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und zur Förderung des mathematisch-physikalischen Unterrichts

El Math Vol 46 Nr 4 Seiten 93-120 Basel, Juli 1991

Maximale (m, fl)-Punktkonfigurationen

Im dreidimensionalen euklidischen Raum werden in gewissen Grundaufgaben der Trila-
teration von m Standpunkten Px (i 1,..., m) zu n Zielpunkten Q} (j' 1,..., ri) die m • n
Distanzen PxQj gemessen mit dem Ziel, aus den gemessenen Distanzen PXQ} die gegenseitige

Lage der Stand- und Zielpunkte zu ermitteln [2], [4], [7]. Wir nennen eine aus m

Standpunkten Px und n Zielpunkten Q. bestehende Punktmenge eine (m, ri)-Punktkonfiguration,

kurz eine (m, ri)-Konfiguration. Ihre Stand- und Zielpunkte sind nicht gegeneinander

ausgezeichnet und seien paarweise verschieden. Ohne Einschränkung sei m <n.
Im folgenden wird für gegebene Anzahlen m und n die Frage untersucht, wieviele der

m - n Distanzen PXQ} maximal übereinstimmen können und in welchen (m, n)-Konfiguratio-
nen die Maximalzahl gleicher Distanzen d auftritt. Wir nennen jede solche (m, ^-Konfiguration

maximal1. In einer maximalen (m, n)-Kon_iguration hat jeder Standpunkt Px zu
mindestens einem Zielpunkt Q3 die Distanz d. Andernfalls könnte die Maximalzahl
gleicher Distanzen d vergrössert werden durch die Wahl von Px auf einer Distanzkugel
(QJ9d)2. Ebenso hat jeder Zielpunkt ß. von mindestens einem Standpunkt Px die
Distanz d.

Jede maximale (m, n)-Konfiguration definiert ein Stabwerk aus Stäben gleicher Länge d,

wenn die Distanzen PXQ5 d durch idealisierte Stäbe der Länge d dargestellt und in den
Stand- und Zielpunkten gelenkig verbunden werden. Auftretende Distanzen PxQj + d

werden nicht durch Stäbe dargestellt! Das Stabwerk einer maximalen (m,^-Konfiguration
ist im allgemeinen in mehreren Freiheitsgraden eingeschränkt beweglich und nur bis

auf Ähnlichkeiten bestimmt. Wir nennen das Verhältnis der Maximalzahl gleicher
Distanzen PxQj d zur Gesamtzahl m • n aller Distanzen PxQj die Güte g einer maximalen
(m, n)-Konfiguration. Zwei maximale (m, n)-Konfigurationen, deren Stabwerke dieselben
Anzahlen von /c-fachen Knoten (k 1,2,...) besitzen, nennen wir äquivalent. Äquivalente
maximale (m, n)-Konfigurationen werden nicht unterschieden, besondere Repräsentanten
werden gelegentlich hervorgehoben.
Zunächst werden die maximalen (1, ri)- und (2, n)-Konfigurationen (n 1,2,...) bestimmt.
In diesen maximalen (m,n)-Konfigurationen stimmen alle Distanzen PxQj überein; ihre
Güte ist stets g l. Sodann wird in Satz 1 die einzige maximale (3,3)-Konfigura-
tion (3,3)x ermittelt, in der 8 von 9 Distanzen PxQj übereinstimmen, also die Güte

g | 0,888 erreicht wird. Ausgehend von (3,3)x lassen sich die maximalen (3,n)-
Konflgurationen in einfacher Weise angeben.

Punktkonfigurationen, die gewissen Distanzbedingungen genügen, wurden aus verschiedener Sicht immer wieder

untersucht, etwa in [1], [3], [5], {6]

(M, d) bezeichne die Distanzkugel mit dem Mittelpunkt M und dem Radius d
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Die maximale (3,3)-Konfiguration (3,3)x spielt bei der Ermittlung weiterer maximaler
(m, h)-Konfigurationen insofern eine wichtige Rolle als alle ihre (3,3)-Teilkonfigurationen
nach Satz 1 höchstens 8 gleiche Distanzen PXQ} besitzen können. Es zeigt sich, dass jeweils
genau eine maximale (4,4)- und (4,5)-Konfiguration sowie drei maximale (4,6)-Konfigu-
rationen existieren. Die Ermittlung dieser maximalen (4, n)-Konfigurationen erfolgt so,
dass zunächst für festes n 4,5,6 konkrete (4, n)-Konfigurationen angegeben werden.
Diese besitzen eine gewisse Anzahl gleicher Distanzen PtQj d. Sodann wird gezeigt, dass

die (4, n)-Konfigurationen mit einer angenommenen höheren Anzahl gleicher Distanzen

