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ELEMENTE DER MATHEMATIK

Revue de mathématiques élémentaires — Rivista di matematica elementare

Zeitschrift zur Pflege der Mathematik
und zur Forderung des mathematisch-physikalischen Unterrichts

El. Math. Vol. 46 Nr. 4 Seiten 93-120 Basel, Juli 1991

Maximale (m, n)-Punktkonfigurationen

Im dreidimensionalen euklidischen Raum werden in gewissen Grundaufgaben der Trila-
teration von m Standpunkten P.(i=1,...,m) zu n Zielpunkten Q; (j=1,...,n)diem-n
Distanzen F,Q; gemessen mit dem Ziel, aus den gemessenen Distanzen FQ; die gegensei-
tige Lage der Stand- und Zielpunkte zu ermitteln [2], [4], [7]. Wir nennen eine aus m
Standpunkten P und n Zielpunkten Q; bestehende Punktmenge eine (m, n)- Punktkonfigu-
ration, kurz eine (m, n)-Konfiguration. Ihre Stand- und Zielpunkte sind nicht gegeneinan-
der ausgezeichnet und seien paarweise verschieden. Ohne Einschrinkung sei m < n.
Im folgenden wird fiir gegebene Anzahlen m und n die Frage untersucht, wieviele der
m - n Distanzen F,Q; maximal iibereinstimmen kdnnen und in welchen (m, n)-Konfiguratio-
nen die Maximalzahl gleicher Distanzen d auftritt. Wir nennen jede solche (m, n)-Konfigu-
ration maximal®. In einer maximalen (m, n)-Konfiguration hat jeder Standpunkt B zu
mindestens einem Zielpunkt Q; die Distanz d. Andernfalls konnte die Maximalzahl
gleicher Distanzen d vergrossert werden durch die Wahl von B auf einer Distanzkugel
(Q;,d)*. Ebenso hat jeder Zielpunkt Q; von mindestens einem Standpunkt P die Di-
stanz d.

Jede maximale (m, n)-Konfiguration definiert ein Stabwerk aus Stidben gleicher Linge d,
wenn die Distanzen BQ; = d durch idealisierte Stdbe der Linge d dargestellt und in den
Stand- und Zielpunkten gelenkig verbunden werden. Auftretende Distanzen PQ;+d
werden nicht durch Stdbe dargestellt! Das Stabwerk einer maximalen (m, n)-Konfigura-
tion ist im allgemeinen in mehreren Freiheitsgraden eingeschriankt beweglich und nur bis
auf Ahnlichkeiten bestimmt. Wir nennen das Verhiltnis der Maximalzahl gleicher Di-
stanzen P,Q; = d zur Gesamtzahl m - n aller Distanzen FQ; die Giite g einer maximalen
(m, n)-Konfiguration. Zwei maximale (m, n)-Konfigurationen, deren Stabwerke dieselben
Anzahlen von k-fachen Knoten (k = 1,2, ...) besitzen, nennen wir dquivalent. Aquivalente
maximale (m, n)-Konfigurationen werden nicht unterschieden, besondere Repriasentanten
werden gelegentlich hervorgehoben.

Zunichst werden die maximalen (1, n)- und (2, n)-Konfigurationen (n = 1, 2, ...) bestimmt.
In diesen maximalen (m, n)-Konfigurationen stimmen alle Distanzen FQ; tiberein; ihre
Giite ist stets g =1. Sodann wird in Satz1 die einzige maximale (3,3)-Konfigura-
tion (3,3), ermittelt, in der 8 von 9 Distanzen FQ; libereinstimmen, also die Giite
g=5=0888... erreicht wird. Ausgehend von (3,3), lassen sich die maximalen (3, n)-
Konfigurationen in einfacher Weise angeben.

