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An extension of Blaschke's theorem in the plane

1. Introduction

Let K be a convex body in Euchdean d-space, Ed, having width w(K) vv and inradius

r(K) r. The following theorem is well known (see for example pages 112-114 of
Eggleston [1]):

Lemma 1. (Blaschke's theorem.)

f 2^/d for d odd,
W/r

~[2(d+ 1)/Jd + 2 for d even,

with equality when and only when K is a regulär simplex.

Although the Statement is relatively simple, Blaschke's theorem is difficult to prove, as the

proof must take into aecount the different behaviour for even and odd dimension. Here

we establish an analogue for Blaschke's theorem in the plane. A similar analogue may
well exist for higher dimensions, but noting the difficulty of proving Blaschke's theorem,
it is unclear how one might proceed.
Let K be a convex domain in the plane. We assert that K is contained in a trapezium T
(perhaps degenerating to a triangle) which has the same inradius as K. For consider an
incircle C of K. It is well-known that the boundary of K meets C either in diametrically
opposite points, or in three points whose convex hüll contains the centre of C in its
interior. In either case, choose support lines to K at these points of contact: such lines will
help determine T. In the first case we may choose any other pair of parallel support lines
to K; with the given lines these will form a suitable trapezium (parallelogram) T. In the
second case we have three lines determining the sides of an acute angled triangle. We

choose a fourth support line to K9 parallel to one ofthe triangle sides, and separated from
it by K. These four lines now determine our trapezium T9 possibly degenerating to a

triangle.
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Let T have successive vertices A,A',B',B,(A), with AA'//BB'9 and set ||_4_4'||=a,
|| BB' || b. Also set b/a t (0 < t < 1). We prove:

Theorem. For each t (0 < t < 1),

w/r + t<3,
and this inequality cannot be improved.

We observe that for t 0 the trapezium degenerates to a triangle, giving Blaschke's result
w/r < 3 as a special case. In Blaschke's theorem, equality occurs precisely when K is a

triangle (simplex). However, it is easy to see that K need not be a trapezium for equality
in the above theorem.
The following lemma will be useful:

Lemma 2. Amongst all triangles A with maximal side-length c and width w, the maximal
inradius is attained (only) by the isosceles triangle with base of length c, and the minimal
inradius is attained (only) by the isosceles triangle A* with two equal sides of length c.

Proof. Let ACDE be a general member of the family of triangles satisfying the given
constraints and having c, d,e,(c>d> e) as the opposite side-lengths. Then expressing the
double area of the triangle in two ways, we have (c + d + e)r cw. This shows that for
fixed c and vv, r is maximal (minimal) exactly when d + eis minimal (maximal) under the
restriction c>d>e.
Placing the triangle so that the side DE of length c lies on the x-axis, and vertex C on
the line y vv, we see that the vertex C must also lie on the ellipse with foci D and E, and

major axis of length d + e along the x-axis. We thus obtain a family of confocal ellipses.
Within this family, d + e will be minimal for the ellipse which just touches the line y vv

- that is, for the isosceles triangle with base of length c. On the other hand, the vertex C

will lie on the outermost permissible ellipse of the family when it lies on the line y vv

at its most asymmetric position relative to DE, under the constraints c>d>e. This
occurs when d c, and for this position d + e will be maximal - that is, d + e is maximal
for either of the two congruent isosceles triangles of the family having two equal sides of
length c. This completes the proof.
For later reference we notice that for the triangles __,__* described in the lemma,

w(A) w(A*), r(A)>r(A*), (1)

with equality in the second case only when A _j*.

2. Some Preliminary Results

Since KcIJwe have w(K) < w(T); also we are given that r(K) r(T). Hence it is

sufficient to establish the theorem for the trapezium T. We say that T is maximal if the

expression w(T)/r(T) + t(T) is maximal. The existence of such a maximal set is guaran-
teed by an easy application of the Blaschke selection theorem.
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We may suppose that t > 0, (so T is not a triangle), eise we have our result by Blaschke's
theorem, or directly as follows:
Let T be a triangle with side lengths c > d > e, corresponding altitudes hc,hd,he, and
inradius r. Then the width of T is given by vv nc. As in Lemma 2, we obtain

(c + d + e)r \(chc + dhd + ehe) > |(c + d + e)w,

whence w < 3 r. Equality obviously holds if and only if nc hd he; c d e.

Assume for now that 0 < t < 1.

Let edges AB, AB' ofthe trapezium T meet in V; then T is a subset of A AVAA'. We

may name the trapezium so that L Ä LA. Let wp(T) denote the distance between the

parallel edges of T. We notice that (for t < 1) an incircle of a maximal trapezium T cannot
touch the two parallel edges. For then, w(T) wp(T) 2r(T), so co/r + t 2 + t < 3,

and T is not maximal. It follows that for maximal T9

r^K^iT). (2)

Further, since r(T) min {r(A)9^wp(T)}9 we deduce that for maximal T,

r(T) r(A). (3)

Lemma 3. IfT is maximal, then w (T) wp (T) vv (zl).

