Zeitschrift:	Elemente der Mathematik		
Herausgeber:	Schweizerische Mathematische Gesellschaft		
Band:	46 (1991)		
Heft:	4		
Artikel:	Maximale (m, n)- Punktkonfigurationen		
Autor:	[s.n.]		
DOI:	https://doi.org/10.5169/seals-43272		

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. <u>Mehr erfahren</u>

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. <u>En savoir plus</u>

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. <u>Find out more</u>

Download PDF: 09.07.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

ELEMENTE DER MATHEMATIK

Revue de mathématiques élémentaires - Rivista di matematica elementare

Zeitschrift zur Pflege der Mathematik und zur Förderung des mathematisch-physikalischen Unterrichts

El. Math.	Vol. 46	Nr. 4	Seiten 93-120	Basel, Juli 1991
-----------	---------	-------	---------------	------------------

Maximale (m, n)-Punktkonfigurationen

Im dreidimensionalen euklidischen Raum werden in gewissen Grundaufgaben der Trilateration von *m Standpunkten P_i* (*i* = 1, ..., *m*) zu *n Zielpunkten Q_j* (*j* = 1, ..., *n*) die *m* · *n* Distanzen $P_i Q_j$ gemessen mit dem Ziel, aus den gemessenen Distanzen $P_i Q_j$ die gegenseitige Lage der Stand- und Zielpunkte zu ermitteln [2], [4], [7]. Wir nennen eine aus *m* Standpunkten P_i und *n* Zielpunkten Q_j bestehende Punktmenge eine (*m*, *n*)-Punktkonfiguration, kurz eine (*m*, *n*)-Konfiguration. Ihre Stand- und Zielpunkte sind nicht gegeneinander ausgezeichnet und seien paarweise verschieden. Ohne Einschränkung sei $m \le n$. Im folgenden wird für gegebene Anzahlen *m* und *n* die Frage untersucht, wieviele der $m \cdot n$ Distanzen $P_i Q_j$ maximal übereinstimmen können und in welchen (*m*, *n*)-Konfiguration maximal¹. In einer maximalen (*m*, *n*)-Konfiguration hat jeder Standpunkt P_i zu mindestens einem Zielpunkt Q_j die Distanz *d*. Andernfalls könnte die Maximalzahl

gleicher Distanzen d vergrössert werden durch die Wahl von P_i auf einer Distanzkugel $(Q_j, d)^2$. Ebenso hat jeder Zielpunkt Q_j von mindestens einem Standpunkt P_i die Distanz d.

Jede maximale (m, n)-Konfiguration definiert ein Stabwerk aus Stäben gleicher Länge d, wenn die Distanzen $P_iQ_j = d$ durch idealisierte Stäbe der Länge d dargestellt und in den Stand- und Zielpunkten gelenkig verbunden werden. Auftretende Distanzen $P_iQ_j \neq d$ werden nicht durch Stäbe dargestellt! Das Stabwerk einer maximalen (m, n)-Konfiguration ist im allgemeinen in mehreren Freiheitsgraden eingeschränkt beweglich und nur bis auf Ähnlichkeiten bestimmt. Wir nennen das Verhältnis der Maximalzahl gleicher Distanzen $P_iQ_j = d$ zur Gesamtzahl $m \cdot n$ aller Distanzen P_iQ_j die Güte g einer maximalen (m, n)-Konfiguration. Zwei maximale (m, n)-Konfigurationen, deren Stabwerke dieselben Anzahlen von k-fachen Knoten (k = 1, 2, ...) besitzen, nennen wir äquivalent. Äquivalente maximale (m, n)-Konfigurationen werden nicht unterschieden, besondere Repräsentanten werden gelegentlich hervorgehoben.

Zunächst werden die maximalen (1, n)- und (2, n)-Konfigurationen (n = 1, 2, ...) bestimmt. In diesen maximalen (m, n)-Konfigurationen stimmen alle Distanzen P_iQ_j überein; ihre Güte ist stets g = 1. Sodann wird in Satz 1 die einzige maximale (3, 3)-Konfiguration $(3, 3)_1$ ermittelt, in der 8 von 9 Distanzen P_iQ_j übereinstimmen, also die Güte $g = \frac{8}{9} = 0,888 \dots$ erreicht wird. Ausgehend von $(3, 3)_1$ lassen sich die maximalen (3, n)-Konfigurationen in einfacher Weise angeben.

¹ Punktkonfigurationen, die gewissen Distanzbedingungen genügen, wurden aus verschiedener Sicht immer wieder untersucht, etwa in [1], [3], [5], [6].

² (M, d) bezeichne die Distanzkugel mit dem Mittelpunkt M und dem Radius d.

