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On permutations involving pairs of twins

We are concerned with permutations of a set of 2n elements coupled into n pairs; the
members of each pair are referred to as twins (two decks of cards serve as a model). Let
p(n, k) be the probability that, in a randomly chosen permutation of such a set, exactly
k pairs of twins are nonseparated (occupy neighbouring positions). To be more precise:
assume S = {a,, b,,a,,b,,...,a,,b,} is the set, element a; matching b;; define T(n, k) as
the set of all maps ¢ of {1,...,2n} onto S such that |¢~*(a;)— ¢~ *(b;)|=1 holds for
exactly k values of i (permutations regarded as enumerations). Then

1
p(n, k) =-(—2—n)—!— |T(n, k)] ((0<k<n)

(here and in the sequel |-| denotes the cardinality of a set). Evidently,
> pn,k)=1 for n=1,2,3,.... (1)
k=0

It is not hard to show (see below) that p(n, 0) <1/2, for any n (this was one of the problems
at the 30-th IMO in Germany, 1989, proposed by the author).

In this note we examine the asymptotic behaviour of quantities p(n, k) for growing n.
Namely, we prove

Propesition

1
lim p(n,k)=—— for k=0,1,2,....
n—w ek!
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We first derive two recursion formulas (Lemmas 1 and 2); it is convenient to define

T(h, —1)=0, p(n, —1)=0; T(0, 0)=(singleton), p(0,0)=1. (2)

Lemma 1

kp(n, k)= p(n, k—1
p(n, k) =p(n )+ 21

Proof. Let T'(n, k) be the set of all ¢ in T(n, k) such that ¢ (1) and ¢ (2) are not twins (for
instance, (a3, a,,b,,b,,a,4,a,,b;, b;) belongs in T'(4, 2) while (by, as, a,, by, by, a,,a,,b,)
does not). Fix n and k with n>k>1. We define a map

fi T'n,k—1) - T(nk)

as follows. Given ¢ € T'(n, k—1), let ¢(j) be the twin of ¢(1); j>2 by the definition of
T'(, ). We set

p(i+1) for i<j—1,
(fo)D)=¢ (1)  for i=j-—1,
o (i) for i>j;

that means, the initial element is moved to the position immediately preceding its twin. The
resulting permutation indeed belongs to T'(n, k): all twin pairs which were not separated by
¢ remains so under f¢, and a new neighbouring pair ¢ (1), ¢(j) appears.

Choose a permutation ¥ € T(n, k). If ¥ € T'(n, k), then | f ~*({y})|=k, ie, y=f¢ for k
distinct permutations ¢ € T'(n, k—1); these preimages are obtained by moving the left
member of any one of the k neighbouring twin pairs of ¥ to the first position.

If y € T(n, k)\ T'(n, k), then | f ~*({¢})|=k—1; the same argument as above applies to all
neighbouring twin pairs in y except the leftmost one. Consequently

IT'(mk=Dl= X |fT"QUPI=kIT (n k)| + k=1)IT(m K\ T (n, k)| . 3)

Yy eT(n,k)
Note that every permutation in T'(n, k)\ T (n, k) arises by adjoining a twin pair (on the two

initial positions) to a permutation of type T (n—1, k—1). The adjoined pair can be any one
of the n pairs a;, b; and can be arranged in two ways. Therefore

| T(n,k)\T'(n, k)| =2n|T(n—1, k—1)|
and so

|'T' (n, k)| = | T(n, k)| —2n| T(n—1, k—1)|
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(true also for n=k=1, as well as for k=0 and any n, in agreement with (2)). Inserting this
and an analogous equality with k—1 in place of k into (3) we get after simple calculation

k| T, k)| = | T, k—1)| +2n(|T(n—1,k—1)] — | T(n—1, k—2)|)

for k> 1. Division by (2n)! yields the claimed equality, ending the proof of the lemma.

Corollary
n—1,0
p(n, 1)=P(n, 0)+£‘(—2‘;l°:—i—')— for n>1, (4)
-2,0
pm—14)=pm—noy+3%;—§l for n>2, (5)
p(n,1)=p(n,0) for n>1. (6)

Proof. (4) is the formula of Lemma 1 for k=1. (5) is nothing else than (4) with n replaced
by n—1. (6) is immediate from (4).

Note that (6) implies p(n, 0)<1/2 (the IMO problem mentioned at the beginning).

Lemma 2

p(n—2,0)
2n—3)2n—1)

r(©0,00=1,  p(1,0=0.

p(n,0)=pn—1,0+ for n>2;

Proof. p(0,0)=1 by agreement; p(1, 0)=0 is obvious from the definition of p(-, °).

Fix n>2 and consider any permutation of type T'(n, 1). By removing the unique neigh-
bouring twin pair we obtain a permutation of type T(n—1,0) or T(n—1, 1); the latter
occurs in the case when another pair of twins were separated by the removed pair.
Reversing the argument, we see that any permutation of type T'(n, 1) arises either from
a permutation of type T(n— 1, 0) by inserting a new pair and placing it in any one of the
2n—1 sockets, or from a permutation of type T(n—1, 1) by inserting a new pair so as to
disconnect the single hitherto neighbouring twin pair. Since the new pair can be chosen
out of n possibilities and can be arrayed in two ways, we arrive at the equality

|T(n, 1)| = 2n(2n—1) | T(n—1,0)| + | T(n—1, 1)|).