PtQ, d oder mit einer angenommenen anderen Verteilung derselben Anzahl gleicher
Distanzen PtQj d auf einen Widerspruch zu Satz 1 führen. Die Durchführung dieses
Verfahrens wird für m 4, n > 6 und m > 5, n > 5 zunehmend aufwendig, und die erzielten

Widersprüche zu Satz 1 erweisen sich schon für m n 5 als ein zu schwaches
Instrument. Die folgende Tabelle zeigt von einigen ermittelten maximalen (m, ^-Konfigurationen

die erreichte Güte g:

m
n 3 4 5 6

3
8

- 0,888...
9

10
— 0,833...
12

12
— 0,8
15

14
— 0,777
18

4
13
— 0,8125
16

16
— =0,8
20

18
— 0,75
24

Werden bei fester Standpunktanzahl m für n m, m + 1,... die maximalen (m,
^-Konfigurationen bestimmt, so verbleiben ab einer gewissen Zielpunktanzahl n0 für weitere
Zielpunkte Q} nur noch solche Positionen, in denen Qj von genau zwei Standpunkten die
Distanz d besitzt, da alle Positionen, in denen Qj von drei oder mehr Standpunkten die
Distanz d einnimmt, bereits durch Zielpunkte Qk (k < n0) besetzt sind.

1. (1, n)-Konfigurationen: Für m 1 und n > 1 lässt sich erreichen, dass alle n Distanzen
PxQj? (j' 1,..., ri) übereinstimmen. Die Zielpunkte Qj liegen dann auf der Distanzkugel
(Px,d). Für festes n sind alle maximalen (l,n)-Konfigurationen äquivalent; ihre Güte
beträgt g \ 1, ihr Stabwerk (ein n-Bein) besitzt einen n-fachen Knoten (Px) und n
einfache Knoten (Qi9..., Qn).

2. (2, /i)-Konfigurationen: Für m 2 und n > 2 lässt sich ebenfalls erreichen, dass alle 2 n

Distanzen PtQj (i 1,2; j 1,..., ri) übereinstimmen. Die Zielpunkte Qj liegen dann auf
dem Schnittkreis der Distanzkugeln (Px, d) und (P2, d) mit PxP2<2d. Für festes n sind alle
maximalen (2, n)-Konflgurationen äquivalent; ihre Güte beträgt g |j| 1, ihr Stabwerk
besitzt zwei n-fache Knoten (Px, P2) und n zweifache Knoten (Qx,..., Qn).

3. (3,3)-Konfigurationen: Zu m n 3 gehören 9 Distanzen PxQj. Wählt man die
Zielpunkte Qx ,Q2,Q3 auf dem Schnittkreis der Distanzkugeln zweier Standpunkte, etwa auf
dem Schnittkreis kX3 der Kugeln (Px,d) und (P3,d) mit Px P3 < 2d, so stimmen die Distanzen

von Px und P3 zu allen Zielpunkten überein (Fig. 1 a). Legt man P2 auf den stets
existierenden Schnittkreis der Distanzkugeln zweier Zielpunkte, etwa auf den Schnitt-
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kreis k13 der Kugeln (Qx,d) und (Q3,d) (auf dem auch die Standpunkte Px und P3 liegen),
so stimmen 8 der 9 Distanzen PxQj uberem Da die Stand- und Zielpunkte paarweise
verschieden sind, lasst sich nicht auch noch P2Q2 d erreichen Alle Punkte, die von den
nicht kollinearen Zielpunkten QX,Q2 und Q3 die Distanz d besitzen, liegen namhch auf
der Achse des Umkreises von Dreieck QXQ2Q3 und fallen genau in die Punkte Px und
P3 Die ermittelte (3,3)-Konflguration ist also maximal Ihr Stabwerk (Fig 1 a) besitzt 4

dreifache Knoten (PX,P3,QX,Q3) und 2 zweifache Knoten (P2,Q2) Das Stabwerk ist von
jenem topologischen Typ, der entsteht, wenn man alle 9 Distanzen PXQ} einer beliebigen
(3,3)-Konfiguration durch Stabe ersetzt und irgendeinen Stab entfernt Alle maximalen
(3,3)-Konflgurationen sind damit äquivalent Fig 1 b symbolisiert die maximale (3,3)-
Konfiguration
Im folgenden werden in allen Figuren, die eine maximale (m, n)-Konfiguration symbolisieren,