! Punktkonfigurationen, die gewissen Distanzbedingungen geniigen, wurden aus verschiedener Sicht immer wie-
der untersucht, etwa in [1}, [3], [S], [6]).
2 (M, d) bezeichne die Distanzkugel mit dem Mittelpunkt M und dem Radius d.
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Die maximale (3,3)-Konfiguration (3, 3), spielt bei der Ermittlung weiterer maximaler
(m, n)-Konfigurationen insofern eine wichtige Rolle als alle ihre (3, 3)-Teilkonfigurationen
nach Satz 1 hochstens 8 gleiche Distanzen P,Q; besitzen konnen. Es zeigt sich, dass jeweils
genau eine maximale (4, 4)- und (4, 5)-Konfiguration sowie drei maximale (4, 6)-Konfigu-
rationen existieren. Die Ermittlung dieser maximalen (4, n)-Konfigurationen erfolgt so,
dass zunichst fiir festes n = 4,5, 6 konkrete (4, n)-Konfigurationen angegeben werden.
Diese besitzen eine gewisse Anzahl gleicher Distanzen BQ; = d. Sodann wird gezeigt, dass
die (4, n)-Konfigurationen mit einer angenommenen héheren Anzahl gleicher Distanzen
P.Q; = d oder mit einer angenommenen anderen Verteilung derselben Anzahl gleicher Di-
stanzen F,Q; =d auf einen Widerspruch zu Satz 1 fiihren. Die Durchfiihrung dieses
Verfahrens wird fiir m =4,n> 6 und m > 5, n > 5 zunehmend aufwendig, und die erziel-
ten Widerspriiche zu Satz 1 erweisen sich schon fiir m =n =15 als ein zu schwaches
Instrument. Die folgende Tabelle zeigt von einigen ermittelten maximalen (m, n)-Konfigu-
rationen die erreichte Giite ¢:

n 3 4 5 6
m
8 10 2 14
3 —=0888... —=0833... —=08 —=0777...
9 12 5 18
13 16 18
4 —~ =08125 — =08 — =10,75
16 0 24

Werden bei fester Standpunktanzahl m fiir n =m, m + 1, ... die maximalen (m, n)-Konfi-
gurationen bestimmt, so verbleiben ab einer gewissen Zielpunktanzahl n, fiir weitere
Zielpunkte Q; nur noch solche Positionen, in denen Q; von genau zwei Standpunkten die
Distanz d besitzt, da alle Positionen, in denen Q; von drei oder mehr Standpunkten die
Distanz d einnimmt, bereits durch Zielpunkte Q, (k < n,) besetzt sind.

1. (1, n)-Konfigurationen: Fiir m = 1 und n > 1 lasst sich erreichen, dass alle n Distanzen
BQ;(j=1,...,n) iibercinstimmen. Die Zielpunkte Q; liegen dann auf der Distanzkugel
(P, d). Fiir festes n sind alle maximalen (1,n)-Konfigurationen dquivalent; ihre Giite

betrigt g =" =1, ihr Stabwerk (ein n-Bein) besitzt einen n-fachen Knoten (P) und n

einfache Knoten (Q;,..., Q,)

2. (2, n)-Konfigurationen: Fiir m = 2 und n > 2 lisst sich ebenfalls erreichen, dass alle 2 n
Distanzen BQ; (i=1,2; j =1, ..., n) Uibereinstimmen. Die Zielpunkte Q; liegen dann auf
dem Schnittkreis der Distanzkugeln (P,,d) und (B,d) mit P, P, < 2d. Fiir festes n sind alle
maximalen (2, n)-Konfigurationen dquivalent; ihre Giite betrigt g = 2% = 1, ihr Stabwerk

besitzt zwein-fache Knoten (P,, B,) und n zweifache Knoten (Q,, ..., Q,).

3. (3, 3)-Konfigurationen: Zu m = n = 3 gehoren 9 Distanzen F,Q;. Wihlt man die Ziel-
punkte Q,,Q,, Q, auf dem Schnittkreis der Distanzkugeln zweier Standpunkte, etwa auf
dem Schnittkreis k, 5 der Kugeln (P,,d) und (B, d) mit P, P; < 2d, so stimmen die Distan-
zen von P, und P, zu allen Zielpunkten iiberein (Fig. 1a). Legt man P, auf den stets
existierenden Schnittkreis der Distanzkugeln zweier Zielpunkte, etwa auf den Schnitt-
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kreis k'® der Kugeln (Q,,d) und (Q;,d) (auf dem auch die Standpunkte P, und P, liegen),
so stimmen 8 der 9 Distanzen F.Q; liberein. Da die Stand- und Zielpunkte paarweise
verschieden sind, 14sst sich nicht auch noch P, Q, = d erreichen. Alle Punkte, die von den
nicht kollinearen Zielpunkten Q,, Q, und Q, die Distanz d besitzen, liegen ndmlich auf
der Achse des Umkreises von Dreieck Q, @, O, und fallen genau in die Punkte P, und
P,. Die ermittelte (3, 3)-Konfiguration ist also maximal. Ihr Stabwerk (Fig. 1a) besitzt 4
dreifache Knoten (P, P, Q,, Q;) und 2 zweifache Knoten (P,, Q,). Das Stabwerk ist von
jenem topologischen Typ, der entsteht, wenn man alle 9 Distanzen F,Q; einer beliebigen
(3, 3)-Konfiguration durch Stdbe ersetzt und irgendeinen Stab entfernt. Alle maximalen
(3, 3)-Konfigurationen sind damit dquivalent. Fig. 1b symbolisiert die maximale (3, 3)-
Konfiguration.

