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An extension of Blaschke’s theorem in the plane
1. Introduction

Let K be a convex body in Euclidean d-space, E?, having width w(K) = w and inradius
r(K) =r. The following theorem is well known (see for example pages 112-114 of
Eggleston [1]):

Lemma 1. (Blaschke’s theorem.)

whr < 2/d for d odd,
“(2d+ 1)/ /d+2 for d even,

with equality when and only when K is a regular simplex.

Although the statement is relatively simple, Blaschke’s theorem is difficult to prove, as the
proof must take into account the different behaviour for even and odd dimension. Here
we establish an analogue for Blaschke’s theorem in the plane. A similar analogue may
well exist for higher dimensions, but noting the difficulty of proving Blaschke’s theorem,
it is unclear how one might proceed.

Let K be a convex domain in the plane. We assert that K is contained in a trapezium T
(perhaps degenerating to a triangle) which has the same inradius as K. For consider an
incircle C of K. It is well-known that the boundary of K meets C either in diametrically
opposite points, or in three points whose convex hull contains the centre of C in its
interior. In either case, choose support lines to K at these points of contact: such lines will
help determine T. In the first case we may choose any other pair of parallel support lines
to K; with the given lines these will form a suitable trapezium (parallelogram) T. In the
second case we have three lines determining the sides of an acute angled triangle. We
choose a fourth support line to K, parallel to one of the triangle sides, and separated from
it by K. These four lines now determine our trapezium 7, possibly degenerating to a
triangle.
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Let T have successive vertices A,A’,B,B,(A), with AA'//BB, and set |AA'| =a,
|BB'|| =b. Also set bla=1t (0 <t <1). We prove:

Theorem. For each t (0 <t < 1),
wir+t<3,

and this inequality cannot be improved.

We observe that for t = 0 the trapezium degenerates to a triangle, giving Blaschke’s result
w/r < 3 as a special case. In Blaschke’s theorem, equality occurs precisely when K is a
triangle (simplex). However, it is easy to see that K need not be a trapezium for equality
in the above theorem.

The following lemma will be useful:

Lemma 2. Amongst all triangles A with maximal side-length ¢ and width w, the maximal
inradius is attained (only) by the isosceles triangle with base of length c, and the minimal
inradius is attained (only) by the isosceles triangle A* with two equal sides of length c.

Proof. Let ACDE be a general member of the family of triangles satisfying the given
constraints and having c,d, e, (¢ > d > e) as the opposite side-lengths. Then expressing the
double area of the triangle in two ways, we have (¢ + d + e)r = ¢ w. This shows that for
fixed ¢ and w, r is maximal (minimal) exactly when d + e is minimal (maximal) under the
restriction ¢ > d > e.

Placing the triangle so that the side DE of length c lies on the x-axis, and vertex C on
the line y = w, we see that the vertex C must also lie on the ellipse with foci D and E, and
major axis of length d + e along the x-axis. We thus obtain a family of confocal ellipses.
Within this family, d + e will be minimal for the ellipse which just touches the line y =w
— that is, for the isosceles triangle with base of length c. On the other hand, the vertex C
will lie on the outermost permissible ellipse of the family when it lies on the line y = w
at its most asymmetric position relative to DE, under the constraints ¢ > d > e. This
occurs when d = ¢, and for this position d + e will be maximal — that is, d + e is maximal
for either of the two congruent isosceles triangles of the family having two equal sides of
length c. This completes the proof.

For later reference we notice that for the triangles 4, A* described in the lemma,

w(d) =w(4*), r(d)=r(4%), 1)

with equality in the second case only when 4 = 4*.

2. Some Preliminary Results

Since K = T, we have w(K) < w(T), also we are given that r(K) =r(T). Hence it is
sufficient to establish the theorem for the trapezium 7. We say that T is maximal if the
expression w(T)/r(T) + t(T) is maximal. The existence of such a maximal set is guaran-
teed by an easy application of the Blaschke selection theorem.
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We may suppose that ¢t > 0, (so T is not a triangle), else we have our result by Blaschke’s
theorem, or directly as follows:

Let T be a triangle with side lengths ¢ > d > e, corresponding altitudes h_, h;, h,, and
inradius r. Then the width of T is given by w = h,. As in Lemma 2, we obtain

(c+d+er=3%(ch,+dh,+eh)>i(c+d+e)w,

whence w < 3r. Equality obviously holds if and only if h, =h;=h,; c=d =e.

Assume for now that 0 <t < 1.

Let edges AB, A’ B’ of the trapezium T meet in V; then T is a subset of 4 = AVA A'. We
may name the trapezium so that £ A" = £ A. Let w,(T) denote the distance between the
parallel edges of T. We notice that (for ¢t < 1) an incircle of a maximal trapezium T cannot
touch the two parallel edges. For then, w(T)=w,(T)=2r(T),so o/r +t=2+1 <3,
and T is not maximal. It follows that for maximal T,

r(T) <3, (T). (2)

Further, since r(T) = min {r(4),3 w,(T)}, we deduce that for maximal T,

r(T)=r(4). 3)
Lemma 3. If T is maximal, then w(T') = w,(T) = w(4).