Die maximale (3,3)-Konfiguration $(3,3)_1$ spielt bei der Ermittlung weiterer maximaler (m,n)-Konfigurationen insofern eine wichtige Rolle als alle ihre (3,3)-Teilkonfigurationen nach Satz 1 höchstens 8 gleiche Distanzen P_iQ_j besitzen können. Es zeigt sich, dass jeweils genau eine maximale (4, 4)- und (4, 5)-Konfiguration sowie drei maximale (4, 6)-Konfigurationen existieren. Die Ermittlung dieser maximalen (4, n)-Konfigurationen erfolgt so, dass zunächst für festes n = 4, 5, 6 konkrete (4, n)-Konfigurationen angegeben werden. Diese besitzen eine gewisse Anzahl gleicher Distanzen $P_iQ_j = d$. Sodann wird gezeigt, dass die (4, n)-Konfigurationen mit einer angenommenen höheren Anzahl gleicher Distanzen $P_iQ_j = d$ oder mit einer angenommenen anderen Verteilung derselben Anzahl gleicher Distanzen $P_iQ_j = d$ auf einen Widerspruch zu Satz 1 führen. Die Durchführung dieses Verfahrens wird für m = 4, n > 6 und $m \ge 5, n \ge 5$ zunehmend aufwendig, und die erzielten Widersprüche zu Satz 1 erweisen sich schon für m = n = 5 als ein zu schwaches Instrument. Die folgende Tabelle zeigt von einigen ermittelten maximalen (m, n)-Konfigurationen die erreichte Güte g:

m	3	4	5	6
3	$\frac{8}{9}=0,888\ldots$	$\frac{10}{12} = 0,833\dots$	$\frac{12}{15} = 0.8$	$\frac{14}{18} = 0,777\dots$
4		$\frac{13}{16} = 0,8125$	$\frac{16}{20} = 0.8$	$\frac{18}{24} = 0,75$

Werden bei fester Standpunktanzahl *m* für n = m, m + 1, ... die maximalen (m, n)-Konfigurationen bestimmt, so verbleiben ab einer gewissen Zielpunktanzahl n_0 für weitere Zielpunkte Q_j nur noch solche Positionen, in denen Q_j von genau zwei Standpunkten die Distanz *d* besitzt, da alle Positionen, in denen Q_j von drei oder mehr Standpunkten die Distanz *d* einnimmt, bereits durch Zielpunkte Q_k $(k < n_0)$ besetzt sind.

1. (1, *n*)-Konfigurationen: Für m = 1 und $n \ge 1$ lässt sich erreichen, dass alle *n* Distanzen P_iQ_j (j = 1, ..., n) übereinstimmen. Die Zielpunkte Q_j liegen dann auf der Distanzkugel (P_1, d) . Für festes *n* sind alle maximalen (1, n)-Konfigurationen äquivalent; ihre Güte beträgt $g = \frac{n}{n} = 1$, ihr Stabwerk (ein *n*-Bein) besitzt einen *n*-fachen Knoten (P_1) und *n* einfache Knoten $(Q_1, ..., Q_n)$.

2. (2, *n*)-Konfigurationen: Für m = 2 und $n \ge 2$ lässt sich ebenfalls erreichen, dass alle 2 n Distanzen P_iQ_j (i = 1, 2; j = 1, ..., n) übereinstimmen. Die Zielpunkte Q_j liegen dann auf dem Schnittkreis der Distanzkugeln (P_1, d) und (P_2, d) mit $P_1P_2 < 2d$. Für festes *n* sind alle maximalen (2, n)-Konfigurationen äquivalent; ihre Güte beträgt $g = \frac{2n}{2n} = 1$, ihr Stabwerk besitzt zwei *n*-fache Knoten (P_1, P_2) und *n* zweifache Knoten $(Q_1, ..., Q_n)$.

3. (3,3)-Konfigurationen: Zu m = n = 3 gehören 9 Distanzen P_iQ_j . Wählt man die Zielpunkte Q_1, Q_2, Q_3 auf dem Schnittkreis der Distanzkugeln zweier Standpunkte, etwa auf dem Schnittkreis k_{13} der Kugeln (P_1, d) und (P_3, d) mit $P_1P_3 < 2d$, so stimmen die Distanzen von P_1 und P_3 zu allen Zielpunkten überein (Fig. 1a). Legt man P_2 auf den stets existierenden Schnittkreis der Distanzkugeln zweier Zielpunkte, etwa auf den Schnitt-

kreis k^{13} der Kugeln (Q_1, d) und (Q_3, d) (auf dem auch die Standpunkte P_1 und P_3 liegen), so stimmen 8 der 9 Distanzen P_iQ_j überein. Da die Stand- und Zielpunkte paarweise verschieden sind, lässt sich nicht auch noch $P_2Q_2 = d$ erreichen. Alle Punkte, die von den nicht kollinearen Zielpunkten Q_1, Q_2 und Q_3 die Distanz d besitzen, liegen nämlich auf der Achse des Umkreises von Dreieck $Q_1Q_2Q_3$ und fallen genau in die Punkte P_1 und P_3 . Die ermittelte (3, 3)-Konfiguration ist also maximal. Ihr Stabwerk (Fig. 1 a) besitzt 4 dreifache Knoten (P_1, P_3, Q_1, Q_3) und 2 zweifache Knoten (P_2, Q_2) . Das Stabwerk ist von jenem topologischen Typ, der entsteht, wenn man alle 9 Distanzen P_iQ_j einer beliebigen (3, 3)-Konfiguration durch Stäbe ersetzt und irgendeinen Stab entfernt. Alle maximalen (3, 3)-Konfigurationen sind damit äquivalent. Fig. 1 b symbolisiert die maximale (3, 3)-Konfiguration.