Im folgenden werden in allen Figuren, die eine maximale (m, n)-Konfiguration symbolisie-
ren, die Stibe P.Q; der Linge d als diinne durchgezogene Strecken, die nicht durch Stibe
reprasentierten Distanzen FQ; + d als kriftig gestrichelte Strecken dargestellt. Nennt
man zwei aufeinanderfolgende Stibe der Linge d — Q; P,Q, oder F,Q P, — einen Biigel,
wenn der Standpunkt P, bzw. der Zielpunkt Q, ein zweifacher Knoten des Stabwerks
einer (m, n)-Konfiguration ist, so hat man

Satz 1: Es gibt genau eine maximale (3 ,3)-Konfiguration, bezeichnet als (3,3 ) ,, in welcher
8 der 9 Distanzen F,Q; iibereinstimmen, ihre Giite betrdgt g = g = 0,888 ....Ihr Stabwerk
besteht aus einer ebenen oder raumlichen Raute der Seitenlinge d (P, Q, P,Q, in Fig. 1a)

mit zwei angefiigten Biigeln (P, Q, P, und Q, P, Q, in Fig. 1a).

Bemerkungen: 1) Dreht man in Fig. 1a den Biigel P, Q, P, um die Achse P, P, nach P, @, P; und dreht
man den Biigel O, P,Q; um die Achse Q,Q; nach Q, P, Q,, so entsteht eine Grenzlage, in der

Q;
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P,Q, = P, Q, = d gilt, in der aber die Stand- und Zielpunkte nicht paarweise verschieden sind. Damit
ist (3,3), in eine ebene oder rdumliche Raute entartet, die eine einfache, zwei zweifache und eine
dreifache Seite besitzt. Die Entartung lasst sich fortfithren bis zu einer 8-fach iiberdeckten Strecke
der Linge d.

2) Fig. 1c zeigt einen speziellen Reprédsentanten von (3,3),. Es handelt sich um ein Quadrat
P, Q, P,Q, mit einem Biigel iiber jeder Quadratdiagonale (P, Q, P, bzw. Q, P, Q).

4. (3, n)-Konfigurationen: Zu m = 3 und n > 3 gehoren 3 n Distanzen F,Q;. Vermehrt man
in (3,3), die Zielpunkte Q,,Q,,Q; auf dem Umkreis des Dreiecks Q, Q, Q5 um einen
Zielpunkt Q,, so ist Q, P, = Q, P, = d. Man erreicht nicht Q, P, = d (sonst wére schon
Q, P, = d moglich). Wihlt man Q, auf dem Schnittkreis der Distanzkugeln (P,, d), (B, d)
oder (P, d), (P, d), so findet man ebenfalls nur zwei weitere Distanzen BQ; = d. Nach
derselben Uberlegung bringt jeder zusitzliche Zielpunkt Q ; (j > 4) nur zwei Distanzen
PQ;=d; dabei liegt Q; auf dem Schnittkreis von zwei der drei Distanzkugeln (P, d)
(i=1,2,3). Eine maximale (3,n)-Konfiguration besitzt somit 8 + 2(n—3)=2(n+ 1)
Distanzen BQ; = d und hat die Giite g =2 + 2. Zwei maximale (3, n)-Konfigurationen
sind fiir festes n > 4 nicht notwendig dquivalent, weil die Zielpunkte Q,, ..., Q, auf den
Schnittkreisen der Distanzkugeln (P,d) (i = 1,2, 3) in verschiedener Weise verteilt sein
konnen. Es gibt genau zwei maximale (3, 4)-Konfigurationen: (3,4), (Fig. 1d) und (3, 4),
(Fig. 1e). Das Stabwerk von (3,4), besitzt 2 vierfache Knoten (P,, B), 2 dreifache Knoten
(Q,,0Q,) und 3 zweifache Knoten (B,,Q,,Q,). Das Stabwerk von (3,4), besitzt 1 vierfa-
chen Knoten (P,), 4 dreifache Knoten (B, B, Q,, Q) und 2 zweifache Knoten (Q,,0,).

