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Moreover, this value of g, appears to be the greatest possible in the context of the
generalized Main Theorem.

A. Bezdek, Cornell University, Ithaca and Hungarian Academy of Sciences, Budapest
W. Kuperberg, Auburn University, Auburn
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Konvergenz von Teilen der harmonischen Reihe

1. Einleitung

Es seien M die Menge der natiirlichen Zahlen, in deren Dezimaldarstellung keine «9»
auftritt, und P die Menge der Primzahlen. Dann ist wohlbekannt, daB (i) 3. n~! konver-

neM
giert, wobei (ii) 3 n~! divergiert. Ergebnis (i) geht wohl auf Kempner (1914) zuriick;
neP
einen einfachen Beweis, der die Abschitzung 3 n~! < 90 liefert, findet man in Honsber-

neM

ger (1982), S. 89 ff. Irwin (1916) und Wadhwa (1975) geben untere und obere Schranken
fiir die analoge Reihe an, die durch Weglassen aller eine «0O» enthaltenden Terme entsteht.
In dieser Arbeit wollen wir fiir eine ganze Klasse nach diesem Muster gebildeter Reihen
eine einfache Abschitzung herleiten. Dieses Ergebnis werden wir dann anwenden, um zu
zeigen, daB es fiir jedes k > 0 eine Primzahl gibt, deren Dezimaldarstellung eine gegebene
Ziffer (etwa «9») mehr als k-mal enthilt, und um eine obere Schranke fiir die kleinste
derartige Primzahl zu gewinnen.

2. Teilreihen von Y n~!

Im folgenden seien eine natiirliche Zahld > 2,einje {0,1,...,d — 1} und eine ganze Zahl
k>0 fest gewdhlt. Fiir jedes neIN gibt es eine eindeutige d-adische Darstellung
n=a,+a,d+a,d*+... mit ag,a,,...€{0,1,...,d — 1}. Die Koeffizienten a; nennen
wir die Ziffern von n. Sei nun M die Menge aller natiirlichen Zahlen, in deren d-adischer
Entwicklung die Ziffer j hochstens k-mal auftritt.
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Satz: Es gilt

Snl<d* 1+ In(d* - 1) <d** (1 + (k + 1)Ind). (1)

neM
Beweis: Sei fiir beliebiges n€{0,1,2,...}
A, ={nd* L nd* 41, (n+ 1)d — 1}, )

Die Menge A, besteht aus d**! aufeinanderfolgenden ganzen Zahlen. Folglich existiert
fiir jede beliebige Kombination a,, ..., a, von k + 1 Ziffern aus {0,1,...,d — 1} ein Ele-
ment aus A4, mit diesen Endziffern. Insbesondere gibt es eine Zahl aus A4,, die die Ziffer
j an den letzten k + 1 Stellen ihrer d-adischen Darstellung hat. Daher besitzt 4,n M
héchstens d**! — 1 Elemente. Fiir ne N\M gilt A, " M = @, denn jede Zahl aus A4, hat
mindestens soviele Ziffern j wie n, falls n > 1.

Wir setzen

s,= ¥ il n>0. 3)

icAnnM

Dabei sei die leere Summe als 0 definiert. Fiir ne M folgt offenbar
s, < (d**! —1)/nd**1. @

Fiir beliebiges i > 2 ergibt sich nun

i i-1
> nts ( > n'1)= S O+ 2()

neM 1=0 \ned;n M neAgn M
"<idk+1
dk+1—1
< ¥ nt+ T 5
n=1 1gl<i
l:Ang*Q
k+1
<1+In@* -1+ Y nl (5)
dk+1 neM
n<idett

Dabei haben wir fiir die zweite Ungleichung die Beziehung 27! +4+37'4 .. +N~°!
< In(N — 1) sowie (4) ausgenutzt. Aus (5) folgt

x n~!<d* 11 +In@*! —1)). ©6)
n<idk+l

Da (6) fiir jedes i > 2 gilt, liefert der Grenziibergang i — co die Behauptung.

Beispiel: Sei d = 10, j = 9. Fiir die harmonische Reihe ohne Briiche, die eine Ziffer «9»
enthalten, ergibt der Satz die obere Schranke 10(1 + In9) = 31,97..... Lisst man nur die
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Briiche weg, die mindestens zweimal die Ziffer «9» enthalten, so ist die entstehende Reihe
kleiner als 100(1 + In 99) < 5596.

Korollar: Die Teilmenge P von N habe die Eigenschaft

Snl=00.
neP

Dann gibt es eine Zahl py€ P, deren d-adische Darstellung mindestens (k + 1)-mal die
Ziffer j enthdlt und fir die

f(po)i= X n~<d*'(1+(k+1)Ind) )]

neP
n<po

gilt.

Beweis: Da P nicht in M enthalten sein kann, gibt es ein p, € P, das (k + 1)-mal die Ziffer
j enthdlt. Sei p, mit dieser Eigenschaft minimal gewéhit. Es folgt:

Snl< Y nt<dt (1 + (k+1)Ind).
neP neM
n<po n<po

Die Abschitzung (7) gilt fiir jede Ziffer je{0,1,...,d — 1}. Somit enthdlt die Menge
{peP|f(p) <d**'(1 + (k + 1)In d)} fiir jede Ziffer je {0, 1, ..., d — 1} eine Zahl, in deren
d-adischer Darstellung j mindestens (k + 1)-mal auftritt.

Die Abschitzung (7) ist oft zur Bestimmung einer oberen Schranke fiir p, niitzlich. Falls
zum Beispiel P die Menge der Primzahlen ist, kennt man das Verhalten von f(p) fiir
groBe Werte von p. Im allgemeinen kann man f ( p) mit Hilfe der oft leichter zugénglichen
Funktion

n(n) = Anzahl der ieP mit i<n

nach unten abschdtzen. Man setze nimlich I, =1 fiir ne P und I, = 0 sonst. Dann ist
nny=1,+...+1,und

n=1

-1 v+l
-3 (G- )

v=1 n=2v n n+1

10)= £ 1n=2"5@)+ X (3- i )nto)

> 'S @)t —2-Y
v=1

S;l 27 (2Y). (8)

| =
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Insbesondere folgt

[log2 pol — 1

f(po) 2 fQUmr > 25 2 v (2) ©)

v=1
Somit ergibt sich fiir p, die Bezichung

[log2 po] — 1
S 27n@)<2d*'(1 + (k + 1)Ind). (10)

v=1

3. Primzahlen mit vielen Neunen

Sei nun P die Menge der Primzahlen. Dann gilt bekanntlich

f(po)= T p~'=In(lnpy) +a+0( ") fir p,— oo (11)
peP

n<po

(Prachar (1957), S. 80). In (11) ist ¢ eine positive Konstante und

© 1
a=y— 3% ¥ —>0, (12)

peP

wobei y die Eulersche Konstante ist. Nach dem Korollar gibt es fiir beliebiges k > 0 und
je{0,1,...,d — 1} eine Primzahl p,, in deren d-adischer Entwicklung die Ziffer j minde-
stens (k + 1)-mal vorkommt. Fiir hinreichend groBes k gilt f'(p,) > In(In p,), so daB nach

@)
po < exp(d** V" Texp (@**1)) (13)

folgt. Die obere Schranke in (12) ist recht groB; fiir d = 10 und k =9 ist sie z.B. gleich

10(10+1in10)10104, 19
10 ,

also eine Zahl mit (in Dezimalschreibweise) mindestens 2,303 - 101:2303-10"" 7Ziffern,

W. Stadje, Universitdt Osnabriick
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