Im folgenden werden in allen Figuren, die eine maximale (m, n)-Konfiguration symbolisieren, die Stäbe P_iQ_j der Länge d als dünne durchgezogene Strecken, die nicht durch Stäbe repräsentierten Distanzen $P_iQ_j \neq d$ als kräftig gestrichelte Strecken dargestellt. Nennt man zwei aufeinanderfolgende Stäbe der Länge $d - Q_i P_j Q_k$ oder $P_\alpha Q_\beta P_\gamma$ – einen Bügel, wenn der Standpunkt P_j bzw. der Zielpunkt Q_β ein zweifacher Knoten des Stabwerks einer (m, n)-Konfiguration ist, so hat man

Satz 1: Es gibt genau eine maximale (3,3)-Konfiguration, bezeichnet als $(3,3)_1$, in welcher 8 der 9 Distanzen P_iQ_j übereinstimmen; ihre Güte beträgt $g = \frac{8}{9} = 0,888...$ Ihr Stabwerk besteht aus einer ebenen oder räumlichen Raute der Seitenlänge d $(P_1Q_1P_3Q_3 \text{ in Fig. 1 a})$ mit zwei angefügten Bügeln $(P_1Q_2P_3 \text{ und } Q_1P_2Q_3 \text{ in Fig. 1 a})$.

Bemerkungen: 1) Dreht man in Fig. 1 a den Bügel $P_1 Q_2 P_3$ um die Achse $P_1 P_3$ nach $P_1 Q_1 P_3$ und dreht man den Bügel $Q_1 P_2 Q_3$ um die Achse $Q_1 Q_3$ nach $Q_1 P_1 Q_3$, so entsteht eine Grenzlage, in der

 $P_2 Q_2 = P_1 Q_1 = d$ gilt, in der aber die Stand- und Zielpunkte nicht paarweise verschieden sind. Damit ist $(3,3)_1$ in eine ebene oder räumliche Raute entartet, die eine einfache, zwei zweifache und eine dreifache Seite besitzt. Die Entartung lässt sich fortführen bis zu einer 8-fach überdeckten Strecke der Länge d.

2) Fig. 1 c zeigt einen speziellen Repräsentanten von $(3,3)_1$. Es handelt sich um ein Quadrat $P_1Q_1P_3Q_3$ mit einem Bügel über jeder Quadratdiagonale $(P_1Q_2P_3)$ bzw. $Q_1P_2Q_3$).

4. (3, n)-Konfigurationen: Zu m = 3 und n > 3 gehören 3n Distanzen P_iQ_j . Vermehrt man in (3, 3)₁ die Zielpunkte Q_1, Q_2, Q_3 auf dem Umkreis des Dreiecks $Q_1Q_2Q_3$ um einen Zielpunkt Q_4 , so ist $Q_4P_1 = Q_4P_3 = d$. Man erreicht nicht $Q_4P_2 = d$ (sonst wäre schon $Q_2P_2 = d$ möglich). Wählt man Q_4 auf dem Schnittkreis der Distanzkugeln $(P_2, d), (P_3, d)$ oder $(P_1, d), (P_2, d)$, so findet man ebenfalls nur zwei weitere Distanzen $P_iQ_j = d$. Nach derselben Überlegung bringt jeder zusätzliche Zielpunkt Q_j (j > 4) nur zwei Distanzen $P_iQ_j = d$; dabei liegt Q_j auf dem Schnittkreis von zwei der drei Distanzkugeln (P_i, d) (i = 1, 2, 3). Eine maximale (3, n)-Konfiguration besitzt somit 8 + 2(n - 3) = 2(n + 1)Distanzen $P_iQ_j = d$ und hat die Güte $g = \frac{2}{3} + \frac{2}{3n}$. Zwei maximale (3, n)-Konfigurationen sind für festes $n \ge 4$ nicht notwendig äquivalent, weil die Zielpunkte Q_4, \ldots, Q_n auf den Schnittkreisen der Distanzkugeln (P_i, d) (i = 1, 2, 3) in verschiedener Weise verteilt sein können. Es gibt genau zwei maximale (3, 4)-Konfigurationen: $(3, 4)_1$ (Fig. 1 d) und $(3, 4)_2$ (Fig. 1 e). Das Stabwerk von $(3, 4)_1$ besitzt 2 vierfache Knoten $(P_1, P_3), 2$ dreifache Knoten (Q_1, Q_3) und 3 zweifache Knoten (P_2, Q_2, Q_4) . Das Stabwerk von $(3, 4)_2$ besitzt 1 vierfachen Knoten $(P_1), 4$ dreifache Knoten (P_2, P_3, Q_1, Q_3) und 2 zweifache Knoten (Q_2, Q_4) .