5. (4, 4)-Konfigurationen: Zu m = n = 4 gehéren 16 Distanzen F,Q;. Wéhlt man die Ziel-
punkte Q,, ..., Q, auf dem Schnittkreis der Distanzkugeln zweier Standpunkte, etwa auf
dem Schnittkreis k, , der Kugeln (P,,d) und (P,,d) mit P, P, < 2d, so stimmen die Distan-
zen von P, und P, zu allen Zielpunkten iiberein. Fiigt man die Biigel @, ,Q, und Q, P, Q4
hinzu, so gilt BQ; = d fiir 12 der 16 Distanzen RQ;.

Die Anzahl 12 einander gleicher Distanzen FQ; = d ldsst sich auf 13 erh6hen, wenn man
Q, vom Schnittkreis k,, entfernt und den Spiegelpunkt von Q, an der Ebene P, P, P, als
Zielpunkt @, wihlt (Fig. 2a). Fig. 2b symbolisiert die so gewonnene (4, 4)-Konfiguration,
die auch entsteht durch Spiegelung von Q, an den Ebenen P, P, B, P, P, F,, P, B, P, des
Tetraeders P, P, P, P, nach Q,, Q5 bzw. Q,.

Wir zeigen nun in zwei Schritten (die es gestatten, alle maximalen (4, 4)-Konfigurationen
aufzufinden), dass Fig. 2a die einzige maximale (4, 4)-Konfiguration darstellt; ihr Stab-
werk besitzt 2 vierfache Knoten (P,, Q,) und 6 dreifache Knoten (B,, P, P, Q,,05,0Q.,).

Schritt 1: Wir betrachten die in Fig. 2 c aufgefiihrten maximalen (3, 3)-Teilkonfigurationen
(), (B), (y) aus Fig. 2b. In (x), (B), (y) sind die gestrichelten Distanzen P,Q,, F,Q,, ,Q,
ungleich d, da sonst die maximale (3, 3)-Konfiguration auf 9 gleiche Distanzen d zu
verbessern wire im Widerspruch zu Satz 1. Folglich sind auch in Fig. 2b die Distanzen
P,Q,, B,Q,, P,Q, stets ungleich d. Fig. 2b zeigt also eine maximale (4, 4)-Konfiguration,
es sei denn, es gibt eine (4, 4)-Konfiguration mit weniger als 3 Distanzen F,Q; # d. Dieser
Feststellung dient Schritt 1.

Wir untersuchen in Schritt 2 alle in einer (4, 4)-Konfiguration moglichen Verteilungen von
(gestrichelten) Distanzen FQ; # d und zeigen, dass alle von Fig. 2b verschiedenen Vertei-
lungsmoglichkeiten auf einen Widerspruch zu Satz 1 fiihren. Damit fithren auch alle
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Fig. 2a

Verteilungmoglichkeiten von weniger als 3 (gestrichelten) Distanzen BQ; #+ d auf einen
Widerspruch zu Satz 1, da zur Konstruktion des Widerspruchs sogar mehr als 13 gleiche
Distanzen B Q; = d zur Verfiigung stehen. Bei allen in den folgenden Abschnitten 6 bis 8
ermittelten maximalen (4, n}-Konfigurationen gilt diese Uberlegung entsprechend.

Schritt 2: Die (4, 4)-Konfiguration in Fig. 2b ist so beschaffen, dass die 3 gestrichelten
Distanzen P.Q; #+ d in 3 verschiedenen Standpunkten und in 3 verschiedenen Zielpunkten
enden. Es fragt sich, ob diese Distanzen anders als in Fig. 2b verteilt sein konnen (so dass
eine Uberfiihrung in Fig. 2b nur durch Umbenennung der Stand- und Zielpunkte nicht
moglich ist). Dafiir bestehen die folgenden Fille, die bestimmt sind durch die Aufteilungs-
moglichkeiten der Anzahl 3 bei den Standpunkten in:

3 (d.h. 3 der gestrichelten Distanzen enden in demselben Standpunkt)
oder 21 (lies: zwei/eins, d.h. 2 der gestrichelten Distanzen enden in demselben Stand-
punkt und 1 der gestrichelten Distanzen endet in einem anderen Standpunkt)
oder 111 (lies: eins/eins/eins, d.h. die gestrichelten Distanzen enden in 3 verschiedenen
Standpunkten)

sowie durch dieselben Aufteilungsmaoglichkeiten der Anzahl 3 bei den Zielpunkten und die
méglichen Paarbildungen in {3,21,111} x {3,21,111} 3.

