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Anmerkung. Uber eine Reihe von Fallunterscheidungen werden in [5] mit einfachen
kombinatorisch-topologischen Schliissen die folgenden Minimalitdtsaussagen bewiesen.

(1) Die beiden Dreiecke aus Satz 2 lassen sich nicht in weniger als acht Teile perfekt
zerlegen.

(i) Alle iibrigen ungleichseitigen Dreiecke, die nicht rechtwinklig-nichtgleichseitig sind,
lassen sich nicht in weniger als sechs Teile perfekt zerlegen.

Aus (1) und (ii) folgt, dass die Zerlegungen der Figuren 4, 6 und 7 jeweils die minimale
Anzahl von Teilen realisieren, in die die dargestellten Dreiecke perfekt zerlegt werden
konnen.

H. Kaiser, Friedrich-Schiller-Universitit Jena
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On two characteristic properties of Euclidean norms

0. Introduction

In the analysis of functions of several real variables it is useful to consider different norms
on R*, depending on the problem at hand. This is not a dirty trick, because it can be
shown, that on a finite dimensional real vector space all norms are topologically equiv-
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alent. Nevertheless, the (standard) euclidean norm on IR” is in some sense «nicer» and
«more natural» than any other norm. If we compare, for instance, the unit spheres for the
euclidean and the maximum norm on IR? or IR3, we must admit that the euclidean unit
sphere is «more homogeneous» than the maximum unit sphere with its corners! This shall
be made more precise in the first part of the paper, while the second part deals with the
trigonometry in a normed vector space: There is more about it than only the triangle
inequality, because we shall see that Euclid’s definition of a right angle — if correctly
interpreted — makes sense in a normed vector space and that the existence of orthogonal
complements characterizes euclidean norms.

1. Linear Isometries

From now an, E will always denote a finite-dimensional real vector space, endowed with
a norm | ||. S(E, || |) denotes the unit sphere, and Iso(E, | ||) the group of linear
isometries T: E —E. This is a subgroup of GL(E), the group of all regular linear transfor-
mations of E.

Let us call the norm || || euclidean if it is the norm induced by an inner product <, > on E:

Ixll =]/<x,x>.

The following theorem ! says that the unit sphere for a euclidean norm is more homoge-
neous than for any other norm:

Theorem 1. The norm | || is euclidean if and only if the group Iso(E, | ||) acts transitively
on the unit sphere S.

Proof: Let | || be a euclidean norm, induced by the scalar product <, >. The group of
isometries is then the corresponding orthogonal group which acts transitively on the unit
sphere.

Now let the norm | || be such that the isometry group acts transitively on the unit sphere.
|| || induces an operator norm on the real vector space L(E, E) of all linear transforma-
tions of E, and the group Iso(E, | ||) is bounded with respect to this norm, because it is
contained in the unit sphere.

But Iso(E, | ||) is also closed in L(E, E): Let (T,),.n be a sequence of isometries
T, € Iso(E, || ||) converging to the linear map T: E— E. The real vector space L(E, E) being
finite-dimensional, «convergence» means convergence with respect to any norm on
L(E, E), and taking the operator norm induced by the given norm on E we obtain for any
xeE,

HTEI=IT,) N <ITE)-T,x)I < IT-T,|l - x|
and hence

I TGN = lim 1Tl = lx 1,

which means that T is also an isometry.

! This theorem is not new; the referee informed me, that another proof can be found in [2, p. 250 ff].
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Thus, the subgroup Iso(E, | ||) of the Lie group GL(E) is compact, and therefore there
exists an inner product <, > on E which is invariant under the action of Iso(E, || ||). (See
for instance [1, page 54, Prop. XVI].) Without loss of generality we may suppose |/ {x, x>
=1=] x|| for some fixed vector x € S(E, || ||). Now let ye S(E, || ||) be any other unit
vector. By hypothesis, there is a transformation T € Iso(E, || ||) with T(x)=y, and as the
inner product {, ) is invariant under T, we have also

Iyll=1=)/<x,x) =}/<Tx), T =)/<p, y> -

2. Orthogonality

Recall Euclid’s definition of a right angle, as it is stated in the first book of the Elements:
A right angle is an angle which is congruent to its supplementary angle. This makes sense
in a normed vector space if we define the congruence of angles by the congruence of
triangles, the latter being defined by comparing corresponding sides.

But one has to be careful in applying these definitions of congruence: Let x, y € E be two
non-zero vectors. We want to compare the angle formed by the rays defined by x and y
to the angle formed by the rays defined by x and — y. In order to do so, it is not sufficient
to compare simply the triangle with sides x, y and x — y to that with sides, x, —yand x+y,
as we can see from the following example: Let E=IR? endowed with the maximum norm,
and consider the vectors x=(1, 0.5) and y=(0, 0.5): The two triangles formed by x, +y
and xFy are congruent, because || x+y| =|x—y|. If we replace y by 2y, we are still
considering the same angles formed by the rays defined by x and + y, but the triangles
formed by x, +2y and xF 2y are no longer congruent, because || x+2y | =1.5, whereas
| x—2y||=1. This leads to the following definition:

Definition. Two linear subspaces F; , E, < E are said to be orthogonal if | x+y||=|x—y|
forVxeF andVyeF,.
Two vectors x,y € E are orthogonal if the linear subspaces Rx and Ry are orthogonal.

