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Moreover, this value of gn appears to be the greatest possible in the context of the
generahzed Main Theorem.

A. Bezdek, Cornell University, Ithaca and Hungarian Academy of Sciences, Budapest
W. Kuperberg, Auburn University, Auburn
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Konvergenz von Teilen der harmonischen Reihe

1. Einleitung

Es seien M die Menge der natürlichen Zahlen, in deren Dezimaldarstellung keine «9»

auftritt, und P die Menge der Primzahlen. Dann ist wohlbekannt, daß (i) _£ n'1 konver-
neM

giert, wobei (ii) _£ n"1 divergiert. Ergebnis (i) geht wohl auf Kempner (1914) zurück;
neP

einen einfachen Beweis, der die Abschätzung £ n"l < 90 liefert, findet man in Honsber-
neM

ger (1982), S. 89 ff. Irwin (1916) und Wadhwa (1975) geben untere und obere Schranken
für die analoge Reihe an, die durch Weglassen aller eine «0» enthaltenden Terme entsteht.
In dieser Arbeit wollen wir für eine ganze Klasse nach diesem Muster gebildeter Reihen
eine einfache Abschätzung herleiten. Dieses Ergebnis werden wir dann anwenden, um zu
zeigen, daß es für jedes k > 0 eine Primzahl gibt, deren Dezimaldarstellung eine gegebene
Ziffer (etwa «9») mehr als k-mal enthält, und um eine obere Schranke für die kleinste

derartige Primzahl zu gewinnen.

2. Teilreihen von _£ n l

Im folgenden seien eine natürliche Zahl d > 2, ein; e {0,1,..., d — 1} und eine ganze Zahl
k>0 fest gewählt. Für jedes neN gibt es eine eindeutige d-adische Darstellung
n a0 + axd + a2d2 + mit a0,als ...e{0,l, ...9d— 1}. Die Koeffizienten at nennen
wir die Ziffern von n. Sei nun M die Menge aller natürlichen Zahlen, in deren d-adischer

Entwicklung die Ziffer j höchstens k-mal auftritt.
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Satz: Es gilt

£ n-1<dk+i(l+ln(dk+1-l))<dk+1(l+(k + l)lnd). (1)
neM

Beweis: Sei für beliebiges n e {0,1,2,...}

An {ndk + 19ndk+1 + l9...9(n + l)dk+1-l}. (2)

Die Menge A„ besteht aus dk+x aufeinanderfolgenden ganzen Zahlen. Folglich existiert
für jede beliebige Kombination a09...9ak von k + l Ziffern aus {0,1,..., d — 1} ein
Element aus An mit diesen Endziffern. Insbesondere gibt es eine Zahl aus An9 die die Ziffer

j an den letzten k + l Stellen ihrer d-adischen Darstellung hat. Daher besitzt An n M
höchstens dk+1 — 1 Elemente. Für n e N\M gilt An n M 0, denn jede Zahl aus An hat
mindestens soviele Ziffern; wie n, falls n _> 1.

Wir setzen

*„= I r\ n^O. (3)

Dabei sei die leere Summe als 0 definiert. Für neM folgt offenbar

sn<(dk+1-l)/ndk+1. (4)

Für beliebiges i > 2 ergibt sich nun

Z «_1=zY Z »_1)= Z ()+Z()
neM l 0\neAinM / neA0nM i=l

_*+_-l
< Z w_1+ £ 5,

11=1 l__/<!
I -4inikf*0

^fc+1-l
<l+ln(^+1-l) + ——— Z n"1. (5)

U neM
n<idk+l

Dabei haben wir für die zweite Ungleichung die Beziehung 2~1 + 3~1+...+iV"1
< ln(iV — 1) sowie (4) ausgenutzt. Aus (5) folgt

Z n-1<ifc+1(l+ln(d*+1-l)). (6)
neM

n<idk+i

Da (6) für jedes i _> 2 gilt, liefert der Grenzübergang i -> oo die Behauptung.