Die Diskussion der Paarbildungen 3-111 (Fig.3), 21-21 (Fig.4) und 21-111
(Fig. 5) fiihrt auf die (3, 3)-Teilkonfigurationen P, B, P Q, 0,0, (Fig. 3 und 4) und
P, P, P,Q,0,0, (Fig. 5) mit neun Distanzen P,Q; = d im Widerspruch zu Satz 1. Ebenso
fiihren 111-3 (wie 3—111) und 111-21 (wie 21-111) auf einen Widerspruch zu Satz 1.
Die Paarbildung 111-111 erfasst die in Fig. 2b symbolisierte (4, 4)-Konfiguration.
Damit ist gezeigt, dass die (4, 4)-Konfiguration aus Fig. 2a maximal ist und die einzige
maximale (4, 4)-Konfiguration darstellt. Man hat somit

3 Unméglich sind die Paarbildungen 3-3, 3-21, 21-3. In {3,21,111} x {3,21,111} ist die eine Menge den
Standpunkten, die andere den Zielpunkten zugeordnet.
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Satz 2: Es gibt genau eine maximale (4,4 )-Konfiguration, bezeichnet als (4,4),, in wel-
cher 13 der 16 Distanzen P,Q; iibereinstimmen; ihre Giite betrdgt g = 13 =0,8125. (4,4),
entsteht aus einem beliebigen Vierbein {Q, P,, ..., Q, B} der festen Beinlinge d (dessen
Standpunkte P, ..., B, ein Tetraeder bilden) durch Spiegelung von Q, an den Tetraeder-
ebenen P, P, P, b P, P, und P, B, B, nach Q,, Q5 bzw. Q, (Fig. 2a).

Py

Fig. 6¢

Bemerkungen: 1) Die Durchfithrung von Schritt 2 kann bei anderen (m,n)-Konfigurationen zu
Verteilungen der Distanzen FQ; # d fiihren, die keinen Widerspruch zu Satz 1 zulassen. Treten
solche Verteilungen auf, so ist zu priifen, ob sie realisierbar sind. Bei allen im folgenden untersuchten
(m, n)-Konfiguration sind Realisierungen mdglich; diese werden stets vorweg beschrieben.

2) Das Stabwerk von (4,4), besteht aus dem zentralen Stab P, Q, (dessen Endpunkte vierfache
Knoten sind, Fig. 2a) und 6 im allgemeinen rdumlichen Rauten (maximalen (2, 2)-Konfigurationen),
von denen in P, und Q, je 3 Rauten zusammenstossen. Der topologische Typ dieses Stabwerks ist
das Kantenmodell eines Wiirfels mit einer eingezogenen Raumdiagonale (Fig. 6a). In (4,4), ist neben
der maximalen (2, 2)-Konfiguration auch die maximale (3, 3)-Konfiguration mehrfach enthalten.

3) Klappt man in Figur 2a die Beine des Vierbeins {Q, P,,..., Q, P,} zusammen, so entartet das
Stabwerk. Die Entartung ldsst sich fortfithren bis zu einem 13-fach tiberdeckten Stab der Lange d.
4) Ein Reprisentant von (4,4), ldsst sich auch wie folgt erzeugen: Man betrachte ein ebenes regulires
6-Eck der Seitenldnge d einschliesslich seiner Diagonalen (Fig. 6b). Sein Mittelpunkt sei P, =Q,,
seine Ecken seien der Reihe nach P, Q,, B;,Q,, F;, Q5. In dieser Figur treten alle Distanzen FQ; = d
der maximalen (4,4)-Konfiguration als 6-Eck-Seiten und Halbdiagonalen auf, bis auf die Distanz
P, Q,, die null ist. Nun ziche man P, um £ nach oben und Q, um £ nach unten. Damit die iibrigen
Distanzen F, Q; = d erhalten bleiben, stellen sich die Ecken des 6-Ecks in eine Zick-Zack-Linie ein:
Q,,0,,0, wandern nach oben und B, P,, P, wandern nach unten.
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5) Einen weiteren Reprdsentanten von (4,4), zeigt Figur 6c: P, Q, ist die gemeinsame Seite der beiden
Quadrate P,Q,P,Q, und P,Q, P, P,, die in verschiedenen Ebenen liegen; Q, ergibt sich durch
Spiegelung von Q, an der Ebene P, P, P, und P, durch Spiegelung von P, an der Ebene 0, Q,0,.
6) Entfernt man aus (4,4), (Fig. 2b) einen der Standpunkte P,, P, P,, so erhdlt man die maximale
(3,4)-Konfiguration (3,4),; entfernt man P,, so entsteht eine nicht maximale (3, 4)-Konfiguration.

