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On a measure of axiality for triangulär domains

Abstract. A measure of axial symmetry for triangles T m E2 is studied, with the function
/(T) max{[T*]/[T] T* is axial and T* cz T} chosen as a measure of axiality, where

[T] and [T*] denote the area ofthe triangle and ofthe axially symmetne oval, respectively
The greatest lower bound, gA inf{f(T) T is a tnangle in£2} 2 (j/2 — 1), is approached

as a hmit The least axial triangle is a triangle whose altitude h is arbitranly close to zero
and whose sides are in the ratio (j/2 — 1) 1 j/2 in the hmit of h 0

1. Introduction

Ovals in the euchdean plane E2 are compact convex sets with interior points An oval can
be symmetne with respect to a point (centrally symmetne or centric) or a lme (axially
symmetne or axial) Measures of centrahty for convex sets have been cntically reviewed
by Grunbaum [7] Measures of axiality for ovals have been investigated by Nohl [9],
Krakowski [8], Chakerian and Stein [2], and de Valcourt [3-5] In this paper we describe

a measure of axiality for triangles - the Simplexes in E2
Let K' denote the mirror image (enantiomorph) of an oval K obtained by reflection about
a line k through an interior point Let X* Xn_.',a convex set, and P Kkj K' Then
K* a K and P 3 K are both necessarily axial, whereas K and K' are axial if and only
if there exists a k (symmetry axis or mirror line) for which K* P K K' In what
follows, the chosen measure of axiality is the continuous real-valued function f(K)
defined on the class K2 of all ovals K in E2 by

f(K) max{[K*]/[K] K* is axial and K* c K},

where [K] and [K*] denote the areas of the corresponding ovals [3, 4]
This function has the following properties

(1) 0</(K)< 1 for every oval K e K2,
(2) f(K) 1 if and only if K is axial,
(3) f(K) is similanty-invanant
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2. Maximal overlap ratios for enantiomorphous triangles

Let T denote a triangulär oval, T' its enantiomorph, and T* the intersection T n T' of
the enantiomorphous triangles. When T' is generated by reflection about a line k through
an interior point of T, then T* is an axial polygon inscribed in T and T'9 and k is its

symmetry axis.

Alternatively, T* may be generated simply by overlapping T and T"; in that case T* is

not necessarily axially Symmetrie. However, Giering [6] has shown that maximal overlap
of enantiomorphous triangles obtains only if T* is axial and the sides of T* are segments
of all six sides of the two overlapped triangles. Triangulär intersections are ipso facto
excluded for non-axial triangles, and it remains to discuss quadrilateral, pentagonal, and
hexagonal intersections that satisfy Giering's conditions.

(a) Quadrilateral intersections. If the intersection of T(ABC) and T'(A'B'C) is quadrilateral,

maximal overlap under Giering's conditions requires k to be the bisector of the
shared angle. We choose the shared angle a opposite side a (Figure 1), and b, c as the two
sides of T whose ratio is closest to unity, with b < c. It is then easily seen that

fx(T) max{[T*]/[T]: T* is an axial quadrilateral and T* c T}

—^—, with l<v- (2-1)
<

c b

k

A/A'

Figure 1

(b) Pentagonal intersections. For a pentagonal intersection of T and T', maximal overlap
under Giering's conditions requires k to be perpendicular to the shared side, c (Figure 2).

2b cos ol

With reference to Figure 2, for 1 < < 2 (acute angle at B) P is the projection of
c

t 1 2 b cos a
vertex C onto side c, and t is a segment of c, with 0 < — < —. For 2 < (obtuse

c 2 c
angle at B), P is the projection of vertex C onto an extension of c, and t is negative. Let
x, with 0<x<c — 2t, denote the segment of c that is not coextensive with c', the side
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opposite C The mtersection T* is the pentagon BDED B, and the overlap ratio is

[T*] (c + x)2 2x2

[T] 2c(c-t) c(c-2t)

c(c-2t)This ratio is maximal for x ¦

3c-2t
and it follows that

t H
Figure 2

/2(T) max{[r*]/m

2c
—, with -<-,3c — 2t c 2

T* is an axial pentagon and T* cz T}

1

(2 2)

with (2 2) equivalently expressed as

1 + -

2 b cos a
' with 1 <

2b cos a
(2 3)

where b AC and cc CAB as shown in Figure 2

t
It is obvious that f2(T) is achieved when c is chosen as the side for which — is closest

1 2b cosa c

to — (or is closest to 1)

(c) Hexagonal intersections Two alternatives are distinguished [6] if T* is hexagonal the

six sides of T* belong alternately to T and T'9ie, no two adjacent sides of T* belong
to one triangle (alternant hexagonal intersection), or one pair of adjacent sides in T*
belongs to T and another pair belongs to T' (nonalternant hexagonal intersection) We

consider the latter case first
In Figure 3, Tn* is the hexagon CEFGCD, and k is a bisector of the inscribed square
EFGD [6] Without loss of generality, let us assign unit dimensions to the square Then
c 1 + x + y, where c is the side of T that is colhnear with a side of the square, and x and
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D,'

H
h^x-*-H 1 4-

Figure 3

-H
-H

y are variables. In terms of these variables the overlap ratio is given by

[Th*]
-, with l<y and 0<x<y.

