es gelang ihm, damit zu
beweisen, dass unendliche Mengen nicht durch endliches Anwenden des kartesischen
Produktes auf sich selbst vergrossert werden konnen, sondern eben immer dieselbe
Michtigkeit behalten (siehe [1] oder [2]). Heute ist sein Verfahren, das Cantorsche
Diagonalisierungsverfahren, allgemein bekannt und findet sich in vielen Lehrbiichern, die
sich mit dem Aufbau der Zahlensysteme befassen (z. B. [3], [4]). Andere Codierungen von
abzdhlbaren Mengen treten vielerorts in der Logik und Berechenbarkeitstheorie auf, zum
Beispiel als Godelnummern, wenn es darum geht, sowohl die Zahlen selbst, als auch die
Funktionen, die man auf sie anwenden kann, in einem einzigen Bereich darzustellen. Ein
neueres Beispiel dafiir liefern Modelle fiir den A-Kalkiil [5], in denen die ganze Berechen-
barkeitstheorie behandelt werden kann. Dieses letzte Beispel ist insofern bemerkenswert,
als es eines der wenigen ist, in denen die explizite Form einer Bijektion zwischen N? und
N tiberhaupt eine Rolle spielt. Fiir das Standard-Modell wahlt man gerade ¢ ),.
Unter einer Codierung von IN* verstehen wir nun jede bijektive Abbildung IN* — N,
mithin eine Abbildung, die jedem k-Tupel (n,, ..., n,) von IN* in eindeutiger Art und Weise
eine Zahl ¢ zuordnet, die wir als Code von (n,, ..., n,) bezeichnen.
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