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Ueber Dreiecks-Partitionen

(2. Teil)

6. Aquivalenz-Siitze im Umfeld der Dreiecks-Partitionen

In der Kombinatorik sind zahlreiche Aquivalenz-Sitze iiber Mengen aus verschie-
denartigen Partitionen bekannt (vgl. etwa [1], [2], [6]). Hiufig kénnen derartige Aqui-
valenz-Aussagen auch auf ganz elementarem Wege gewonnen werden. Als Schliisselfigur
dient dabei meist der sogenannte Partitions-Graph.

Bei der Konstruktion von Partitions-Graphen geht man davon aus, dass eine bestimmte
Partition der Zahl n in der Form

n=s,+8,+...+s,; s;eN

mit

notiert wird. Zur Veranschaulichung dieser Zerfallungsfigur ordnet man jedem Summan-
den s; eine Knoten-Kette von entsprechender Linge zu und zeichnet dann die erhaltenen
Ketten linksbiindig iibereinandergelegt auf.

Beispiel:

20 = 142+343+5+6 —

®

|
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Figur 6.1.

Wegen s; < s;,, treten am rechten Rand des Graphen keine Einbuchtungen auf, d. h. es
entsteht eine Treppe.

Partitions-Graphen scheint N. M. Ferrers erstmals in Beweisfiihrungen verwendet zu
haben; zu einem niitzlichen Instrument der Kombinatorik hat sie aber erst J. J. Sylvester
(1814 — 1897) entwickelt.

Auch bei den Dreiecks-Partitionen kénnen durch die Verwendung von Partitions-Gra-
phen interessante Zusammenhénge direkt einsichtig gemacht werden. An den Anfang der
folgenden Ueberlegungen stellen wir die Aquivalenzen

S;+S,+s3=n & (5;,—-1)+6,—1)+(;—1)=n-3
§) 5,58 < (5-1D)<(—-1)<(s3—-1)

S3<Sl+32 <> (S3"'1)S(Sl“'1)+(82_1).
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Die rechte Seite der letzten Aequivalenz kann nun auch in der Form

3= —(6—1)<(s,—1) (6,1)
geschrieben werden. Dies beinhaltet, dass im Partitions-Graphen zur Zerfillung

S —D+G,—1)+(53—1)=n-3
der Uberhang in der letzten Kette hochstens so lang ist, wie die erste Kette. Beim Verlegen

dieses Uberhanges iiber die erste Kette entsteht daher wiederum ein Partitions-Graph.
Beispiel:

@5
fesizn,, - ¥ B, - i

w 0w

' '

2 %1
Dreiecks-Partition von n Partition von n-3 mit
Summanden aus {2,3,4}
speziell speziell
22 = 6+749 Figur 6.2. 19 = 243+343+444

Der neue Graph (mittlerer Teil in Fig. 6.2) kann nun auch vertikal geschichtet werden.
Dem entspricht eine Uminterpretation der zugehdrigen Partition zur Zahl n — 3 zu einer
solchen mit lauter Summanden aus der Menge {2, 3, 4}. Da der beschriebene Umbau-
Prozess umkehrbar und damit die daraus hervorgehende Abbildung «, bijektiv ist, hat
man gleichzeitig den folgenden Aquivalenz-Satz bewiesen.

Satz: Es gibt gleichviele Dreiecks-Partitionen zur Zahl n, wie Partitionen zur Zahl n—3
iiber der Referenz-Menge {2, 3, 4}.

Dieser Aquivalenz-Satz gestattet nun, die Dreiecks-Partitionen auch mit dem in [5]
vorgestellten generellen Abzidhl-Algorithmus fiir Partitionen iiber irgend einer vorgege-
benen Referenz-Menge abzuzdhlen. Vermoge der Abbildung a, ist es auch moglich, die
Dreiecks-Partitionen vom Index n aus den Partitionen vom Index n—3 iiber der Refe-
renz-Menge {2, 3, 4} zu konstruieren. Ein Algorithmus zur Auflistung von Partitionen
iiber einer beliebigen Referenz-Menge ist ebenfalls in [5] beschrieben.

Mit dhnlichen Ueberlegungen kdnnen noch zwei weitere Aquivalenz-Sitze aus dem
unmittelbaren Umfeld der Dreiecks-Partitionen erhalten werden.