6. (4, 5)-Konfigurationen: Zu m = 4, n = 5 gehoren 20 Distanzen P, Q;. Erginzt man die
maximale (4, 4)-Konfiguration (4,4), (Fig. 2a, b) durch einen Zielpunkt @, so ldsst sich
mit Blick auf Satz 2 erreichen, dass Q5 von genau 3 Standpunkten die Distanz d besitzt.
Dazu spiegle man Q, an der in Satz 2 nicht herangezogenen Ebene P, P; P, des Stand-
punktetetraeders P, P, P, P, und nenne den Spiegelpunkt Q. Diese (4, 5)-Konfiguration,
die 16 gleiche Distanzen FQ; = d besitzt, zeigt Figur 8a nach Wegnahme des Biigels
P, Q¢ P,; Figur 7 symbolisiert diese (4, 5)-Konfiguration. Ihr Stabwerk besitzt 5 vierfache
Knoten (P, B, B, B,, Q,) und 4 dreifache Knoten (Q,,Q3,0Q4,Q5).

Man zeigt unschwer durch Herbeifithren von Widerspriichen zu Satz1 (wie in 4.
Schritt 1), dass es unmdoglich ist, zusdtzlich eine der 4 in Figur 7 gestrichelten Distanzen
P Qs, B,Q,, B,Q,, P,Q, gleich d zu machen.

Man zeigt ebenfalls durch Herbeifithren von Widerspriichen zu Satz 1 (wie in 4. Schritt 2,
jedoch anhand der Aufteilungsméglichkeiten der Anzahl 4), dass es unmaoglich ist, die 4
gestrichelten Distanzen aus Figur 7 in anderer Weise als in Figur 7 zu verteilen. Figur 7
zeigt bei den Stand- und Zielpunkten die Aufteilung 1111 und stellt daher den durch das
Paar 1111-1111 beschriebenen Fall dar.

. Q4 .
Fig. 7 Fig. 8a Fig. 8b

Die (4, 5)-Konfiguration aus Figur 7 ist somit maximal und eindeutig bestimmt. Es gilt:

Satz 3: Es gibt genau eine maximale (4,5 )-Konfiguration, bezeichnet als (4,5),, in wel-
cher 16 der 20 Distanzen P,Q; iibereinstimmen; ihre Giite betrdgt g = 32=08. (4.5),
entsteht aus einem beliebigen Vierbein {Q, P,, ..., Q, P} der festen Beinlinge d (dessen
Standpunkte P,, ..., P, ein Tetraeder bilden) durch Spiegelung von Q, an den vier Tetra-
ederebenen P, P,P,, b P, P,, P, P, P,und P, P, P, nach Q,, Q3, Q4 bzw. Qs (Fig. 8a ohne den
Biigel Q6 F,).

Bemerkung: Entfernt man aus (4, 5), einen der Zielpunkte Q,,0Q,,0,,Q;, so entsteht (4,4),, entfernt
man Q,, so entsteht eine nicht maximale (4,4)-Konfiguration.
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7. (4, 6)-Konfiguration: Zu m = 4, n = 6 gehoren 24 Distanzen F,Q;. Vermehrt man in der
maximalen (4, 5)-Konfiguration (4, 5), die Anzahl der Zielpunkte um einen Zielpunkt Q,,
so liefert Q¢ in Form eines Biigels Q¢ B (k + I k,le{l,...,4}) — etwa P, Q4 P, (Fig. 82)
— genau die zwei weiteren Distanzen P, Q4 = P, Q¢ = d. Man findet so die (4, 6)-Konfigura-
tion (4, 6), mit insgesamt 18 gleichen Distanzen F,Q; = d (Fig. 8a, symbolisiert in Fig. 8b).
In (4, 5), sind alle Standpunkte vierfache Knoten und folglich gleichberechtigt. Die Aus-
wahl anderer Standpunkte fiir das Anfiigen eines Biigels B, Q¢ B, liefert daher keine andere
(4, 6)-Konfiguration als (4,6),. Ausgehend von (4, 5), ldsst sich der Zielpunkt Q4 nicht
derart positionieren, dass er von drei Standpunkten P. die Distanz d besitzt, da diese
Positionen von Q,, ..., Qs besetzt sind. Das Stabwerk der (4, 6)-Konfiguration (4, 6), mit
dem Biigel P, Q4 P, besitzt 2 fiinffache Knoten (P, B,), 3 vierfache Knoten (P,, B, Q,),
4 dreifache Knoten (Q,,0Q3,0,,05) und 1 zweifachen Knoten (Qy).