die Stabe PXQ} der Lange d als dünne durchgezogene Strecken, die nicht durch Stabe

repräsentierten Distanzen PxQ} + d als kraftig gestrichelte Strecken dargestellt Nennt
man zwei aufeinanderfolgende Stabe der Lange d - QtPjQk oder PaQßPy - einen Bügel,
wenn der Standpunkt P3 bzw der Zielpunkt Qß em zweifacher Knoten des Stabwerks

einer (m, n)-Konfiguration ist, so hat man

Satz 1: Es gibt genau eine maximale (3,3)-Konfiguration, bezeichnet als (3,3)x,in welcher
8 der 9 Distanzen Px Q3 übereinstimmen, ihre Gute betragt g § 0,888 Ihr Stabwerk
besteht aus einer ebenen oder räumlichen Raute der Seitenlange d (PxQxP3Q3in Fig 1 a)
mit zwei angefügten Bugein (PXQ2P3 und QXP2Q3 in Fig la)
Bemerkungen 1) Dreht man in Fig 1 a den Bügel Px Q2 P3 um die Achse Px P3 nach Px QX P3 und dreht
man den Bügel QlP2Qs um die Achse QXQ3 nach QXPXQ3, so entsteht eine Grenzlage, in der

Q2

03 P,P3
Q3Q3

Fig lb

Qi

Q2Qz Cb CU

V '2

Q3

Fig la Fig lc

Fig ld Fig le
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P2Q2 — P\Q\ — d gilt, in der aber die Stand- und Zielpunkte nicht paarweise verschieden sind Damit
ist (3,3)i in eine ebene oder räumliche Raute entartet, die eine einfache, zwei zweifache und eine
dreifache Seite besitzt Die Entartung lasst sich fortfuhren bis zu einer 8-fach überdeckten Strecke
der Lange d
2) Fig lc zeigt einen speziellen Repräsentanten von (3,3)x Es handelt sich um ein Quadrat
Pi Öi P3 63 mit einem Bügel uber jeder Quadratdiagonale (Px Q2P3 bzw Qx P2 Q3)

4. (3, /^-Konfigurationen: Zum 3 und n > 3 gehören 3 n Distanzen PXQ} Vermehrt man
in (3,3)x die Zielpunkte QX,Q2,Q3 auf dem Umkreis des Dreiecks QXQ2Q3 um einen
Zielpunkt Q4, so ist Q4PX Q4P3 d Man erreicht nicht Q4P2 d (sonst wäre schon
Q2P2 d möglich) Wählt man Q4 auf dem Schnittkreis der Distanzkugeln (P2,d), (P3,d)
oder (Px,d), (P2,d), so findet man ebenfalls nur zwei weitere Distanzen PxQj d Nach
derselben Überlegung bnngt jeder zusatzliche Zielpunkt Q. (j > 4) nur zwei Distanzen
PxQj d, dabei hegt ß. auf dem Schnittkreis von zwei der drei Distanzkugeln (Px,d)
(1 1,2,3) Eine maximale (3,n)-Konfiguration besitzt somit 8 + 2(n — 3) 2(n + 1)

Distanzen PtQj d und hat die Gute g f + ~ Zwei maximale (3,n)-Konfigurationen
sind fur festes n > 4 nicht notwendig äquivalent, weil die Zielpunkte Q4, ,Qn auf den
Schnittkreisen der Distanzkugeln (Pt,d) (1 1,2,3) in verschiedener Weise verteilt sein
können Es gibt genau zwei maximale (3,4)-Konflgurationen (3,4^ (Fig 1 d) und (3,4)2
(Fig 1 e) Das Stabwerk von (3,4^ besitzt 2 vierfache Knoten (PX,P3), 2 dreifache Knoten
(ßi>Ö3) una* 3 zweifache Knoten (P2,Q2,Q4) Das Stabwerk von (3,4)2 besitzt 1 vierfachen

Knoten (Px), 4 dreifache Knoten (P2»^3>ßi>Ö3) una< 2 zweifache Knoten (Q2,Q4)