5. (4, 4)-Konfigurationen: Zu m = n = 4 gehören 16 Distanzen P_iQ_j . Wählt man die Zielpunkte Q_1, \ldots, Q_4 auf dem Schnittkreis der Distanzkugeln zweier Standpunkte, etwa auf dem Schnittkreis k_{12} der Kugeln (P_1, d) und (P_2, d) mit $P_1P_2 < 2d$, so stimmen die Distanzen von P_1 und P_2 zu allen Zielpunkten überein. Fügt man die Bügel $Q_1P_3Q_2$ und $Q_1P_4Q_3$ hinzu, so gilt $P_iQ_j = d$ für 12 der 16 Distanzen P_iQ_j .

Die Anzahl 12 einander gleicher Distanzen $P_iQ_j = d$ lässt sich auf 13 erhöhen, wenn man Q_4 vom Schnittkreis k_{12} entfernt und den Spiegelpunkt von Q_1 an der Ebene $P_1P_3P_4$ als Zielpunkt Q_4 wählt (Fig. 2a). Fig. 2b symbolisiert die so gewonnene (4, 4)-Konfiguration, die auch entsteht durch Spiegelung von Q_1 an den Ebenen $P_1P_2P_3$, $P_1P_2P_4$, $P_1P_3P_4$ des Tetraeders $P_1P_2P_3P_4$ nach Q_2 , Q_3 bzw. Q_4 .

Wir zeigen nun in zwei Schritten (die es gestatten, *alle* maximalen (4, 4)-Konfigurationen aufzufinden), dass Fig. 2a die einzige maximale (4, 4)-Konfiguration darstellt; ihr Stabwerk besitzt 2 vierfache Knoten (P_1, Q_1) und 6 dreifache Knoten $(P_2, P_3, P_4, Q_2, Q_3, Q_4)$.

Schritt 1: Wir betrachten die in Fig. 2c aufgeführten maximalen (3, 3)-Teilkonfigurationen (α), (β), (γ) aus Fig. 2b. In (α), (β), (γ) sind *die gestrichelten Distanzen* P_3Q_3 , P_4Q_2 , P_2Q_4 ungleich d, da sonst die maximale (3, 3)-Konfiguration auf 9 gleiche Distanzen d zu verbessern wäre im Widerspruch zu Satz 1. Folglich sind auch in Fig. 2b die Distanzen P_3Q_3 , P_4Q_2 , P_2Q_4 stets ungleich d. Fig. 2b zeigt also eine maximale (4, 4)-Konfiguration, es sei denn, es gibt eine (4, 4)-Konfiguration mit weniger als 3 Distanzen $P_iQ_j \neq d$. Dieser Feststellung dient Schritt 1.

Wir untersuchen in Schritt 2 alle in einer (4, 4)-Konfiguration möglichen Verteilungen von (gestrichelten) Distanzen $P_iQ_j \neq d$ und zeigen, dass alle von Fig. 2 b verschiedenen Verteilungsmöglichkeiten auf einen Widerspruch zu Satz 1 führen. Damit führen auch alle

Verteilungmöglichkeiten von weniger als 3 (gestrichelten) Distanzen $P_iQ_j \neq d$ auf einen Widerspruch zu Satz 1, da zur Konstruktion des Widerspruchs sogar mehr als 13 gleiche Distanzen $P_iQ_j = d$ zur Verfügung stehen. Bei allen in den folgenden Abschnitten 6 bis 8 ermittelten maximalen (4, n)-Konfigurationen gilt diese Überlegung entsprechend.

Schritt 2: Die (4, 4)-Konfiguration in Fig. 2b ist so beschaffen, dass die 3 gestrichelten Distanzen $P_iQ_j \neq d$ in 3 verschiedenen Standpunkten und in 3 verschiedenen Zielpunkten enden. Es fragt sich, ob diese Distanzen anders als in Fig. 2b verteilt sein können (so dass eine Überführung in Fig. 2b nur durch Umbenennung der Stand- und Zielpunkte nicht möglich ist). Dafür bestehen die folgenden Fälle, die bestimmt sind durch die *Aufteilungsmöglichkeiten* der Anzahl 3 bei den *Standpunkten* in:

3 (d.h. 3 der gestrichelten Distanzen enden in demselben Standpunkt)

oder 21 (lies: zwei/eins, d.h. 2 der gestrichelten Distanzen enden in demselben Standpunkt und 1 der gestrichelten Distanzen endet in einem anderen Standpunkt)

oder 111 (lies: eins/eins/eins, d.h. die gestrichelten Distanzen enden in 3 verschiedenen Standpunkten)

sowie durch dieselben Aufteilungsmöglichkeiten der Anzahl 3 bei den Zielpunkten und die möglichen Paarbildungen in $\{3, 21, 111\} \times \{3, 21, 111\}^3$.

Die Diskussion der Paarbildungen 3-111 (Fig. 3), 21-21 (Fig. 4) und 21-111 (Fig. 5) führt auf die (3, 3)-Teilkonfigurationen $P_1P_2P_3Q_1Q_2Q_3$ (Fig. 3 und 4) und $P_1P_2P_3Q_1Q_3Q_4$ (Fig. 5) mit neun Distanzen $P_iQ_j = d$ im Widerspruch zu Satz 1. Ebenso führen 111-3 (wie 3-111) und 111-21 (wie 21-111) auf einen Widerspruch zu Satz 1. Die Paarbildung 111-111 erfasst die in Fig. 2b symbolisierte (4, 4)-Konfiguration.