Eine von (4, 6), verschiedene (4, 6)-Konfiguration (4, 6), mit ebenfalls 18 gleichen Distan-
zen B.Q; = d liegt vor, wenn gilt (Fig. 9a): die Zielpunkte Q,, ..., Q¢ sind die Endpunkte
eines Sechsbeins {P,Q,, ..., P,Q¢} der festen Beinldnge d, die derart positioniert sind,
dass Q,,0Q,,04,05 sowie Q,,03,05,0, sowie Q,,0,,0,,Q, jeweils komplanar liegen
und folglich Kreisvierecke bilden. Die Standpunkte P, P;, P, sind der Reihe nach die
Spiegelpunkte von P, an den Ebenen der Kreisvierecke Q,0,0,0s, 0,050 0Q,,
0,050, 0¢.* Figur 9b symbolisiert diese (4, 6)-Konfiguration (4, 6),. Ihr Stabwerk be-
sitzt 1 sechsfachen Knoten (P,), 3 vierfache Knoten (B, B, P,) und 6 dreifache Knoten
(Ql’ R} QG)

Eine von (4,6), und von (4, 6), verschiedene (4, 6)-Konfiguration (4, 6); mit 18 gleichen
Distanzen FQ;=d lasst sich in einem kartesischen x y z-Koordinatensystem entwickeln,

Fig. 10a

4 In Figur9asind Q,, ..., Q, speziell die Ecken eines Prismas mit dem Grunddreieck 0, 0, Q,, dem Deckdreieck
0,050, und rechteckigen Seitenflichen; P, ist der Mittelpunkt der Umkreismitten des Grund- und Deck-
dreiecks.
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dessen Ursprung O der Mittelpunkt einer ebenen Raute Q, P, Q, P, mit der Seitenldnge
d ist. Die Rautenecke Q, liegt auf der positiven z-Achse, P, auf der negativen x-Achse
(Fig. 10a). Der Standpunkt P, sei auf der positiven, der Standpunkt P, auf der negativen
z-Achse gelegen, so dass P, Q, = P,Q, =d gilt. P, sei die Spitze eines Drehkegels, der die
z-Achse als Drehachse besitzt und in der x y-Ebene einen Leitkreis k ausschneidet, dessen
Punkte von P, den Abstand d besitzen. In der x y-Ebene schneidet der Kreis [ um P, mit
Radius d den Leitkreis k in Q5 und Q,. Durch Spiegelung der Zielpunkte Q,, Q, an der
y z-Ebene nach Q 5, Q. entsteht die zu allen Koordinatenebenen symmetrische (4, 6)-Kon-
figuration (4,6), (symbolisiert in Fig. 10b). Ihr Stabwerk besitzt 2 fiinffache Knoten
(P, B,), 2 vierfache Knoten (P;, P,) und 6 dreifache Knoten (Q4, ..., Q¢).

Die Annahme, das Stabwerk einer (4, 6)-Konfiguration (4, 6), (i = 1, 2, 3) sei derart beweg-
lich, dass eine der 6 Distanzen B Q; # d zusitzlich die Distanz d annimmt, fiihrt (wie in
4. Schritt 1) stets auf einen Widerspruch zu Satz 1.

Zu iberpriifen ist nun (wie in 4. Schritt 2) anhand der Aufteilungsmoglichkeiten der
Anzahl 6, ob sich die 6 gestrichelten Distanzen F,Q; #+ d unter den Distanzen P.Q; anders
als in den Figuren 8 b, 9b und 10b verteilen lassen. Testet man alle Verteilungsmoglich-
keiten, so zeigt sich, dass die Verteilungen aus den Figuren 8b, 9b und 10b die einzigen
sind, die keinen Widerspruch zu Satz 1 erzeugen. Realisierungen dieser Verteilungen
zeigen die Figuren 8a, 9a und 10a. Figur 8b zeigt bei den Standpunkten die Aufteilung
2211, bei den Zielpunkten die Aufteilung 21111 und stellt somit den Fall 2211-21111 dar.
Entsprechend erkennt man in Figur 9b den Fall 222-111111 und in Figur 10b den Fall
211-111111. Mithin sind die (4, 6)-Konfigurationen (4, 6); (i = 1,2, 3) die einzigen maxi-
malen (4, 6)-Konfigurationen. Man hat somit:

