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Placing and moving spheres in the gaps
of a cylinder packing*)

Abstract. The closeness of a packing is defined as the reciprocal of the supremum of the
radius of a ball contained in the complement of the packing. It is known that the
maximum closeness of any packing of R* with infinite circular cylinders of radius 1 equals
0" 1=3+2 \/5, and, up to an isometry, the packing of maximum closeness is unique. We
prove that if in a packing no two cylinders are parallel, then, for any two balls of radius
¢ non-overlapping with any of the cylinders, each of the balls can move between the
cylinders to assume the other ball’s place, without overlapping with any of the cylinders
during the motion.

Introduction

First, let us describe the content of this paper in a less rigorous, but more intuitive and
visual manner.

Imagine a forest in which trees are cylinders, each being infinite in both directions and
of unit radius. Two such cylinders are allowed to touch, even along a line, but not to
overlap. There are various types of forests possible. If all cylinders are parallel, we say
that the forest is straight, and if no two cylinders are parallel, we say that the forest is
chaotic. A straight forest in which every cylinder touches six others is of special impor-
tance to us. We will call it the thickest forest. Our forests shall be inhabited with
porcupines which are animals of spherical shape. If the ball centered at P and with radius
r does not invade any of the cylinders of a given forest, then we say that there is room
at P for an r-porcupine.

Notice that the maximum radius of a porcupine that can live in the thickest forest is

0= (2/\/5) — 1 (see Fig. 1).

Figure 1.

*) Partially supported by the Hungarian National Foundation for Scientific Research, grant number 1238.
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We prove that in every forest there is room for a g-porcupine and, in fact, every point
which lies outside all of the cylinders is within ,/2/3 = 0.816 ... from a point at which
there is room for a g-porcupine. Moreover, if there is no room for a porcupine of size
greater than g, the forest is the thickest one. In this part we duplicate to some extent the
result of [4], but our approach is slightly different and we use it for further conclusions.
Turning to chaotic forests, we prove that a g-porcupine can move freely in it, avoiding
all cylinders and being able to arrive at any place at which there is room for it.

A reader familiar with discrete geometry will recognize the concept of packing and its
closeness in the above description. Given a set K, then a family of sets K;, each congruent
to K, whose interiors are disjoint, is called a packing with copies of K (A forest is a packing
with copies of a unit cylinder). Sometimes we identify the packing with the union of all
of its members. This identification creates no confusion if K is the closure of its interior.
The closeness of a packing is measured with the reciprocal of the supremum of the radius
of a ball contained in the complement of the packing (see L. Fejes Toth [3], A. Bezdek [1],
K. Boroczky [2], and J. Horvath [4] for definitions and results concerning this notion).
The following sections will be devoted to stating and proving the results described in the
introduction, in a more rigorous manner and in the usual, geometric terminology. The
number (2/\/5) — 1, crucial in our investigations, will be consistently denoted by g.

1. Lemmas

Lemma 1. Among all triangles with all sides of length > 2, the equilateral triangle of side
2 is contained in a circle of minimum radius.
This lemma is a well-known fact in elementary geometry with an easy proof.

Lemma 2. If a disk of radius r intersects three non-overlapping unit disks (all in one
plane), then r > and the equality occurs only if the three unit disks are tangent to each
other.

This lemma follows directly from Lemma 1.

Lemma 3. If a ball of radius r intersects three non-overlapping unit balls (in 3 dimensions)
then r > o, and the equality occurs only if the three unit balls are tangent to each other.

Proof. This lemma is reduced to Lemma 2 by projecting the four balls on the plane of
the centers of the three unit balls.

Main Lemma. If a ball of radius r intersects of three non-overlapping unit cylinders, then
r > o and the equality occurs only if the three cylinders are parallel and tangent to each
other.

Proof. In each of the cylinders there lies a unit ball (inscribed in the cylinder) which meets
the ball of radius r (see Fig. 2). Obviously, the three unit balls do not overlap. This reduces
the proof to Lemma 3. Notice that if the three unit balls are tangent to each other, then
the corresponding unit cylinders are perpendicular to the plane of the centers of the balls
(and therefore parallel to each other) and are tangent to each other.
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Figure 2.

2. Theorems

Theorem 1 (see also [4], p. 220). For every packing of R® with unit cylinders there exists
a ball of radius ¢ not overlapping with any of the cylinders.

Proof. Start with a ball in the complement of all of the cylinders of the packing. Enlarge
the size of the ball keeping the ball non-overlapping with the cylinders and moving the
center of the ball if necessary. Observe that the enlargement process terminates only when
the ball touches at least 3 cylinders. By the Main Lemma, at that moment the radius of
the ball is already large enough.

Remark. A careful analysis of the procedure described in the above proof results in the
following statement: Every point in the complement of all of the cylinders of the packing
lies within \/2/—3 from the center of a ball of radius g, non-overlapping with any of the
cylinders. The number m is the smallest possible in this context, as it can be seen on
the example of two tangent, perpendicular cylinders.

Theorem 2 (see also [4], p. 220). Suppose P is a packing with unit cylinders such that every
ball of radius r > g overlaps with one of the cylinders. Then all cylinders in P are parallel
and each of them is tangent to six others.

Proof. Let C be one of the cylinders of P and let A be a point on the surface of C but not
on any of the other cylinders. Start with a small ball tangent to C at A and not overlap-
ping with any of the cylinders and enlarge it, keeping it tangent to C and moving its center
in a continuous fashion until the ball no longer can be enlarged (as in the proof of
Theorem 1). At the final stage of the enlargement, the ball is tangent to C and to two other
cylinders, and its radius is ¢. By the Main Lemma, the three cylinders are parallel and
tangent to each other. Since point A on the surface of C is arbitrary, this proves that C
is touched by six other cylinders, parallel to each other and to C.