Damit ist gezeigt, dass die (4, 4)-Konfiguration aus Fig. 2a maximal ist und die einzige maximale (4, 4)-Konfiguration darstellt. Man hat somit

³ Unmöglich sind die Paarbildungen 3-3, 3-21, 21-3. In {3,21,111} × {3,21,111} ist die eine Menge den Standpunkten, die andere den Zielpunkten zugeordnet.

Satz 2: Es gibt genau eine maximale (4,4)-Konfiguration, bezeichnet als $(4,4)_1$, in welcher 13 der 16 Distanzen P_iQ_j übereinstimmen; ihre Güte beträgt $g = \frac{13}{16} = 0,8125$. $(4,4)_1$ entsteht aus einem beliebigen Vierbein $\{Q_1 P_1, \ldots, Q_1 P_4\}$ der festen Beinlänge d (dessen Standpunkte P_1, \ldots, P_4 ein Tetraeder bilden) durch Spiegelung von Q_1 an den Tetraederebenen $P_1 P_2 P_3$, $P_1 P_2 P_4$ und $P_1 P_3 P_4$ nach Q_2 , Q_3 bzw. Q_4 (Fig. 2a).

Bemerkungen: 1) Die Durchführung von Schritt 2 kann bei anderen (m, n)-Konfigurationen zu Verteilungen der Distanzen $P_iQ_i \neq d$ führen, die keinen Widerspruch zu Satz 1 zulassen. Treten solche Verteilungen auf, so ist zu prüfen, ob sie realisierbar sind. Bei allen im folgenden untersuchten (m, n)-Konfiguration sind Realisierungen möglich; diese werden stets vorweg beschrieben. 2) Das Stabwerk von $(4,4)_1$ besteht aus dem zentralen Stab P_1Q_1 (dessen Endpunkte vierfache Knoten sind, Fig. 2a) und 6 im allgemeinen räumlichen Rauten (maximalen (2, 2)-Konfigurationen), von denen in P_1 und Q_1 je 3 Rauten zusammenstossen. Der topologische Typ dieses Stabwerks ist das Kantenmodell eines Würfels mit einer eingezogenen Raumdiagonale (Fig. 6a). In (4,4), ist neben der maximalen (2, 2)-Konfiguration auch die maximale (3, 3)-Konfiguration mehrfach enthalten. 3) Klappt man in Figur 2a die Beine des Vierbeins $\{Q_1 P_1, \dots, Q_1 P_4\}$ zusammen, so entartet das Stabwerk. Die Entartung lässt sich fortführen bis zu einem 13-fach überdeckten Stab der Länge d. 4) Ein Repräsentant von $(4, 4)_1$ lässt sich auch wie folgt erzeugen: Man betrachte ein ebenes reguläres 6-Eck der Seitenlänge d einschliesslich seiner Diagonalen (Fig. 6b). Sein Mittelpunkt sei $P_1 = Q_1$, seine Ecken seien der Reihe nach $P_2, Q_2, P_3, Q_4, P_4, Q_3$. In dieser Figur treten alle Distanzen $P_i Q_j = d$ der maximalen (4, 4)-Konfiguration als 6-Eck-Seiten und Halbdiagonalen auf, bis auf die Distanz $P_1 Q_1$, die null ist. Nun ziehe man P_1 um $\frac{d}{2}$ nach oben und Q_1 um $\frac{d}{2}$ nach unten. Damit die übrigen Distanzen $P_i Q_j = d$ erhalten bleiben, stellen sich die Ecken des 6-Ecks in eine Zick-Zack-Linie ein: Q_2, Q_3, Q_4 wandern nach oben und P_2, P_3, P_4 wandern nach unten.

5) Einen weiteren Repräsentanten von $(4, 4)_1$ zeigt Figur 6c: $P_1 Q_1$ ist die gemeinsame Seite der beiden Quadrate $P_1 Q_1 P_2 Q_2$ und $P_1 Q_1 P_4 P_4$, die in verschiedenen Ebenen liegen; Q_3 ergibt sich durch Spiegelung von Q_1 an der Ebene $P_1 P_2 P_4$ und P_3 durch Spiegelung von P_1 an der Ebene $Q_1 Q_2 Q_4$. 6) Entfernt man aus $(4, 4)_1$ (Fig. 2b) einen der Standpunkte P_2, P_3, P_4 , so erhält man die maximale (3, 4)-Konfiguration $(3, 4)_2$; entfernt man P_1 , so entsteht eine nicht maximale (3, 4)-Konfiguration.