[T] 1+x + y'

With reference to Figure 3, BC a<c for every 1 <y and 0<x<y. Hence

x + y >
x + y

j/l+x2
and

1+x + y c c"
1 + - 1 + —

a b

where c" and b" are sides of the triangle such that — is closest to 1 and b" < c".
b"

By comparison with (2.1) it follows that nonalternant hexagonal intersections are incapable
ofyielding/(T).
We next consider the case of alternant hexagonal intersections. To achieve maximal
overlap, two additional conditions have to be satisfied [6]: (i) two enantiomorphous
triangles abc and a'b'c' in the interior of T* (Figure 4), which are similar to and share

one side with T and T'9 respectively, have a vertex in common that lies on k; (ii) the three
lines ma, mb, and mc, which are perpendicular to and pass through the midpoints of
alternating sides of T*, meet at a common point in the interior of T*.
We define

f3(T) max{[T*]/[T]: T* is an axial alternant hexagon and T* c T}.
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It can be shown that /3(T) 2/ju, where \i is the ratio of magnification (or scaling factor)
that relates similar triangles: AB uc9 AC \ib,BC \ia. In terms of the quantities in
Figure 4:

p l +
asm 6 b sin 6

+ —
csinß c sin a

(2.4)

mb

Figure 4

For axial (isosceles or equilateral) triangles, T* is axial and centric, \i 3, and f3(T) 2/3.
This result accords with a finding by Besicovitch [1] that the largest value of the area of
a centric oval inscribed in a triangle of area a is 2 a/3. However, for non-axial triangles
T* cannot be centric.
We shall now prove that for all triangles f3(T)<2/3, i.e., that ß>3. After appropriate
substitutions in (2.4) this assertion takes the form

a2 sin 6 + b2 sin (j) > 2ab sin
e+<t>

(2.5)

7i nIt is obvious that if y —, ma, mb, and mc meet at the midpoint of c and 0 (/> =—.

Therefore (2.5) is always satisfied. The condition that the three lines ma,mh, mc meet at
a common point in the interior of T* is fulfilled if and only if

a

17
COS (j)

cos 0
(2.6)

Combining (2.5) and (2.6) we obtain

cos <f) sin 9

cos 6
+ sin (f> — 2

cos6\2 fß + d)

27 ' "sin
cos 0

>0.
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71 KThat this relationship is true for any 6 and </> in the domains —<0<n and —<<j)<n

defined by the constraints of the problem can be shown by elementary means. This
completes the proof of the assertion. Accordingly

/3m<|
for all alternant hexagonal intersections of enantiomorphous triangles. Furthermore,
since, for every T9fx(T) and f2(T) are both equal to or greater than 2/3 for quadrilateral
and pentagonal intersections, respectively, it follows that alternant hexagonal intersections

are also incapable of yielding f(T).

3. Greatest lower bound of f(T) for triangles

We have seen that only quadrilateral and pentagonal intersections, with shared angles
and shared sides, respectively, need be considered as candidates for f(T). Moreover, in
order to achieve the greatest lower bound of f(T) we seek the condition under which

A(T)=f2(T).
c

Let us take c and b as the sides of a triangle, with b <c, such that — is closest to 1. Then,
b

according to (2a), only one quadrilateral intersection has to be considered:

However, three alternatives need to be considered for pentagonal intersections (2 b):

2
_

2b" cos oc"

2i
1 +

^(r)= 2fr" cos«»'
Wkh ^—F- ^>

where c" is the shared side and ot" is the angle subtended by b" and c".

(a) Pentagonal intersection with shared side a. For this intersection, fx (T)=f2(T) takes the
form

2 2
t 2ccosj5 ^with 1 < < 2

c
_

2c cosß
1 + - 1 + -b a

This equation is satisfied for either an isosceles triangle (b c) or for a scalene triangle
with

6
2c cos ß j/2 Q j/3

a - 2 ~-<cosß<*---.4cos20-r 4cos2ß-r 2 ~ r~ 2
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c
Further, since — is closest to 1, it follows that

b

-<]/2^oYß

and, in addition, that

j/2 j/5 + 1
1— < cos ß < £

2 4

Therefore

/(T) -?-_>
1 + f. i+j/2^ 1+iA/sTi

(b) Pentagonal intersection with shared side b. For this intersection, fx(T)=f2(T) takes
the form

2 2 2a cos y
with 1< —-<2.

c 2 a cosy

This equation is satisfied for any triangle with c 2a cos y and cos y <\. However, no

such triangle, with the exception of the equilateral triangle, satisfies the condition that —

is closest to 1.