Beispiel: Sei d 10, j 9. Für die harmonische Reihe ohne Brüche, die eine Ziffer «9»

enthalten, ergibt der Satz die obere Schranke 10(1 + ln 9) 31,97.... Lässt man nur die
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Brüche weg, die mindestens zweimal die Ziffer «9» enthalten, so ist die entstehende Reihe
kleiner als 100(1 + ln99) < 5596.

Korollar: Die Teilmenge P von M habe die Eigenschaft

Z n_1 oo.
neP

Dann gibt es eine Zahl p0eP, deren d-adische Darstellung mindestens (k + l)-mal die

Ziffer j enthält und für die

/(Po):= Z n~1<dk+1(l+(k + l)lnd) (1)
neP

n<p0

gilt.

Beweis: Da P nicht in M enthalten sein kann, gibt es ein p0 e P, das (k + l)-mal die Ziffer

j enthält. Sei p0 mit dieser Eigenschaft minimal gewählt. Es folgt:

I«"1^ n~1<dk+1(l+(k + l)lnd).
neP neM

n<po n<po

Die Abschätzung (7) gilt für jede Ziffer je{0,1, ...9d— 1}. Somit enthält die Menge
(peP|/(p) < dk+1 (1 +(k + l)lnd)} für jede Ziffer;e{0,1, ...,</-1} eine Zahl, in deren
df-adischer Darstellung; mindestens (k + l)-mal auftritt.
Die Abschätzung (7) ist oft zur Bestimmung einer oberen Schranke für p0 nützlich. Falls
zum Beispiel P die Menge der Primzahlen ist, kennt man das Verhalten von f(p) für
große Werte von p. Im allgemeinen kann man f(p) mit Hilfe der oft leichter zugänglichen
Funktion

n (ri) Anzahl der i e P mit i ___ n

nach unten abschätzen. Man setze nämlich In l für neP und In 0 sonst. Dann ist
n(n) Ix + + !„ und

2< 2<~1/1 1 \/(2f)= z/n/" 2-<'7ü(2<)+ z rrrWn=i n=i \n n + i)
i-l 2V1-1/J 1 \
Z Z (--rrrH»)
v=i «=2^ \n n + lj

>£ 7r(2v)(2-v-2-v"1)
v=l

\l?.2-"K(r). (8)l v=l
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Insbesondere folgt

1 [log2Po]-l
/(Po)>/(2llog"'ol)>i Z 2-M2*). (9)

z v 1

Somit ergibt sich für p0 die Beziehung

[log2 Pol-1
£ 2-"%(T)<2dk+1(l+(k + l)lnd). (10)

v=l

3. Primzahlen mit vielen Neunen

Sei nun P die Menge der Primzahlen. Dann gilt bekanntlich

/(Po)= Z p-l^ln(lnp0) + a + 0(e-^^'2) für p0 -+ oo (11)
peP
n<p0

(Prachar (1957), S. 80). In (11) ist c eine positive Konstante und

a 7-Z Z ~>0, (12)
pePro 2 mp

wobei y die Eulersche Konstante ist. Nach dem Korollar gibt es für beliebiges k > 0 und

je {0,1,..., d — 1} eine Primzahl p0, in deren d-adischer Entwicklung die Ziffer; mindestens

(k + l)-mal vorkommt. Für hinreichend großes k gilt f(p0)> ln(lnp0), so daß nach

(7)

p0<exp(^fc + 1)dk+1exp(^+1)) (13)

folgt. Die obere Schranke in (12) ist recht groß; für d 10 und fe 9 ist sie z.B. gleich

jQlO<lo + lnlo>lololnlO

also eine Zahl mit (in Dezimalschreibweise) mindestens 2,303 • 101 '2303 1011 Ziffern.

W. Stadje, Universität Osnabrück
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