6. (4,5)-Konfigurationen: Zu m = 4, n = 5 gehören 20 Distanzen P_1Q_j . Ergänzt man die maximale (4,4)-Konfiguration (4,4)₁ (Fig. 2a, b) durch einen Zielpunkt Q_5 , so lässt sich mit Blick auf Satz 2 erreichen, dass Q_5 von genau 3 Standpunkten die Distanz d besitzt. Dazu spiegle man Q_1 an der in Satz 2 nicht herangezogenen Ebene $P_2P_3P_4$ des Standpunktetetraeders $P_1P_2P_3P_4$ und nenne den Spiegelpunkt Q_5 . Diese (4,5)-Konfiguration, die 16 gleiche Distanzen $P_iQ_j = d$ besitzt, zeigt Figur 8a nach Wegnahme des Bügels $P_1Q_6P_4$; Figur 7 symbolisiert diese (4,5)-Konfiguration. Ihr Stabwerk besitzt 5 vierfache Knoten $(P_1, P_2, P_3, P_4, Q_1)$ und 4 dreifache Knoten (Q_2, Q_3, Q_4, Q_5) .

Man zeigt unschwer durch Herbeiführen von Widersprüchen zu Satz 1 (wie in 4. Schritt 1), dass es unmöglich ist, zusätzlich eine der 4 in Figur 7 gestrichelten Distanzen P_1Q_5 , P_2Q_4 , P_3Q_3 , P_4Q_2 gleich d zu machen.

Man zeigt ebenfalls durch Herbeiführen von Widersprüchen zu Satz 1 (wie in 4. Schritt 2, jedoch anhand der Aufteilungsmöglichkeiten der Anzahl 4), dass es unmöglich ist, die 4 gestrichelten Distanzen aus Figur 7 in anderer Weise als in Figur 7 zu verteilen. Figur 7 zeigt bei den Stand- und Zielpunkten die Aufteilung 1111 und stellt daher den durch das Paar 1111–1111 beschriebenen Fall dar.

Die (4, 5)-Konfiguration aus Figur 7 ist somit maximal und eindeutig bestimmt. Es gilt:

Satz 3: Es gibt genau eine maximale (4,5)-Konfiguration, bezeichnet als $(4,5)_1$, in welcher 16 der 20 Distanzen P_iQ_j übereinstimmen; ihre Güte beträgt $g = \frac{16}{20} = 0.8$. $(4,5)_1$ entsteht aus einem beliebigen Vierbein $\{Q_1P_1, \ldots, Q_1P_4\}$ der festen Beinlänge d (dessen Standpunkte P_1, \ldots, P_4 ein Tetraeder bilden) durch Spiegelung von Q_1 an den vier Tetraederebenen $P_1P_2P_3$, $P_1P_2P_4$, $P_1P_3P_4$ und $P_2P_3P_4$ nach Q_2 , Q_3 , Q_4 bzw. Q_5 (Fig. 8 a ohne den Bügel $P_1Q_6P_4$).

Bemerkung: Entfernt man aus $(4, 5)_1$ einen der Zielpunkte Q_2, Q_3, Q_4, Q_5 , so entsteht $(4, 4)_1$, entfernt man Q_1 , so entsteht eine nicht maximale (4, 4)-Konfiguration.

7. (4, 6)-Konfiguration: Zu m = 4, n = 6 gehören 24 Distanzen P_iQ_j . Vermehrt man in der maximalen (4, 5)-Konfiguration (4, 5)₁ die Anzahl der Zielpunkte um einen Zielpunkt Q_6 , so liefert Q_6 in Form eines Bügels $P_kQ_6P_i(k \neq l; k, l \in \{l, ..., 4\})$ – etwa $P_1Q_6P_4$ (Fig. 8a) – genau die zwei weiteren Distanzen $P_1Q_6 = P_4Q_6 = d$. Man findet so die (4, 6)-Konfiguration (4, 6)₁ mit insgesamt 18 gleichen Distanzen $P_iQ_j = d$ (Fig. 8a, symbolisiert in Fig. 8b). In (4, 5)₁ sind alle Standpunkte vierfache Knoten und folglich gleichberechtigt. Die Auswahl anderer Standpunkte für das Anfügen eines Bügels $P_kQ_6P_i$ liefert daher keine andere (4, 6)-Konfiguration als (4, 6)₁. Ausgehend von (4, 5)₁ lässt sich der Zielpunkt Q_6 nicht derart positionieren, dass er von drei Standpunkten P_i die Distanz d besitzt, da diese Positionen von Q_2, \ldots, Q_5 besetzt sind. Das Stabwerk der (4, 6)-Konfiguration (4, 6)₁ mit dem Bügel $P_1Q_6P_4$ besitzt 2 fünffache Knoten (P_1, P_4), 3 vierfache Knoten (P_2, P_3, Q_1), 4 dreifache Knoten (Q_2, Q_3, Q_4, Q_5) und 1 zweifachen Knoten (Q_6).