Main Theorem. Suppose P is a packing with unit cylinders in which no two cylinders are
parallel, and suppose that By and B, are two balls of radius ¢ each and each non-overlapping
with any of the cylinders of P. Then there exists a path p: [0,1] = R3 such that p(x) is the
center of a ball B, of radius g, non-overlapping with any of the cylinders of P, for every
x€[0,1].



50 El. Math., Vol. 46, 1991

Proof. Denote by C; (i = 1,2, ...) the cylinders of P and let L, be the axis of revolution
of C;. Let C;' denote the open cylinder of radius 1 + ¢ = 2/\/3, coaxial with C,, and
let P* be the union of the cylinders C;'.

Observe that a point X lies in the complement of P* if and only if the ball of radius ¢
centered at X does not overlap with any of the cylinders C;. Thus, in order to prove the
theorem it is enough to show that the complement of P* is pathwise connected. Consid-
ering the simple local structure of the complement of P*, all we need to show is its
connectedness.

For each pair of intersecting cylinders C;*, C; (i # j), let B;; denote the shortest segment
connecting the skew lines L; and L;. Obviously, B;; lies in C;*, C;". Denote the union of
all lines L, and all segments B;; by G. Since G is a one-dimensional set in R? (in fact G
is a locally finite graph), the complement of G is connected. Since no two cylinders C;*, C/
are parallel, their intersection is always a bounded set. Topologically, the set is an open
3-cell, if not empty. Furthermore, by the Main Lemma, no three cylinders of P* intersect,
thus no two of these 3-cells have a point in common. Therefore P* is a so-called regular
neighborhood of G in R3 (see [5], Ch. 3). In particular, G is a deformation retract of P*
(in fact, a deformation retraction of P* onto G can be constructed explicitly, without
reference) which implies that P* is homotopically equivalent to G. Since separation of R?
is a homotopy invariant, P* does not separate R3.

Remark 1. The Main Theorem can be strengthened somewhat as follows. Instead of
assuming that no two cylinders are parallel it is enough to assume that no two cylinders
which are touched by the same ball of radius ¢ are parallel. The proof remains valid
without a change.

Remark 2. The Main Theorem has another proof, a more elementary and constructive
one, producing an algorithm for finding a path from B, to B,. However, this alternate
proof requires more space as it involves many special cases. We chose the proof presented
above because of its brevity.

Remark 3. In relation to the Main Theorem, one might consider the question of whether
there exists a constant k such that the length of the path leading from B, to B, never
exceeds k times the distance between the centers of the balls. It turns out that no such
constant exists. This can be seen on the following example. Let C; be the unit cylinder
whose axis passes through the point (2,0, 0), is perpendicular to the x-axis and forms an

angle{ 90 + — ) with the x y-plane (i = 1,2, 3, ...). The cylinders C; form a “wall” between
i

the points P = (2i,2,0) and Q, = (2i, — 2,0), and the shortest path from P, to Q, along
which a ball of radius ¢ can travel avoiding each C; is of length increasing to infinity as
i increases to infinity.

Remark 4. The Main Theorem and Remark 1 can be generalized to n dimensions (n > 3)
by defining an n-dimensional cylinder as a set congruent to the Cartesian product of an

2n—2
(n — 1)-dimensional ball and a line, and by replacing the number g by g, =
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Moreover, this value of g, appears to be the greatest possible in the context of the
generalized Main Theorem.

A. Bezdek, Cornell University, Ithaca and Hungarian Academy of Sciences, Budapest
W. Kuperberg, Auburn University, Auburn
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Konvergenz von Teilen der harmonischen Reihe

1. Einleitung

Es seien M die Menge der natiirlichen Zahlen, in deren Dezimaldarstellung keine «9»
auftritt, und P die Menge der Primzahlen. Dann ist wohlbekannt, daB (i) 3. n~! konver-

neM
giert, wobei (ii) 3 n~! divergiert. Ergebnis (i) geht wohl auf Kempner (1914) zuriick;
neP
einen einfachen Beweis, der die Abschitzung 3 n~! < 90 liefert, findet man in Honsber-

neM

ger (1982), S. 89 ff. Irwin (1916) und Wadhwa (1975) geben untere und obere Schranken
fiir die analoge Reihe an, die durch Weglassen aller eine «0O» enthaltenden Terme entsteht.
In dieser Arbeit wollen wir fiir eine ganze Klasse nach diesem Muster gebildeter Reihen
eine einfache Abschitzung herleiten. Dieses Ergebnis werden wir dann anwenden, um zu
zeigen, daB es fiir jedes k > 0 eine Primzahl gibt, deren Dezimaldarstellung eine gegebene
Ziffer (etwa «9») mehr als k-mal enthilt, und um eine obere Schranke fiir die kleinste
derartige Primzahl zu gewinnen.

2. Teilreihen von Y n~!

Im folgenden seien eine natiirliche Zahld > 2,einje {0,1,...,d — 1} und eine ganze Zahl
k>0 fest gewdhlt. Fiir jedes neIN gibt es eine eindeutige d-adische Darstellung
n=a,+a,d+a,d*+... mit ag,a,,...€{0,1,...,d — 1}. Die Koeffizienten a; nennen
wir die Ziffern von n. Sei nun M die Menge aller natiirlichen Zahlen, in deren d-adischer
Entwicklung die Ziffer j hochstens k-mal auftritt.
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