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On a measure of axiality for triangular domains

Abstract. A measure of axial symmetry for triangles T in E, is studied, with the function
f(T )=mTa}x {{T*)/[T]: T* is axial and T* < T} chosen as a measure of axiality, where

[T]and [T*] denote the area of the triangle and of the axially symmetric oval, respectively.
The greatest lower bound, g ,= itTlf {f(T): T is a triangle in E,} =2 ([/5— 1), is approached

as a limit. The least axial triangle is a triangle whose altitude A is arbitrarily close to zero
and whose sides are in the ratio (\/5— 1):1 :‘/i in the limit of h=0.

1. Introduction

Ovals in the euclidean plane E, are compact convex sets with interior points. An oval can
be symmetric with respect to a point (centrally symmetric or centric) or a line (axially
symmetric or axial). Measures of centrality for convex sets have been critically reviewed
by Griinbaum [7]. Measures of axiality for ovals have been investigated by Nohl [9],
Krakowski [8], Chakerian and Stein [2], and de Valcourt [3-5]. In this paper we describe
a measure of axiality for triangles — the simplexes in E,.

Let K’ denote the mirror image (enantiomorph) of an oval K obtained by reflection about
a line k through an interior point. Let K* =K n K’, a convex set, and P=K u K'. Then
K* < K and P > K are both necessarily axial, whereas K and K’ are axial if and only
if there exists a k (symmetry axis or mirror line) for which K*=P=K=K'. In what
follows, the chosen measure of axiality is the continuous real-valued function f(K)
defined on the class K, of all ovals K in E, by

f(K)= max {[K*]/[K]: K* is axial and K* < K},

where [K] and [K*] denote the areas of the corresponding ovals [3, 4].
This function has the following properties:

(1) 0<f(K)<1 for every oval K € K,;
(2) f(K)=1 if and only if K is axial;
(3) f(K) is similarity-invariant.
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2. Maximal overlap ratios for enantiomorphous triangles

Let T denote a triangular oval, T' its enantiomorph, and T* the intersection T n T’ of
the enantiomorphous triangles. When 7" is generated by reflection about a line k through
an interior point of T, then T* is an axial polygon inscribed in T and T’, and k is its
symmetry axis.

Alternatively, T* may be generated simply by overlapping T and T’; in that case T* is
not necessarily axially symmetric. However, Giering [6] has shown that maximal overlap
of enantiomorphous triangles obtains only if T* is axial and the sides of T* are segments
of all six sides of the two overlapped triangles. Triangular intersections are ipso facto
excluded for non-axial triangles, and it remains to discuss quadrilateral, pentagonal, and
hexagonal intersections that satisfy Giering’s conditions.

(a) Quadrilateral intersections. If the intersection of T(ABC) and T'(A'B'C’) is quadri-
lateral, maximal overlap under Giering’s conditions requires k to be the bisector of the
shared angle. We choose the shared angle « opposite side a (Figure 1), and b, ¢ as the two
sides of T whose ratio is closest to unity, with b<c. It is then easily seen that

[i(T) = max {{T*1/[T]: T* is an axial quadrilateral and T* < T}

. with 1s—2—. 2.1)

Cc
14—
b

Figure 1.

(b) Pentagonal intersections. For a pentagonal intersection of T and T, maximal overlap

under Giering’s conditions requires k to be perpendicular to the shared side, ¢ (Figure 2).
2bcosa
With reference to Figure 2, for 1 < ——— < 2 (acute angle at B) P is the projection of
c
) ] ) t 2b cos a
vertex C onto side ¢, and ¢ is a segment of ¢, with0 < — < 5 For 2 < —— (obtuse
c c

angle at B), P is the projection of vertex C onto an extension of ¢, and ¢ is negative. Let
x, with 0 <x <c—2t, denote the segment of c¢ that is not coextensive with ¢’, the side
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opposite C'. The intersection T* is the pentagon BDED'B’, and the overlap ratio is

[T*]  (c+x)? 2x?
[T]  2c(c—1) clc=21)"
—2t
This ratio is maximal for x= %(c—-—z—}, and it follows that
c_

Figure 2.

[(T)= mqu{[T*]/[T]: T* is an axial pentagon and T* < T}

2 t 1
— % with f<—, (2.2)
3¢c—2t c 2

with (2.2) equivalently expressed as

2 . 2bcos a
= with 1<———

, 2.3
2b cos o c 23)

c

where b= AC and a=CAB as shown in Figure 2.

t
It is obvious that f,(T) is achieved when c is chosen as the side for which — is closest

1 2bcosa ¢
to 2 (or ——— is closest to 1).
c

(c) Hexagonal intersections. Two alternatives are distinguished [6] if T* is hexagonal: the
six sides of T* belong alternately to T and T, i.e., no two adjacent sides of T* belong
to one triangle (alternant hexagonal intersection), or one pair of adjacent sides in T*
belongs to T and another pair belongs to T’ (nonalternant hexagonal intersection). We
consider the latter case first.