Eine von $(4, 6)_1$ verschiedene (4, 6)-Konfiguration $(4, 6)_2$ mit ebenfalls 18 gleichen Distanzen $P_iQ_j = d$ liegt vor, wenn gilt (Fig. 9a): die Zielpunkte Q_1, \ldots, Q_6 sind die Endpunkte eines Sechsbeins $\{P_1Q_1, \ldots, P_1Q_6\}$ der festen Beinlänge d, die derart positioniert sind, dass Q_1, Q_2, Q_4, Q_5 sowie Q_2, Q_3, Q_5, Q_6 sowie Q_1, Q_3, Q_4, Q_6 jeweils komplanar liegen und folglich Kreisvierecke bilden. Die Standpunkte P_2, P_3, P_4 sind der Reihe nach die Spiegelpunkte von P_1 an den Ebenen der Kreisvierecke $Q_1Q_2Q_4Q_5, Q_2Q_3Q_5Q_6,$ $Q_1Q_3Q_4Q_6$.⁴ Figur 9b symbolisiert diese (4, 6)-Konfiguration (4, 6)₂. Ihr Stabwerk besitzt 1 sechsfachen Knoten (P_1), 3 vierfache Knoten (P_2, P_3, P_4) und 6 dreifache Knoten (Q_1, \ldots, Q_6) .

Eine von $(4, 6)_1$ und von $(4, 6)_2$ verschiedene (4, 6)-Konfiguration $(4, 6)_3$ mit 18 gleichen Distanzen $P_iQ_i = d$ lässt sich in einem kartesischen x y z-Koordinatensystem entwickeln,

⁴ In Figur 9 a sind Q₁,..., Q₆ speziell die Ecken eines Prismas mit dem Grunddreieck Q₁Q₂Q₃, dem Deckdreieck Q₄Q₅Q₆ und rechteckigen Seitenflächen; P₁ ist der Mittelpunkt der Umkreismitten des Grund- und Deckdreiecks.

dessen Ursprung O der Mittelpunkt einer ebenen Raute $Q_1 P_3 Q_2 P_4$ mit der Seitenlänge d ist. Die Rautenecke Q_1 liegt auf der positiven z-Achse, P_3 auf der negativen x-Achse (Fig. 10a). Der Standpunkt P_1 sei auf der positiven, der Standpunkt P_2 auf der negativen z-Achse gelegen, so dass $P_1 Q_2 = P_2 Q_1 = d$ gilt. P_1 sei die Spitze eines Drehkegels, der die z-Achse als Drehachse besitzt und in der x y-Ebene einen Leitkreis k ausschneidet, dessen Punkte von P_1 den Abstand d besitzen. In der x y-Ebene schneidet der Kreis l um P_4 mit Radius d den Leitkreis k in Q_3 und Q_4 . Durch Spiegelung der Zielpunkte Q_3 , Q_4 an der y z-Ebene nach Q_5 , Q_6 entsteht die zu allen Koordinatenebenen symmetrische (4, 6)-Konfiguration (4, 6)₃ (symbolisiert in Fig. 10b). Ihr Stabwerk besitzt 2 fünffache Knoten (P_1, P_2) , 2 vierfache Knoten (P_3, P_4) und 6 dreifache Knoten (Q_1, \dots, Q_6) .

Die Annahme, das Stabwerk einer (4, 6)-Konfiguration (4, 6)_i (i = 1, 2, 3) sei derart beweglich, dass eine der 6 Distanzen $P_iQ_j \neq d$ zusätzlich die Distanz d annimmt, führt (wie in 4. Schritt 1) stets auf einen Widerspruch zu Satz 1.

Zu überprüfen ist nun (wie in 4. Schritt 2) anhand der Aufteilungsmöglichkeiten der Anzahl 6, ob sich die 6 gestrichelten Distanzen $P_iQ_j \neq d$ unter den Distanzen P_iQ_j anders als in den Figuren 8 b, 9 b und 10 b verteilen lassen. Testet man alle Verteilungsmöglichkeiten, so zeigt sich, dass die Verteilungen aus den Figuren 8 b, 9 b und 10 b die einzigen sind, die keinen Widerspruch zu Satz 1 erzeugen. Realisierungen dieser Verteilungen zeigen die Figuren 8 a, 9 a und 10 a. Figur 8 b zeigt bei den Standpunkten die Aufteilung 2211, bei den Zielpunkten die Aufteilung 21111 und stellt somit den Fall 2211–21111 dar. Entsprechend erkennt man in Figur 9 b den Fall 222–111111 und in Figur 10 b den Fall 211–11111. Mithin sind die (4, 6)-Konfigurationen (4, 6)_i (i = 1, 2, 3) die einzigen maximalen (4, 6)-Konfigurationen. Man hat somit:

Satz 4: Es gibt genau drei maximale (4,6)-Konfigurationen, bezeichnet als $(4,6)_i$ (i = 1, 2, 3), in denen 18 der 24 Distanzen P_iQ_j übereinstimmen; ihre Güte beträgt $g = \frac{18}{24} = 0,75$.

 $(4,6)_1$ entsteht aus der maximalen (4,5)-Konfiguration $(4,5)_1$ durch Anfügen eines Bügels $P_k Q_6 P_l$ $(k \neq l; k, l \in \{1, ..., 4\})$.

 $(4,6)_2$ entsteht aus einem Sechsbein $\{P_1Q_1, \ldots, P_1Q_6\}$ der festen Beinlänge d, dessen Zielpunkte die Kreisvierecke $Q_1Q_2Q_4Q_5, Q_2Q_3Q_5Q_6, Q_3Q_1Q_6Q_4$ bilden, durch Spiegelung von P_1 an den Vierecksebenen nach P_2 , P_3 und P_4 .