Satz 4: Es gibt genau drei maximale (4,6)-Konfigurationen, bezeichnet als (4,6);
(i=1,2,3), in denen 18 der 24 Distanzen FQ; iibereinstimmen; ihre Giite betrdgt

g=33=0,75.

(4,6), entsteht aus der maximalen (4,5 )-Konfiguration (4,5), durch Anfiigen eines Bii-
gels BQ¢B (k+ Lk le{l,...,4)}).
(4,6), entsteht aus einem Sechsbein {P,Q,,..., P,Q¢} der festen Beinlinge d, dessen

Zielpunkte die Kreisvierecke Q1 0,04,05,0,050506,03 0, Q6 Q, bilden, durch Spiege-
lung von P, an den Vierecksebenen nach P,, P, und F,.

(4,6) 5 besteht aus zwei Fiinfbeinen {P,Q,,..., P, Q¢} und {P,Q,,..., P,Q¢} und zwei

Vierbeinen {P,0,, P, 5, P, 05, P,Q¢} und {P,Q,,P,Q;, P, 03, P, Q,} der festen Beinliinge
d, die in einer ausgezeichneten Lage symmetrisch angeordnet sind nach Figur 10a.

Bemerkungen: 1) Entfernt man aus (4, 6), den Zielpunkt Q, so entsteht die maximale (4, 5)-Konfigu-
ration (4, 5),; beim Verzicht auf einen anderen Zielpunkt verbleibt eine nicht maximale (4, 5)-Konfi-
guration. Entfernt man aus (4,6), oder (4,6), einen der Zielpunkte Q,, ..., Q¢, so entsteht jeweils
eine nicht maximale (4, 5)-Konfiguration mit 15 gleichen Distanzen.

2) Aus (4,5), entsteht eine (5, 5)-Konfiguration mit 19 Distanzen F,Q; = d durch Spiegelung von P,
an der Zielpunktebene Q, 0, Q, nach P;. Folglich gilt fiir die Giite jeder maximalen (5, 5)-Konfigura-
tion g > % = 0,76. Aus der soeben konstruierten (5, 5)-Konfiguration erhilt man durch Spiegelung
von Q, an der Standpunktebene P, P, P, (oder von Q; an P, P, Py oder von Q4 an P, P, F;) nach Qg
eine (5, 6)-Konfiguration mit 22 Distanzen F,Q; = d. Fiir die Giite jeder maximalen (5, 6)-Konfigura-
tion gilt somit g >22=0,733....

O. Giering, TU Miinchen
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An extension of Blaschke’s theorem in the plane
1. Introduction

Let K be a convex body in Euclidean d-space, E?, having width w(K) = w and inradius
r(K) =r. The following theorem is well known (see for example pages 112-114 of
Eggleston [1]):

Lemma 1. (Blaschke’s theorem.)

whr < 2/d for d odd,
“(2d+ 1)/ /d+2 for d even,

with equality when and only when K is a regular simplex.

Although the statement is relatively simple, Blaschke’s theorem is difficult to prove, as the
proof must take into account the different behaviour for even and odd dimension. Here
we establish an analogue for Blaschke’s theorem in the plane. A similar analogue may
well exist for higher dimensions, but noting the difficulty of proving Blaschke’s theorem,
it is unclear how one might proceed.

Let K be a convex domain in the plane. We assert that K is contained in a trapezium T
(perhaps degenerating to a triangle) which has the same inradius as K. For consider an
incircle C of K. It is well-known that the boundary of K meets C either in diametrically
opposite points, or in three points whose convex hull contains the centre of C in its
interior. In either case, choose support lines to K at these points of contact: such lines will
help determine T. In the first case we may choose any other pair of parallel support lines
to K; with the given lines these will form a suitable trapezium (parallelogram) T. In the
second case we have three lines determining the sides of an acute angled triangle. We
choose a fourth support line to K, parallel to one of the triangle sides, and separated from
it by K. These four lines now determine our trapezium 7, possibly degenerating to a
triangle.
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