Thus, in the above example of R® endowed with the maximum norm, x=(1, 0) and
y=(0, 1) are orthogonal, but the reader may prove as an exercise that there is no non-zero
vector orthogonal to (1, 0.5). (Do this before reading Lemma 3 below!)

If the norm | | is euclidean, this notion of orthogonality is the usual one, defined by the
inner product, as follows easily from Pythagoras’ theorem. So one direction of the
following theorem is obvious:

Theorem 2. The norm || || is euclidean if and only if every linear subspace F < E has an
orthogonal complement in E.

We shall first show that orthogonal complements are unique.
Lemma 1. If the linear subspaces F,, F, — E are orthogonal, then F, N F,= 0.

Proof: For xe F;, n F, we have | x+ x| =| x—x| =0, and thus x=0.
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Lemma 2. Let x, y € E be non-zero vectors with x L y. Then x+y ] x.

Proof: Suppose x+y L x. As we have also x_Ly, we obtain the following chain of
equations:

Iyll=lx+y—xl=lx+y+x|
=|y+2x|=lly—2x|=lx+y-3x| =[x+y+3x|
=||y+4x|=...=|y+2nx| VneN.

But this is impossible unless x=0.

As a consequence of this Lemma, a linear subspace F = E has at most one orthogonal
complement F* < E, and in this case the orthogonal reflection g in F is well-defined:

or(x+y):=x—y for xeF and yeF?t.

By our definition of orthogonality, g, is an isometry with respect to the norm | ||. We
want to show that these reflections act transitively on the unit sphere if there exists an
orthogonal complement to every one-dimensional linear subspace, and we need the fol-
lowing Lemma:

Lemma 3. Let E be two-dimensional and let x, y be an orthogonal basis for E with || x+y ||
=|x||. Then there exists no orthogonal complement to the subspace R (x+ay) for
O<a<l.

Proof: If we restrict the norm || || to the straight line x + R y, we obtain a convex function
which by hypothesis takes the same value at the three points x — y, x and x + y. Thus the
norm must be constant on the segment between x—y and x+y and, in particular,
I x+ay|l=|x]|| for0<a<l1.

Let z=x+ay with 0<a<1. By Lemma 2, neither x nor y is orthogonal to z. So we have
to prove that Ax + puy is not orthogonal to z for A$0 and u=+0. For ¢>0 small enough,

+
x+ayte(Ax+uy)=(01+ed){x+ ki AR
1+¢e4

and thus

I x+ayte(Ax+uy)| =|1xedl | x|

+
for ¢ sufficiently small, because lim L& 5 xe]0,1].
e»0 14+¢4

Thus, | x+ay+e(Ax+uy)| # | x+ay—e(Ax+uy)|l, and that means that Ax+puy is
not orthogonal to x+ay.

This Lemma shows in particular that in IR? endowed with the maximum norm, there is
no orthogonal complement to the line R (1, 0.5).
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Lemma 4. Let the norm || || on E be such that every one-dimensional linear subspace has
an orthogonal complement. Then, for x, y € S(E, || ||) with x=+ +y the reflection 9 =gy in
the orthogonal complement F=R (x—y)* maps x to y.

Proof: Let z:= x—y and consider the decompositions
x=a+Aiz and y=b+uz with a,beF and A, ueR.

The uniqueness of the orthogonal decomposition implies a=b+0 and A—pu=1. More-
over, a and z must be linearly independent.

Now g¢(x)=a—A4z, and in order to show g¢(x)=y we have to show u= —4 or simply
||=|A|. So let us suppose | 1|+|u|. Then there are at least three different points among
atAz and a+puz, and all these points lie on the same line and have the same norm,
namely ||at+ Az | = ||a+uz| =1. By the convexity of the norm, we have also || a| =1, and
by Lemma 3, for 0 <o <max{|4]|, | 1|}, the linear subspace R (a+ « z) has no orthogonal
complement in the plane spanned by a and z. This is a contradiction to the hypothesis,
because an orthogonal complement in E would intersect this plane in a line orthogonal
to R(a+az).

Now we can achieve the proof of Theorem 2:

Proof of Theorem 2, second part: In order to apply Theorem 1, we shall prove that the
group of isometries Iso(E, || ||) acts transitively on the unit sphere S(E, || ||). So let
x, y€S(E, | |- If x= +y, there is no problem to construct an isometry mapping x to y;
else Lemma 4 tells us that the reflection in the orthogonal complement of the line IR (x — y)
is such an isometry.

H. Rummler, Institut de Mathématiques de I'Université de Fribourg
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Aufgaben

Aufgabe 1034, Unter einem perfekten Quader versteht man einen Quader mit ganzzahli-
gen Seiten s;, ganzzahligen Flichendiagonalen f; (i = 1, 2, 3) und ganzzahliger Raumdia-
gonale r. Man zeige: Fiir perfekte Quader gilt

518,83 f1 2 f5r=0(mod2-3-5-7-11-13-17-19-29-37).
H. Bergmann, Hamburg, BRD
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