5. (4,4)-Konfigurationen: Zum n 4gehören 16 Distanzen PXQ} Wählt man die
Zielpunkte Qx, ,Q4 auf dem Schnittkreis der Distanzkugeln zweier Standpunkte, etwa auf
dem Schnittkreis kX2 der Kugeln (Px,d) und (P2,d) mit PXP2 <2d,so stimmen die Distanzen

von Px und P2 zu allen Zielpunkten uberem Fugt man die Bügel QXP3Q2 und QXP4Q3

hinzu, so gilt PxQj d fur 12 der 16 Distanzen PXQ}

Die Anzahl 12 einander gleicher Distanzen PxQ3 d lasst sich auf 13 erhohen, wenn man
Q4 vom Schnittkreis kX2 entfernt und den Spiegelpunkt von Qx an der Ebene PXP3P4 als

Zielpunkt Q4 wählt (Fig 2 a) Fig 2 b symbolisiert die so gewonnene (4,4)-Konfiguration,
die auch entsteht durch Spiegelung von Qx an den Ebenen PXP2P3, PiP2P^ ^1*3*4 des

Tetraeders PXP2P3P4 nach Q2, Q3 bzw Q4

Wir zeigen nun in zwei Schritten (die es gestatten, alle maximalen (4,4)-Konfigurationen
aufzufinden), dass Fig 2 a die einzige maximale (4,4)-Konflguration darstellt, ihr Stabwerk

besitzt 2 vierfache Knoten (Pi9Qx) und 6 dreifache Knoten (P2,P39P4,Q2, Q3,Q4)

Schritt 1 Wir betrachten die in Fig 2 c aufgeführten maximalen (3,3)-Teilkonflgurationen
(a), (j8), (y) aus Fig 2b In (a), (ß), (y) sind die gestrichelten Distanzen P3Q3, P4Q2, P2Q4

ungleich d, da sonst die maximale (3,3)-Konfiguration auf 9 gleiche Distanzen d zu
verbessern wäre im Widerspruch zu Satz 1 Folglich sind auch in Fig 2 b die Distanzen
P3Q3, Pa.Q2> P2Q* stets ungleich d Fig 2b zeigt also eme maximale (4,4)-Konfiguration,
es sei denn, es gibt eine (4,4)-Konfiguration mit weniger als 3 Distanzen PXQ3 + d Dieser
Feststellung dient Schott 1

Wir untersuchen in Schritt 2 alle in einer (4,4)-Konfiguration möglichen Verteilungen von
(gestrichelten) Distanzen PXQ} + d und zeigen, dass alle von Fig 2b verschiedenen Vertei-

lungsmoghchkeiten auf einen Widerspruch zu Satz 1 fuhren Damit fuhren auch alle
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04

Ol

Q2

P3 Q3
a

Q3 12 P Qi1 n

/ Q2 P2Q2
Qa

Fig 2 b
a* n Qu

V« (7)
Fig 2 c

Fig 2 a

Verteilungmöglichkeiten von weniger als 3 (gestrichelten) Distanzen PxQ3 + d auf einen

Widerspruch zu Satz 1, da zur Konstruktion des Widerspruchs sogar mehr als 13 gleiche
Distanzen PXQ3 d zur Verfügung stehen. Bei allen in den folgenden Abschnitten 6 bis 8

ermittelten maximalen (4, n)-Konfigurationen gilt diese Überlegung entsprechend.

Schritt 2: Die (4,4)-Konfiguration in Fig. 2 b ist so beschaffen, dass die 3 gestrichelten
Distanzen PXQ3 + d in 3 verschiedenen Standpunkten und in 3 verschiedenen Zielpunkten
enden. Es fragt sich, ob diese Distanzen anders als in Fig. 2 b verteilt sein können (so dass
eine Überführung in Fig. 2 b nur durch Umbenennung der Stand- und Zielpunkte nicht
möglich ist). Dafür bestehen die folgenden Fälle, die bestimmt sind durch die
Aufteilungsmöglichkeiten der Anzahl 3 bei den Standpunkten in:

3 (d. h. 3 der gestrichelten Distanzen enden in demselben Standpunkt)
oder 21 (lies: zwei/eins, d.h. 2 der gestrichelten Distanzen enden in demselben Stand¬

punkt und 1 der gestrichelten Distanzen endet in einem anderen Standpunkt)
oder 111 (lies: eins/eins/eins, d.h. die gestrichelten Distanzen enden in 3 verschiedenen

Standpunkten)

sowie durch dieselben Aufteilungsmöglichkeiten der Anzahl 3 bei den Zielpunkten und die
möglichen Paarbildungen in {3,21,111} x {3,21,111}3.
Die Diskussion der Paarbildungen 3-111 (Fig. 3), 21-21 (Fig. 4) und 21-111
(Fig. 5) führt auf die (3,3)-Teilkonfigurationen PlP2P3QxQ2Q3 (Fig-3 und 4) und

A ^2^3616364 (Fig- 5) mit neun Distanzen PXQ3 d im Widerspruch zu Satz 1. Ebenso
führen 111-3 (wie 3-111) und 111-21 (wie 21-111) auf einen Widerspruch zu Satz 1.