In Figure 3, T,* is the hexagon CEFGC'D, and k is a bisector of the inscribed square
EFGD [6]. Without loss of generality, let us assign unit dimensions to the square. Then
c=1+4x+y, where c is the side of T that is collinear with a side of the square, and x and
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e c ~|

e X fe— ] ——fe—— y ———|
Figure 3.

y are variables. In terms of these variables the overlap ratio is given by

L _ 2
[T] 1+x+y

, with 1<y and O<x<y.

With reference to Figure 3, BC=a<c for every 1 <y and 0<x<y. Hence

x+y c 2 2 2
x+y>———l/2=;, and Ttxty . ¢~ &
1+x y 145 1+b"
a

”

where ¢” and b” are sides of the triangle such that ] is closest to 1 and b" <c”".

By comparison with (2.1) it follows that nonalternant hexagonal intersections are incapable
of yielding f(T).

We next consider the case of alternant hexagonal intersections. To achieve maximal
overlap, two additional conditions have to be satisfied [6]: (i) two enantiomorphous
triangles abc and a'b’c’ in the interior of T* (Figure 4), which are similar to and share
one side with T and T, respectively, have a vertex in common that lies on k; (ii) the three
lines m,, m,, and m_, which are perpendicular to and pass through the midpoints of
alternating sides of T*, meet at a common point in the interior of T*.

We define

f3(T)= ng_x{[T*]/[T]: T* is an axial alternant hexagon and T* < T}.

A
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It can be shown that f5(T)=2/u, where u is the ratio of magnification (or scaling factor)
that relates similar triangles: AB=puc, AC=ub, BC=pua. In terms of the quantities in
Figure 4:

sinf  bsi
a sin " sin ¢

p=1+ (2.4)

csinf  csina

Figure 4.

For axial (isosceles or equilateral) triangles, T* is axial and centric, u=3, and f;(T)=2/3.
This result accords with a finding by Besicovitch [1] that the largest value of the area of
a centric oval inscribed in a triangle of area a is 2a/3. However, for non-axial triangles
T* cannot be centric.

We shall now prove that for all triangles f;(T)<2/3, i.e., that u>3. After appropriate
substitutions in (2.4) this assertion takes the form

6
a®sin 0 + b2 sin¢22absin( ;¢> (2.5)
It is obvious that if y = 1?75, m,, m,, and m, meet at the midpoint of ¢ and 9=¢=12t—.

Therefore (2.5) is always satisfied. The condition that the three lines m,, m,, m, meet at
a common point in the interior of T* is fulfilled if and only if

a®> cosé 26
b2 cos@ \2.6)

Combining (2.5) and (2.6) we obtain

. 1
cos ¢ sin 0 +sin ¢_2(cos ¢)z - sin (0+¢) >0.

cos 0 cos 0 2
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That this relationship is true for any 6 and ¢ in the domains 12t—<9<7c and §<¢ <n

defined by the constraints of the problem can be shown by elementary means. This
completes the proof of the assertion. Accordingly

f3(T) <}

for all alternant hexagonal intersections of enantiomorphous triangles. Furthermore,
since, for every T, f,(T) and f,(T) are both equal to or greater than 2/3 for quadrilateral
and pentagonal intersections, respectively, it follows that alternant hexagonal intersec-
tions are also incapable of yielding f(T).

3. Greatest lower bound of f (7) for triangles

We have seen that only quadrilateral and pentagonal intersections, with shared angles
and shared sides, respectively, need be considered as candidates for f(T). Moreover, in
order to achieve the greatest lower bound of f(T) we seek the condition under which

[1(T)=f,(T).
Let us take c and b as the sides of a triangle, with b <c, such that % is closest to 1. Then,

according to (2a), only one quadrilateral intersection has to be considered:

2
fx(T)z‘—‘c‘-

1 —
t3

However, three alternatives need to be considered for pentagonal intersections (2b):

2 . 2b" cos a”
= —~, with 1<—-—
2b" cos a

"

c

f(T) = <2,

”

where ¢” is the shared side and «” is the angle subtended by b” and ¢”".

(a) Pentagonal intersection with shared side a. For this intersection, f, (T)=f,(T) takes the
form

This equation is satisfied for either an isosceles triangle (b=c) or for a scalene triangle

with
2 3
¢ 2ccos f l/‘scosﬁ<‘/—

b=— v . g= , <Y
4cos? f—1" T 4cos?p—1 2 2
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. C .
Further, since 3 is closest to 1, it follows that

<l/2cosf

i~ NN

and, in addition, that

Vo g Vot

TScosﬂ< 2
Therefore
2 2 2
f(T)= > > :
1+% 1+])/2cos B 1+l/1/§+1
2

(b) Pentagonal intersection with shared side b. For this intersection, f;(T)=f,(T) takes
the form

2 2 2
_  with 1< 22587
1+£ 1+£€_Cﬁ_y_

b b

This equation is satisfied for any triangle with c=2acosy and cos y < % However, no

such triangle, with the exception of the equilateral triangle, satisfies the condition that <
is closest to 1.
Therefore f(T)=1.