Proof. Clearly o (T) = min {w(d4),w,(T)}. Suppose first that w(4) < w,(T). We can then
move B along BA a little way towards 4, and B’ a little way along B’ A’ towards A’,
keeping BB'//A A, and leaving both w and r unaltered. The length b, and so the number
t, increases, thus increasing the expression w/r + t; hence T is not maximal.

If w(4) > w,(T), we can rotate ¥ B’ A’ through a small angle about ¥, so that B, A’ move
along the lines BB, A A’ towards B, A respectively. This preserves the ratio a/b = t, leaves
w(T) unchanged, and decreases r(T)(= r(4), by equation (3)). It follows that T is not
maximal in this case either.

We deduce that for maximal T we must have w(T) = w,(T) = w(4).

Corollary 3.1. If T is maximal, and t > 0, then in triangle A, L V < L A'.

Proof. The width of a triangle is the length of the shortest altitude, that is, the length of
the altitude from the vertex with greatest angle. Since w,(T) = w(4), such an altitude
cannot have V as endpoint.

Lemma 4. If T is maximal, then it is symmetric about a line perpendicular to its parallel
edges.

Proof. Let T be a given maximal trapezium inscribed in triangle 4, and suppose that T
is not symmetric. From our assumptions on the angles of T, and by Corollary 3.1, we have
L A< L A, LV <L A. Using Lemma 2, we can replace 4 = 4VA A’ by a new triangle
A4* = AVAY, having LV < L A= L Y, and with 4 and 4* satisfying (1). Let Z be the
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point on VY such that BZ//AY, and let T* denote the trapezium AY Z B(A4). We compare
the three numbers ¢, w and r for T* and T.

(a) The ratio t. By similar triangles, BB'/AA (=t)= BZ/AY, so t(T) = t(T*).
(b) The width w. Since n/2> L VBZ > L VBB,

w,(T) < w,(T*). )
By (4), Lemma 3, and (1),

W, (T*) > w, (T) = w(T) = w(4) = w(4¥). (5)
Hence

w(T*) = min {w,(T*),w (4%} = w(T).
(¢) The inradius r. From (1), (3), (2) and (4),

F(A*) <r(d)=r(T)<iw,(T)<iw,(T*.
Hence

r(T*) = min {r(4%), 4w, (T*)} <r(T).

From comparing these three quantities, we deduce that the given trapezium T cannot be
maximal. Hence if T is maximal, it must be a symmetric trapezium.

3. Proof of the Theorem

It follows that we may henceforth assume that trapezium T with vertices A, A, B', B is
symmetric about a line perpendicular to the parallel edges, and that w=w(T) =
=w,(T) = w(4).

Now set § = L VA A, and let h denote the altitude of 4 from vertex V. Then by similarity
and simple trigonometry

a/h=>b/h—w), w=asinf, h=(a/2)tanf, r=(a/2)tan(6/2).
Substituting for w and h in the first of these expressions give

b=a(l —2cosb); (6)
also

w/r = 4 cos?(6/2).
Eliminating 6 between these two expressions gives

w/r+bla=w/r+t=23.
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For any t (0 < t < 1) we can construct a symmetric trapezium T satisfying the conditions
of Lemma 3, and having b/a = t: simply choose 0 to satisfy equation (6). We deduce that
for each value of ¢t (0 <t < 1), the inequality w/r + ¢t <3 holds, with equality for the
corresponding maximal trapezium T.

Finally, we observe that in the limit as t — 1, the symmetric trapezium T assumes the form
of a square of side length w. In this case the theorem gives w/r = 2 as expected.

I am grateful to the referee for some valuable suggestion on the presentation of this paper.

P. R. Scott, University of Adelaide, Adelaide, South Australia
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Perfekte Dreieckzerlegungen

Vor 50 Jahren konstruierte R. Sprague [6] zum ersten Mal eine Zerlegung eines Quadrates
in paarweise inkongruente Quadrate (55 Teile). Solche Zerlegungen wurden in der Folge-
zeit perfekt genannt, und eine Reihe von Autoren (vgl. die umfassende Literaturiibersicht
in [4]) suchte nach perfekten Quadratzerlegungen in moglichst wenige Teile. 1978 fand
A. J. W. Duijvestijn [3] eine perfekte Zerlegung eines Quadrates in 21 Teile, und mit Hilfe
von Computerprogrammen konnte er beweisen, dass damit die minimale Teilezahl er-
reicht ist. Bereits in [2] wurde bemerkt, dass sich gleichseitige Dreiecke bzw. Wiirfel nicht
in paarweise inkongruente gleichseitige Dreiecke (ohne Beweis) bzw. Wiirfel (mit Beweis)
zerlegen lassen. Naheliegend ist die folgende

Definition. Eine elementar-geometrische Zerlegung eines d-Polyeders IT des d-dimen-
sionalen euklidischen Raumes in Polyeder I1,, I1,, ..., II; (d > 2, i > 2) heisst genau dann
perfekt, wenn sie die folgenden beiden Eigenschaften hat:

(i) II; ist dhnlich zu IT fiir je {1,2,...,i}.
(ii) [I7; und II, sind inkongruent fiir j, ke {1,2,...,i} und j=*k.

Fig. 1 Fig. 2
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