Die Paarbildung 111-111 erfasst die in Fig. 2 b symbolisierte (4,4)-Konfiguration.
Damit ist gezeigt, dass die (4,4)-Konfiguration aus Fig. 2 a maximal ist und die einzige
maximale (4,4)-Konfiguration darstellt. Man hat somit

3 Unmöglich sind die Paarbildungen 3-3, 3-21, 21-3 In {3,21,111} x {3,21,111} ist die eine Menge den

Standpunkten, die andere den Zielpunkten zugeordnet
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y_^

3-^ P3<

Fig 3 Fig 4 Fig 5

Satz 2: Es gibt genau eine maximale (4,4)-Konfiguration, bezeichnet als (4,4) x, in
welcher 13 der 16 Distanzen PXQ3 übereinstimmen, ihre Gute betragt g y| 0,8125 (4,4) x

entsteht aus einem beliebigen Vierbein {QXPX, Q1P4] der festen Beinlange d (dessen

Standpunkte Px, ,P4 ein Tetraeder bilden) durch Spiegelung von Qx an den Tetraederebenen

PxP2P3,PXP2P4 und PxP3P4 nach Q2, Q3 bzw Q4 (Fig 2a)

Q2

Qu Q2

Pif

IQ

Q3 Qa
Qi

Fig 6 bFig 6 a Fig 6c

Bemerkungen 1) Die Durchfuhrung von Schritt 2 kann bei anderen (m, ^-Konfigurationen zu
Verteilungen der Distanzen PtQj + d fuhren, die keinen Widerspruch zu Satz 1 zulassen Treten
solche Verteilungen auf, so ist zu prüfen, ob sie realisierbar sind Bei allen im folgenden untersuchten
(m, ^-Konfiguration sind Realisierungen möglich, diese werden stets vorweg beschrieben
2) Das Stabwerk von (4,4)! besteht aus dem zentralen Stab PXQX (dessen Endpunkte vierfache
Knoten sind, Fig 2 a) und 6 im allgemeinen raumlichen Rauten (maximalen (2,2)-Konflgurationen),
von denen in Px und Qi je 3 Rauten zusammenstossen Der topologische Typ dieses Stabwerks ist
das Kantenmodell eines Wurfeis mit einer eingezogenen Raumdiagonale (Fig 6 a) In (4,4)x ist neben
der maximalen (2,2)-Konfiguration auch die maximale (3,3)-Konfiguration mehrfach enthalten
3) Klappt man in Figur 2 a die Beine des Vierbeins {QXPX, > ßi ^4} zusammen, so entartet das
Stabwerk Die Entartung lasst sich fortfuhren bis zu einem 13-fach überdeckten Stab der Lange d
4) Ein Repräsentant von (4,4)x lasst sich auch wie folgt erzeugen Man betrachte em ebenes reguläres
6-Eck der Seitenlange d einschliesslich seiner Diagonalen (Fig 6b) Sein Mittelpunkt sei Px — Ql9
seine Ecken seien der Reihe nach P2,Q2,P3,Q4,P4, Q3 In dieser Figur treten alle Distanzen PlQJ d
der maximalen (4,4)-Konfiguration als 6-Eck-Seiten und Halbdiagonalen auf, bis auf die Distanz
PXQX, die null ist Nun ziehe man Px um | nach oben und Qx um | nach unten Damit die übrigen
Distanzen Pt Q. d erhalten bleiben, stellen sich die Ecken des 6-Ecks in eine Zick-Zack-Lime ein
ß2,ß3,ß4 wandern nach oben und P2,P3,P4 wandern nach unten
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5) Einen weiteren Repräsentanten von (4,4)x zeigt Figur 6 c Px Qx ist die gemeinsame Seite der beiden
Quadrate PXQXP2Q2 und PXQXP4P4, die in verschiedenen Ebenen liegen, ß3 ergibt sich durch
Spiegelung von ßi an der Ebene Px P2P4 und P3 durch Spiegelung von Px an der Ebene Qx ß2 ß4
6) Entfernt man aus (4,4)x (Fig 2b) einen der Standpunkte P2,P3,P4, so erhalt man die maximale
(3,4)-Konfiguration (3,4)2, entfernt man PX9 so entsteht eine nicht maximale (3,4)-Konfiguration