(c) Pentagonal intersection with shared side c. For this intersection, f; (T)=f,(T) takes the
form

2 = 2 , with IsmsL
c 2bcos o c
1+E 14—

C

which can be expressed as

%=|/2cosoc, with 1 <cosa<1. (3.1)
Therefore
2 2 2
f(T)= > =2()/2-1). (3.2)

1+%= 1+]/2cosa 1+1/i
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Since

2
2(/2-1) < ————<1,
141/ V35+1
2

it follows that the greatest lower bound of f(T) is 2(]ﬁ— 1).
Equation (3.1) gives the unique geometry of a triangle T, with a given % or a given a, that

corresponds to the lowest value of f(T) for all possible intersections of T and its
enantiomorph under conditions of maximal overlap.
Let g, denote the greatest lower bound of f(T). Then

gy = irTlf{f(T): T is a triangle in E,} .

As seen from (3.2), for the general triangle the infimum of f(T) corresponds to a=0.
Therefore the greatest lower bound is approached as a limit. Indeed, the similarity-invari-
ance of f(T) implies [7] that K, is not a compact space and that an extremal triangle for
which f(T') assumes a minimal value may not exist. Accordingly, for the general triangle
we have

f(T)>2()/2—-1)~0828.

The least axial triangle is therefore a triangle whose altitude (h= CP, Figure 2) is arbitrarily
close to zero and for which —lc;=1/§ and %= 1/5—1 in the limit of h=0. The same lower

bound was found by Nohl [9] for centric ovals K, with equality for a special class of
parallelograms:

f(K)=2(/2-1).
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Klassische Beleuchtungsgeometrie im E?(d = 2)

I. Bekannte Kurvenklassen in der Beleuchtungs-
geometrie des E?(d = 2)

Untersuchungen zur Beleuchtung von Flichen sind naturgeméss mit der Physik und
Geometrie des dreidimensionalen euklidischen Raumes E? verkniipft. Gerade in jiingster
Zeit hat die Beleuchtungsgeometrie eine merkliche Wiederbelebung erfahren, so dass auch
Betrachtungen, die iiber eigentliche Anregungen hinausgehen, nahegelegt werden. Dazu

gehort eine Ubertragung klassischer Ergebnisse auf den beliebigdimensionalen Raum
E‘(d = 2).

1. Begriffswelt mit d-dimensionalem Abstandsgesetz

Grundbegriffe der auf den E3 bezogenen Beleuchtungstechnik und -geometrie werden
sinngemdss aus [8] bzw. [3] iibernommen. Der geometrische Raum E?(d = 2) sei beziiglich
eines kartesischen Normalkoordinatensystems durch den Raum der Koordinatenvekto-
ren R* beschrieben, wobei Punkte durch ihre Koordinatenvektoren bezeichnet sind
(z.B. x). Weiterhin steht {(-»-) fiir das innere Produkt, | - | fir die euklidische Norm,
S~ 1:= {ue R*|{u,u)y = 1} fiir die Einheitssphdre und o fiir den Koordinatennullpunkt des
E°.

Ein orientiertes Flichenelement sei mit (x,u) bezeichnet, wobei xe R* den Triger und
uc S~ ! den Stellung und Orientierung des Elements angebenden Normaleneinheitsvek-
tor bedeuten. Ist (x, ) von ¢t Parametern v, ..., v, abhingig, dann liegt (im Anschluss an
[6], S. 528 ff. und S. 33 ff,, sowie [4], S. 102 ff.) eine Element-t-Schar vor.

Fir {x(v,,...,v), u(vy,...,v,)} seien alle wiinschenswerten analytischen Eigenschaften
vorausgesetzt und uninteressante Ausartungen ausgeschlossen. Eine Elementschar ist ein
Element-t-Verein, wenn in jedem Punkt der Trigermannigfaltigkeit {x(v,,...,v,)} die
durch u beschriebenen (d — 1)-Ebenen den Tangentialraum enthalten. Insbesondere sind
hier jene Elementvereine {x (v,), u(v,)} interessant, die im differentialgeometrischen Sinne
Streifen bilden (Streifenbedingung: (%,u) = 0). Eine geometrische Zentralbeleuchtung des
E* wird durch das Paar (g, I (n)) beschrieben, wobei g € R? die punktférmige Lichtquelle
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