Division by (2n)! yields

p(n—1, 1)

,1)=p(n—1,0
p(n.1)=pln—1,0+—-—
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Equating the right sides of the last equality and (4) we get

p(n—1,1)—p(n—1,0)

,0—p(n—1,0)=
p(n, 0) — p(n ) 71 (7
This, in view of (5), is precisely the formula of the lemma.
Corollary
The limits p, = lim p(n, k) exist and satisfy
1
Pk po for k=0,1,2,.... (8)

Tk

Proof. Lemma 2 shows that p(n, 0) increase with n. Therefore p, exists. Letting n - o0 in
the formula of Lemma 1 we see that the existence of p, _ , implies that of p,, together with
the equality kp,=p,_,. Hence, (8) results by induction.

Now, the recursion formula of Lemma 2 defines the 0-th column of the triangular array

p©0,00= 1
0 1
1 1 1
3 3 3
s 6 3 1
15 15 15 15
36 41 21 6 1

..................

..............................

The remaining entries are determined from the formula of Lemma 1.

All row sums are equal 1. Columns tend to limits py, p;, P, ... . If we could assert that
also
2 pe=1 )
k=0

we would be done, knowing (8). Passing to the limit, however, is not automatic; the
convergence is not monotone, and it is not at all clear that the rows are summably-dom-
inated. Thus, all that remains is to justify equality (9).

Proof of the Proposition. We begin by showing that

p(n,1)>pn2) for n>2. (10)
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Using successively Lemma 1, then formula (7) (which is an equivalent form of the state-
ment of Lemma 2), and finally estimate (6), we obtain

p(n—1,1)—p(n—1,0)
2n—1

2p(n,2)=pn, 1)+

=pn, )+p(n,0)—p(n—1,0) < p(n, 1)+p(n 0) <2pn1),

which settles (10).
Now we prove

kpn,k) < p(n,k—1) for n>k>3. (11)
By Lemma 1, (11) is equivalent to

pn—1L,k—-1)<pn—1,k—-2) for n>k>3. 12)
For k=3, the inequality in (12) is implied by (10). Assume (12) for a certain k>3 (and all
n=> k). For this k (and all n > k) we then have inequality (11) satisfied, which clearly implies
p(n, k)<p(n, k—1); and this is nothing else than (12) with k—1 replaced by k. Thus the

inequality in (12) results by induction for all k>3 (and all n> k). Hence, (11) is proved.
From (11) we obtain by obvious induction

2
p(n, k) < Fp(n, 2) for n=k>2.

Fix m>2. We get for any n>m

i n 1 2p(n, 2 1
S pmi<2pn2 ¥ 22 1
k=m+1 k=m+1 k! m-m! m!

Hence, by (1),
m 1
2 pink)>1——.
k=0 m!
Letting n— oo and then m - o0 we obtain
2 =1,
k=0

The opposite inequality (3° p, <1) also holds; it follows from (1) e.g. by Fatou’s lemma.
The desired equality (9) is established.
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The final conclusion

1
D =e—I;T for k=0,1,2,....

is a direct consequence of the relations (8) and (9).
Marcin E. Kuczma, Institute of Mathematics, University of Warsaw
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Kleine Mitteilungen

Eine Bemerkung tiber Iterationsverfahren

In dieser Note soll an Beispielen gezeigt werden, dass eine in der Literatur der numeri-
schen Mathematik (etwa in [1], [2]) oft vorgebrachte Idee zur Konvergenzbeschleunigung
fiir Iterationsverfahren sogar zu deren Divergenz fithren kann.

Dort wird vorgeschlagen fiir das Iterationsverfahren

Xiy1 = P(x;) (1)

mit x =Y, x?,.. x")eR", & R"->R"
die Konvergenz zu verbessern, indem dieses in
1 =1
xM, =@M (xB .. xmID XM x™) m=1,2,..,n (2)

abgedndert wird. Die verbesserten Werte sollen also komponentenweise sofort zur weite-
ren Rechnung verwendet werden. Auch eine andere Komponentenreihenfolge im Sinne
einer optimalen Auswahlstrategie mit Blick auf eine bessere Konvergenz sei denkbar.
Die Variante (2) kann sogar im konvergenten Fall des gewdhnlichen Verfahrens (1) zur
Divergenz fiihren. Die vorgeschlagene Methode (2) erfordert nebst den tiblichen Konver-
genzbedingungen von (1) (Kontraktionseigenschaften im linearen Fall) [3] von Fall zu
Fall gesonderte Untersuchungen. Dies demonstriert fiir n=2 das lineare

Beispiel 1. Die Iterationsfolge

—08 —04
xi+1=Axi mit A=< )

0,5 —0,5

ist fiir jeden Startwert x, € R? (linear) gegen den einzigen Fixpunkt (0, 0) konvergent, da
fiir die Norm ||4|| = Hmnazc1 lAx| =409 <1 gilt.
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