6. (4,5)-Konfigurationen: Zu m 4, n 5 gehören 20 Distanzen Px Q. Ergänzt man die
maximale (4,4)-Konfiguration (4,4)x (Fig 2a,b) durch einen Zielpunkt ß5, so lasst sich

mit Blick auf Satz 2 erreichen, dass Q5 von genau 3 Standpunkten die Distanz d besitzt
Dazu spiegle man Qx an der in Satz 2 nicht herangezogenen Ebene P2 P3P4 des

Standpunktetetraeders PXP2P3P4 und nenne den Spiegelpunkt ß5 Diese (4,5)-Konfiguration,
die 16 gleiche Distanzen PxQ3 d besitzt, zeigt Figur 8a nach Wegnahme des Bugeis
PXQ6P4, Figur 7 symbolisiert diese (4,5)-Konfiguration Ihr Stabwerk besitzt 5 vierfache
Knoten (PX,P2,P3,P4,QX) und 4 dreifache Knoten (ß2,ß3,Ö4,ß5)
Man zeigt unschwer durch Herbeifuhren von Widersprüchen zu Satz 1 (wie in 4

Schritt 1), dass es unmöglich ist, zusatzlich eme der 4 in Figur 7 gestrichelten Distanzen
^ißs> piQ^ *3Ö3> P4rQi g^ich d zu machen
Man zeigt ebenfalls durch Herbeifuhren von Widersprüchen zu Satz 1 (wie in 4 Schritt 2,

jedoch anhand der Aufteilungsmoghchkeiten der Anzahl 4), dass es unmöglich ist, die 4

gestrichelten Distanzen aus Figur 7 in anderer Weise als in Figur 7 zu verteilen Figur 7

zeigt bei den Stand- und Zielpunkten die Aufteilung 1111 und stellt daher den durch das

Paar 1111-1111 beschriebenen Fall dar

Q2
Q5

P2P2
^pQ3

Q2Ql

X\ ^Q4Q< Q6

Qa
Fig 7 Fig 8 a Fig 8 b

Die (4,5)-Konfiguration aus Figur 7 ist somit maximal und eindeutig bestimmt Es gilt

Satz 3: Es gibt genau eine maximale (4,5)-Konfiguration, bezeichnet als (4,5) x, in
welcher 16 der 20 Distanzen PtQ3 übereinstimmen, ihre Gute betragt g §§ #,# (4>5)i
entsteht aus einem beliebigen Vierbein {QXPX, ßiA} der festen Beinlange d (dessen

Standpunkte Px, ,P4 ein Tetraeder bilden) durch Spiegelung von Qx an den vier
Tetraederebenen Px P2 P3,PXP2P4, Px P3 P4 und P2 P3 P4 nach Q2,Q3,QAbzw Q5 (Fig 8 a ohne den

Bügel PXQ6P4)

Bemerkung Entfernt man aus (4,5)x einen der Zielpunkte ß2, ß3, ß4, ß5, so entsteht (4,4)x, entfernt
man Ql9so entsteht eine nicht maximale (4,4)-Konfiguration
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7. (4,6)-Konfiguration: Zu m 4, n 6 gehören 24 Distanzen PXQ3. Vermehrt man in der
maximalen (4,5)-Konfiguration (4,5)x die Anzahl der Zielpunkte um einen Zielpunkt ß6,
so liefert ß6 in Form eines Bügels PkQ6Pt (k + 1; k9 le {/,..., 4}) - etwa Px Q6P4 (Fig. 8a)

- genau die zwei weiteren Distanzen Px Q6 P4 Q6 d. Man findet so die (4,6)-Konfigura-
tion (4,6^ mit insgesamt 18 gleichen Distanzen PxQ3 d (Fig. 8a, symbolisiert in Fig. 8b).
In (4,5)x sind alle Standpunkte vierfache Knoten und folglich gleichberechtigt. Die
Auswahl anderer Standpunkte für das Anfügen eines Bügels PkQ6Pi liefert daher keine andere
(4,6)-Konfiguration als (4,6)!. Ausgehend von (4,5)x lässt sich der Zielpunkt ß6 nicht
derart positionieren, dass er von drei Standpunkten Px die Distanz d besitzt, da diese