 $(4,6)_3$ besteht aus zwei Fünfbeinen $\{P_1Q_2,\ldots,P_1Q_6\}$ und $\{P_2Q_2,\ldots,P_2Q_6\}$ und zwei Vierbeinen $\{P_3Q_1,P_3Q_2,P_3Q_5,P_3Q_6\}$ und $\{P_4Q_1,P_4Q_2,P_4Q_3,P_4Q_4\}$ der festen Beinlänge d, die in einer ausgezeichneten Lage symmetrisch angeordnet sind nach Figur 10 a.

Bemerkungen: 1) Entfernt man aus $(4, 6)_1$ den Zielpunkt Q_6 , so entsteht die maximale (4, 5)-Konfiguration $(4, 5)_1$; beim Verzicht auf einen anderen Zielpunkt verbleibt eine nicht maximale (4, 5)-Konfiguration. Entfernt man aus $(4, 6)_2$ oder $(4, 6)_3$ einen der Zielpunkte Q_1, \ldots, Q_6 , so entsteht jeweils eine nicht maximale (4, 5)-Konfiguration mit 15 gleichen Distanzen.

2) Aus $(4, 5)_1$ entsteht eine (5, 5)-Konfiguration mit 19 Distanzen $P_iQ_j = d$ durch Spiegelung von P_1 an der Zielpunktebene $Q_2Q_3Q_4$ nach P_5 . Folglich gilt für die Güte jeder maximalen (5, 5)-Konfiguration $g \ge \frac{19}{25} = 0.76$. Aus der soeben konstruierten (5, 5)-Konfiguration erhält man durch Spiegelung von Q_2 an der Standpunktebene $P_2P_3P_5$ (oder von Q_3 an $P_2P_4P_5$ oder von Q_4 an $P_3P_4P_5$) nach Q_6 eine (5, 6)-Konfiguration mit 22 Distanzen $P_iQ_j = d$. Für die Güte jeder maximalen (5, 6)-Konfiguration gilt somit $g \ge \frac{22}{30} = 0.733 \dots$

LITERATUR

- [1] Erdös P.: Problems and results in combinatorial geometry. Discrete geometry and convexity, Proc. Conf., New York 1982, Ann. N.Y. Acad. Sci. 440 (1985), 1-11.
- [2] Giering O.: Analytische Behandlung des räumlichen Trilaterationsproblems {4, 6, 0, 0}. Deutsche Geod. Komm. Bayer. Akad. Wiss. A/104 (1986), 3-38.
- [3] Hopf H., Pannwitz E.: Jahresbericht d. Deutschen Mathem.-Vereinigung 43 (1934), 114, Aufgabe 167.
- [4] Killian K., Meissl P.: Einige Grundaufgaben der räumlichen Trilateration und ihre gefährlichen Örter. Deutsche Geod. Komm. Bayer. Akad. Wiss. A/61 (1969), 65-72.
- [5] Palásti I.: On the seven points problem of P. Erdös. Stud. Sci. Math. Hung. 22 (1987), 447-448.
- [6] Sutherland J. W.: Jahresbericht d. Deutschen Mathem.-Vereinigung 45 (1935), 33-35, Lösung d. Aufgabe 167.
- [7] Wunderlich W.: Gefährliche Annahmen der Trilateration und bewegliche Fachwerke. I, II. ZAMM 57 (1977), 297-304 und 363-368.

© 1991 Birkhäuser Verlag, Basel

0013-6018/91/040093-10 1.50 + 0.20/0

An extension of Blaschke's theorem in the plane

1. Introduction

Let K be a convex body in Euclidean d-space, E^d , having width w(K) = w and inradius r(K) = r. The following theorem is well known (see for example pages 112–114 of Eggleston [1]):

Lemma 1. (Blaschke's theorem.)

$$w/r \leq \begin{cases} 2\sqrt{d} & \text{for } d \text{ odd,} \\ 2(d+1)/\sqrt{d+2} & \text{for } d \text{ even,} \end{cases}$$

with equality when and only when K is a regular simplex.

Although the statement is relatively simple, Blaschke's theorem is difficult to prove, as the proof must take into account the different behaviour for even and odd dimension. Here we establish an analogue for Blaschke's theorem in the plane. A similar analogue may well exist for higher dimensions, but noting the difficulty of proving Blaschke's theorem, it is unclear how one might proceed.

Let K be a convex domain in the plane. We assert that K is contained in a trapezium T (perhaps degenerating to a triangle) which has the same inradius as K. For consider an incircle C of K. It is well-known that the boundary of K meets C either in diametrically opposite points, or in three points whose convex hull contains the centre of C in its interior. In either case, choose support lines to K at these points of contact: such lines will help determine T. In the first case we may choose any other pair of parallel support lines to K; with the given lines these will form a suitable trapezium (parallelogram) T. In the second case we have three lines determining the sides of an acute angled triangle. We choose a fourth support line to K, parallel to one of the triangle sides, and separated from it by K. These four lines now determine our trapezium T, possibly degenerating to a triangle.