Therefore f(T) l.

(c) Pentagonal intersection with shared side c. For this intersection, fx (T)=f2(T) takes the
form

7 7 2b cos a
with 1 < < 2

c 2 b cos a
1 + T- 1 +

b c

which can be expressed as

— l/2 cosa, with 4^c°sa<l- (3.1)

Therefore

/•(D -?- ^ >—^=- 2(1/2-1). (3.2)

j £ 1+1/2 cosa l+j/2
b
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Since

2(|/2-l)< 7^=<1
i+iM+i

2

it follows that the greatest lower bound of f(T) is 2(j/2-l).
Equation (3.1) gives the unique geometry of a triangle T, with a given — or a given oc, that

b

corresponds to the lowest value of f(T) for all possible intersections of T and its
enantiomorph under conditions of maximal overlap.
Let #A denote the greatest lower bound of f(T). Then

gA inf {/(T): T is a triangle in E2}.

As seen from (3.2), for the general triangle the infimum of f(T) corresponds to a 0.

Therefore the greatest lower bound is approached as a hmit. Indeed, the similanty-invan-
ance of f(T) implies [7] that K2 is not a compact space and that an extremal triangle for
which f(T) assumes a minimal value may not exist. Accordingly, for the general triangle
we have

f(T) >2()/2-1)k 0.828.

The least axial triangle is therefore a triangle whose altitude (n CP, Figure 2) is arbitrarüy

close to zero and for which — |/2 and —=j/2 — 1 in the limit of n 0. The same lower
b b

bound was found by Nohl [9] for centric ovals Kc, with equality for a special class of
parallelograms:

f(Kc)> 2(]/2-l).
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Klassische Beleuchtungsgeometrie im Ed (d ^ 2)

I. Bekannte Kurvenklassen in der Beleuchtungsgeometrie

des Ed (d ^ 2)

Untersuchungen zur Beleuchtung von Flächen sind naturgemäss mit der Physik und
Geometrie des dreidimensionalen euklidischen Raumes E3 verknüpft. Gerade in jüngster
Zeit hat die Beleuchtungsgeometrie eine merkliche Wiederbelebung erfahren, so dass auch

Betrachtungen, die über eigentliche Anregungen hinausgehen, nahegelegt werden. Dazu
gehört eine Übertragung klassischer Ergebnisse auf den beliebigdimensionalen Raum
Ed(d 2).

1. Begriffsweit mit </-dimensionalem Abstandsgesetz

Grundbegriffe der auf den E3 bezogenen Beleuchtungstechnik und -geometrie werden
sinngemäss aus [8] bzw. [3] übernommen. Der geometrische Raum Ed (d 2) sei bezüglich
eines kartesischen Normalkoordinatensystems durch den Raum der Koordinatenvektoren

Rd beschrieben, wobei Punkte durch ihre Koordinatenvektoren bezeichnet sind
(z.B. x). Weiterhin steht <•>•> für das innere Produkt, || • || für die euklidische Norm,
Sd~1: {weRd\ <n, «> 1} für die Einheitssphäre und o für den Koordinatennullpunkt des
Ed.

Ein orientiertes Flächenelement sei mit (x,u) bezeichnet, wobei xeRd den Träger und
ueS4"1 den Stellung und Orientierung des Elements angebenden Normaleneinheitsvektor

bedeuten. Ist (x, u) von t Parametern vx,..., vt abhängig, dann liegt (im Anschluss an
[6], S. 528 ff. und S. 33 ff., sowie [4], S. 102 ff.) eine Element-t-Schar vor.
Für {x(vx,..., vt), u(vx,..., vt)} seien alle wünschenswerten analytischen Eigenschaften
vorausgesetzt und uninteressante Ausartungen ausgeschlossen. Eine Elementschar ist ein
Element-1-Verein, wenn in jedem Punkt der Trägermannigfaltigkeit {x(vx, ...,vt)} die
durch u beschriebenen (d — 1)-Ebenen den Tangentialraum enthalten. Insbesondere sind
hier jene Elementvereine {x(vx), u(vx)} interessant, die im differentialgeometrischen Sinne

Streifen bilden (Streifenbedingung: <x, w> 0). Eine geometrische Zentralbeleuchtung des
Ed wird durch das Paar (q,I(n)) beschrieben, wobei qeRd die punktförmige Lichtquelle
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