Positionen von ß2,..., ß5 besetzt sind. Das Stabwerk der (4,6)-Konfiguration (4,6)x mit
dem Bügel PXQ6P4 besitzt 2 fünffache Knoten (Pl9P4)9 3 vierfache Knoten (i2.P3.61),
4 dreifache Knoten (Q2 ,Q3 ,Q4, Q5) und 1 zweifachen Knoten (ß6).
Eine von (4,6)x verschiedene (4,6)-Konfiguration (4,6)2 mit ebenfalls 18 gleichen Distanzen

PxQj — d liegt vor, wenn gilt (Fig. 9a): die Zielpunkte QX,.,Q6 sind die Endpunkte
eines Sechsbeins {PXQX,...,PXQ6} der festen Beinlänge d9 die derart positioniert sind,
dass 6i>Q2,ß4»65 sowie Qu63»65*66 sowie 8i>Ö3>84>86 jeweils komplanar liegen
und folglich Kreisvierecke bilden. Die Standpunkte P2,P3,P4 sind der Reihe nach die

Spiegelpunkte von Px an den Ebenen der Kreisvierecke 81828485» 82838586»
81 83 84 80-4 Figur 9 b symbolisiert diese (4,6)-Konfiguration (4,6)2. Ihr Stabwerk
besitzt 1 sechsfachen Knoten (Px), 3 vierfache Knoten (P2,P3,P4) und 6 dreifache Knoten
(ei,.-.,e6)-
Eine von (4,6)x und von (4,6)2 verschiedene (4,6)-Konfiguration (4,6)3 mit 18 gleichen
Distanzen PxQ=d lässt sich in einem kartesischen xyz-Koordinatensystem entwickeln,

Qi
iz

^pQ2 --0Q4

Q3

Qiy$Qi />i
Q5 FA

'_-"_/
5R#1 Q23^

Q<JB

Q2

^Q6Qe

Fig 10aFig 9 a Fig 9 b Fig 10b

4 In Figur 9 a sind ßj, Q6 speziell die Ecken eines Prismas mit dem Grunddreieck QXQ2Q^ dem Deckdreieck

Q4Q5Q6 unc* rechteckigen Seitenflächen, Px ist der Mittelpunkt der Umkreismitten des Grund- und
Deckdreiecks
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dessen Ursprung 0 der Mittelpunkt einer ebenen Raute Qx P3Q2P4 mit der Seitenlange
d ist Die Rautenecke Qx hegt auf der positiven z-Achse, P3 auf der negativen x-Achse
(Fig 10 a) Der Standpunkt Px sei auf der positiven, der Standpunkt P2 auf der negativen
z-Achse gelegen, so dass PiQ2 P2Qi d gilt Px sei die Spitze eines Drehkegels, der die
z-Achse als Drehachse besitzt und in der x y-Ebene einen Leitkreis k ausschneidet, dessen

Punkte von Px den Abstand d besitzen In der x y-Ebene schneidet der Kreis / um P4 mit
Radius d den Leitkreis k in ß3 und ß4 Durch Spiegelung der Zielpunkte ß3, ß4 an der

y z-Ebene nach Q5,Q6 entsteht die zu allen Koordinatenebenen symmetrische (4,6)-Kon-
figuration (4,6)3 (symbolisiert in Fig 10 b) Ihr Stabwerk besitzt 2 fünffache Knoten
(PX,P2), 2 vierfache Knoten (P3,i4) und 6 dreifache Knoten (Qx, ß6)
Die Annahme, das Stabwerk einer (4,6)-Konfiguration (4,6)x (i 1,2,3) sei derart beweglich,

dass eme der 6 Distanzen Px Q. + d zusätzlich die Distanz d annimmt, fuhrt (wie in
4 Schritt 1) stets auf einen Widerspruch zu Satz 1

Zu überprüfen ist nun (wie in 4 Schritt 2) anhand der Aufteilungsmoghchkeiten der
Anzahl 6, ob sich die 6 gestrichelten Distanzen PXQ3 + d unter den Distanzen PXQ3 anders
als in den Figuren 8 b, 9 b und 10 b verteilen lassen Testet man alle Verteilungsmoghch-
keiten, so zeigt sich, dass die Verteilungen aus den Figuren 8 b, 9 b und 10 b die einzigen
sind, die keinen Widerspruch zu Satz 1 erzeugen Realisierungen dieser Verteilungen
zeigen die Figuren 8 a, 9 a und 10 a Figur 8 b zeigt bei den Standpunkten die Aufteilung
2211, bei den Zielpunkten die Aufteilung 21111 und stellt somit den Fall 2211 -21111 dar
Entsprechend erkennt man in Figur 9b den Fall 222-111111 und in Figur 10b den Fall
211-111111 Mithin sind die (4,6)-Konfigurationen (4,6)x (i 1,2,3) die einzigen
maximalen (4,6)-Konfigurationen Man hat somit