Proof. Clearly co(T) min {w(A)9 wp(T)}. Suppose first that w(A) < wp(T). We can then

move B along BA a little way towards A, and B' a little way along B'A' towards A',
keeping BB'//AÄ, and leaving both vv and r unaltered. The length b, and so the number

t, increases, thus increasing the expression w/r + t; hence T is not maximal.
If vv(zl) > wp(T), we can rotate VB'A' through a small angle about V9 so that B', A' move
along the lines BB', AÄ towards B9 A respectively. This preserves the ratio a/b t, leaves

w(T) unchanged, and decreases r(T)(= r(A)9 by equation (3)). It follows that T is not
maximal in this case either.
We deduce that for maximal T we must have w(T) wp(T) w(A).

Corollary 3.1. IfTis maximal, and t>0, then in triangle A, L V < LA'.

Proof. The width of a triangle is the length of the shortest altitude, that is, the length of
the altitude from the vertex with greatest angle. Since wp(T) w(A), such an altitude
cannot have V as endpoint.

Lemma 4. IfT is maximal, then it is Symmetrie about a line perpendicular to its parallel
edges.

Proof. Let T be a given maximal trapezium inscribed in triangle A, and suppose that T
is not Symmetrie. From our assumptions on the angles of T9 and by Corollary 3.1, we have

L A < L Ä9 L V < L Ä. Using Lemma 2, we can replace A A VA Ä by a new triangle
A*^AVAY, having LV < LA^ LY9a.nd with A and A* satisfying (1). Let Z be the
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point on VY such that BZ//AY, and let T* denote the trapezium AYZB(A). We compare
the three numbers t, w and r for T* and T.

(a) The ratio t. By similar triangles, BB'/AA'(= t) BZ/AY, so t(T) t(T*).
(b) The width vv. Since n/2> LVBZ> L VBB',

wp(T)<wp(T*). (4)

By (4), Lemma 3, and (1),

wp(T*) > wp(T) w(T) w(A) w(J*). (5)

Hence

w(T*) min {wp(T*), w(_d*)} w(T).

(c) The inradius r. From (1), (3), (2) and (4),

r(A*) < r(A) r(T) < \cop(T) < \-wp(T*).

Hence

r(T*) min {r(z_*),§wp(T*)} <r(T).

From comparing these three quantities, we deduce that the given trapezium T cannot be

maximal. Hence if T is maximal, it must be a Symmetrie trapezium.

3. Proof of the Theorem

It follows that we may henceforth assume that trapezium T with vertices A, A\ B\ B is

symmetne about a line perpendicular to the parallel edges, and that w w(T)
wp(T) w(A)

Now set 6 L VA A, and let h denote the altitude of A from vertex V. Then by similanty
and simple tngonometry

a/h b/(h-w), w asin0, h (a/2) tan 6, r (a/2) tan (0/2).

Substituting for w and h in the first of these expressions give

6 a(l-2cos0); (6)

also

w/r 4 cos2 (0/2).

Eliminating 0 between these two expressions gives

w/r + b/a w/r + t 3.
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For any t (0 < t < 1) we can construct a Symmetrie trapezium T satisfying the conditions
of Lemma 3, and having b/a t: simply choose 0 to satisfy equation (6). We deduce that
for each value of t (0 < t < 1), the inequality w/r + t < 3 holds, with equality for the
corresponding maximal trapezium T.

Finally, we observe that in the limit as t -> 1, the Symmetrie trapezium T assumes the form
of a square of side length w. In this case the theorem gives w/r 2 as expected.
I am grateful to the referee for some valuable Suggestion on the presentation of this paper.

P. R. Scott, University of Adelaide, Adelaide, South Austraha
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Perfekte Dreieckzerlegungen

Vor 50 Jahren konstruierte R. Sprague [6] zum ersten Mal eine Zerlegung eines Quadrates
in paarweise inkongruente Quadrate (55 Teile). Solche Zerlegungen wurden in der Folgezeit

perfekt genannt, und eine Reihe von Autoren (vgl. die umfassende Literaturubersicht
in [4]) suchte nach perfekten Quadratzerlegungen in möglichst wenige Teile 1978 fand
A J W. Duijvestijn [3] eine perfekte Zerlegung eines Quadrates in 21 Teile, und mit Hilfe
von Computerprogrammen konnte er beweisen, dass damit die minimale Teilezahl
erreicht ist. Bereits in [2] wurde bemerkt, dass sich gleichseitige Dreiecke bzw Würfel nicht
in paarweise inkongruente gleichseitige Dreiecke (ohne Beweis) bzw. Würfel (mit Beweis)
zerlegen lassen Naheliegend ist die folgende

Definition. Eine elementar-geometrische Zerlegung eines d-Polyeders 17 des ^-dimensionalen

euklidischen Raumes in Polyeder IIx, Tl2,..., TIX (d > 2, i > 2) heisst genau dann
perfekt, wenn sie die folgenden beiden Eigenschaften hat:

(i) 113 ist ähnlich zu II für j e {1,2,..., i}.
(ii) 77. und ük sind inkongruent für j9 k e {1,2,..., i) und j+ k.

Fig 1 Fig 2
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