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Kleine Mitteilungen

On an integral inequality

1. Introduction

The following is an interesting elementary inequality which was posed as a problem of
the 34th Putnam Competition 1973:

If / is differentiable on [0,1] with /(0) 0 and 0 < /' (x) < 1 for all x e [0,1] then

\j3(x)dx<(\f(x)dxj. (1)

Furthermore, the following inequality appeared as Problem P338 in Canad. Math. Bull.
26 (June 1983):
Let /: [0,1] -> R be differentiable such that /(0) 0 and 0 < /' (x) < 1 whenever x e [0,1].
If p > 1 then

\f(x)dx)P>p21^\f(x)2^ldx. (2)
0 / 0

For 0 < p < 1 the reverse inequality is valid.
Of course for p 2, (2) becomes (1).

In this note we shall prove extensions of inequalities (1) and (2).

2. Results

i) Let a > 0 and w: [0, a] -? [0, oo) be an integrable function and/: [0, a] -+ [0, oo) be
differentiable such that /(0) 0. We define

F(x):=(jw(r)/(0^ (3)

Then F(0) 0 and

F(x) pw(x)/(x)

Let p > 1 and put

G(x):=)w(t)f(t)dt-f2(x)/2.

rtw(t)/(t)city"1-21-VW2(p-1)l.
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Then G (0) 0 and G' (x) f (x) [vv (x)-f (x)]. If there holds

0</'(x)<w(x) (4)

we get G' (x) > 0. Thus we conclude G (x) > 0, F (x) > 0 and finally F (x) > 0. If

f'(x)>w(x) (5)

we get G' (x) < 0 and as above F(x) < 0.

Analogously we can consider the cases 0<p<l orp<0. Therefore the following
theorem is valid.

Theorem 1

Let f: [0, a] -> R be differentiable such that f(0) 0. Then

\w(x)f(x)dx)\p21^]w(x)f(x)2^1dx (6)G<

ifO < f (x) < w (x) and p> 1 or p <0or f'(x)>w(x) and 0 < p < 1. The reverse inequality

is valid for 0 < f'(x) < w(x) and 0 < p < 1 or f'(x) > w(x) and p > 1 or p < 0. ¦
(a 1 and w (x) 1 yield inequality (2).)

ii) For another generalisation of (1) let M > 0 and

/(0) 0 and 0</'(x)<_M for all xe[09a]. (1)

X

Then 0 < f(x) < Mx and 0 < J/(r)dt <Mx2/2 for 0 <> x < a.
o

We now define (for suitable p and r)

F(x):=(jf(t)dtJ-]f(tfdt.

Then F(0) 0 and F(x) f(x)g(x), where

g{x) p(]f(t)dtj~l-f(xrl.

Clearly, g(0) 0 and

g'(x) f(x)lp(p - l)(]f(t)dtj~2-(r - l)/(xrVM]-
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Let 1 < p < 2 and r > 3. Then

^(x)>/(x)[p(p-l)(Mx2/2F-2-(r-l)M-2x-3]
/(x)x2p-4Mr-2[p(p-l)22-pMp-r-(r-l)xr-2p+1].

Thus, if

0 < a < [p(p - l)22~pMp~r/(r - i)]i/<r-2F+i) (8)

we have g' (x) >0,g (x) > 0, F (x) > 0 and finally F (x) > 0 Therefore we have proved the

following

Theorem 2

Let 1 < p < 2 and r > 3. The differentiable function f: [0, a]-+R satisfies f(0) 0 and

0<f'(x)<M for all0<x<a,a subject to (8). Then

]f(x)dx)P>]f{.
,0 / o

xfdx. (9)

Iff (x) > M the reverse inequality holds true. ¦
For M 1 we have a result of P. R. Beesack (see [1]).

Remark. For another generalisation of (1) see [2] and [3].

Josip E. Pecaric, University of Zagreb
Walther Janous, Ursulinengymnasium Innsbruck
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