Satz4: Es gibt genau drei maximale (4,6)-Konfigurationen, bezeichnet als (4,6)x
(i 1,2,3), in denen 18 der 24 Distanzen PXQ3 übereinstimmen, ihre Gute betragt
g £ ojs

(4,6)x entsteht aus der maximalen (4,5)-Konfiguration (4,5)x durch Anfügen eines
Bugeis PkQ6Pt(k + l9k,l e{l, ,4})
(4,6)2 entsteht aus einem Sechsbein {PXQX, PiSö} der festen Beinlange d, dessen

Zielpunkte die Kreisvierecke QiQ2Q4Q5, Q2 Q3 Q5 Q6> 83 81 8e 84 bilden, durch Spiegelung

von Px an den Vierecksebenen nach P2, P3 und P4

(4,6)3 besteht aus zwei Funfbeinen {PXQ2, PiSö} und {^282» ^iQe) und zwei
Vierbeinen {P3QX,P3Q2,P3Q5,P3Q6} und {PAQuhQi>P*Q^P*Q*} der festen Beinlange
d, die in einer ausgezeichneten Lage symmetrisch angeordnet sind nach Figur 10 a

Bemerkungen 1) Entfernt man aus (4,6)x den Zielpunkt ß6, so entsteht die maximale (4,5)-Konfigu-
ration (4,5)l9 beim Verzicht auf einen anderen Zielpunkt verbleibt eine nicht maximale (4,5)-Konfi-
guration Entfernt man aus (4,6)2 oder (4,6)3 einen der Zielpunkte ßlf ß6, so entsteht jeweils
eine nicht maximale (4,5)-Konfiguration mit 15 gleichen Distanzen
2) Aus (4,5)j entsteht eine (5,5)-Konfiguration mit 19 Distanzen PXQ} d durch Spiegelung von Px

an der Zielpunktebene ß2 ß3 ß4 nach P5 Folglich gilt fur die Gute jeder maximalen (5,5)-Konfigura-
tion g > || 0,76 Aus der soeben konstruierten (5,5)-Konfiguration erhalt man durch Spiegelung
von ß2 an der Standpunktebene P2P3P5 (oder von ß3 an P2P4P5 oder von ß4 an P3P4P5) nach ß6
eine (5,6)-Konfiguration mit 22 Distanzen PtQ3 d Fur die Gute jeder maximalen (5,6)-Konfigura-
tion gilt somit g _> §§ 0,733

O Gienng, TU München
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An extension of Blaschke's theorem in the plane

1. Introduction

Let K be a convex body in Euchdean d-space, Ed, having width w(K) vv and inradius

r(K) r. The following theorem is well known (see for example pages 112-114 of
Eggleston [1]):

Lemma 1. (Blaschke's theorem.)

f 2^/d for d odd,
W/r

~[2(d+ 1)/Jd + 2 for d even,

with equality when and only when K is a regulär simplex.

Although the Statement is relatively simple, Blaschke's theorem is difficult to prove, as the

proof must take into aecount the different behaviour for even and odd dimension. Here

we establish an analogue for Blaschke's theorem in the plane. A similar analogue may
well exist for higher dimensions, but noting the difficulty of proving Blaschke's theorem,
it is unclear how one might proceed.
Let K be a convex domain in the plane. We assert that K is contained in a trapezium T
(perhaps degenerating to a triangle) which has the same inradius as K. For consider an
incircle C of K. It is well-known that the boundary of K meets C either in diametrically
opposite points, or in three points whose convex hüll contains the centre of C in its
interior. In either case, choose support lines to K at these points of contact: such lines will
help determine T. In the first case we may choose any other pair of parallel support lines
to K; with the given lines these will form a suitable trapezium (parallelogram) T. In the
second case we have three lines determining the sides of an acute angled triangle. We

choose a fourth support line to K9 parallel to one ofthe triangle sides, and separated from
it by K. These four lines now determine our trapezium T9 possibly degenerating to a

triangle.
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