Satz: Es gibt gleichviele Partitionen der Zahl n mit genau 3 Summanden aus N, wie
Partitionen beliebiger Linge der Zahl n—3 iiber der Referenz-Menge {1, 2, 3}.

Die Partitionen von n mit genau 3 Summanden aus N werden in der Fig. 2.1 durch die
Gitterpunkte im gefiarbten Bereich repridsentiert; im Vergleich mit den Dreiecks-Partitio-
nen vom Index n wird also jetzt die Dreiecks-Ungleichung s; < s, + s, fallen gelassen.
Der Beweis der neuen Aquivalenz-Aussage ist in der Fig. 6.3 enthalten.
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Partition von n mit genau Partition von n-3 mit
3 Summanden aus Summanden aus der Menge
{1,2,3}
speziell speziell
18 = 5+6+47 Figur 6.3. 15 = 142+3+343+43

Satz: Es gibt gleichviele Partitionen der Zahl n mit genau 3 Summanden aus N mit
§3 = 8, + 5,, wie Partitionen der Zahl n—4 iiber der Referenz-Menge {1, 2, 4}.

Hier werden also die Partitionen von n mit genau 3 Summanden betrachtet, welche die
Dreiecks-Ungleichung nicht erfiillen.
Der zuletzt-ausgesprochene Aquivalenz-Satz wird durch die Fig. 6.4 bewiesen.

:13_'_.:\ e @1’ —
' oeeeeGo0) .

s3—sz_>.sa1
Partition von n mit genau Partition von n iiber der Partition von n iiber der
3 Summanden aus N , wobei Referenz-Menge {1,2,4}, Referenz-Menge {1,2,4}
532 81+82 wobei der Summand 4 mindestens
speziel sinned, yorkom: spezien
15 = 3+4+8 15 = 142+4+4+4 18 = 5+647
Figur 6.4.

Wegen s, > s, + s, iiberragt im Primér-Graphen der Ueberhang in der letzten Kette die
Linge der ersten Kette. Man kann daher von der untersten Kette stets eine Teilkette der
Linge s, abschneiden und diese iiber die erste Kette verlegen. Der Uberhang von n zu
n—4 beim zweiten Umbau-Schritt ist erforderlich, wenn man von der Forderung frei-
kommen will, dass der Summand 4 immer mindestens einmal vorkommen muss.

Es sei dem Leser iiberlassen, zu den vorgestellten Aquivalenz-Sitzen Paare von korre-
spondierenden Figuren-Mengen zu konstruieren.

7. Ausblick

Im Anschluss an unsere elementare Herleitung einer Anzahl-Formel fiir die Dreiecks-
Partitionen sei noch kurz gezeigt, wie versierte Kombinatoriker dieses Problem angehen.
Sie ziehen dazu formale Potenzreihen [1*] heran, die in der abzdhlenden Kombinatorik
als dusserst griffiges Werkzeug bekannt sind.

\
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Im Integritdtsbereich der formalen Potenzreihen mit Koeffizienten aus € gilt

1
(1—=x>)(1—=x3(1—-x%

=(0+x2+x*+.. )0 +x3+x+. ) A +x*+xB+..)

EEE o
Jj2=0 j3=0 ja=0

st 3t 4is = S0 £ () X"
0 ja =

(1] n=0

Der Koeffizient f(n) zeigt an, wie oft der Exponent 2j, + 3j; + 4j, in der Dreifach-
Summe den Wert n annimmt, d. h. f(n) ist die Anzahl der Losungen von

2j,+3j3+4j,=n (7,2)
in nicht-negativen ganzen Zahlen j,, j;, j,. Eine Losung von (7,2) reprisentiert aber

zugleich eine Partition der Zahl n mit Summanden aus der Referenz-Menge {2, 3, 4},
namlich

2424...42+34+3+...+3+4+4+...+4=n (7,3)

j, Summanden j, Summanden j, Summanden

Aufgrund des ersten Aquivalenz-Satzes von Abschnitt 6 gilt daher fiir die Anzahl-Folge
bei den Dreiecks-Partitionen

x3

A1=x)(1=x31—-xY"

EZ dn)x" = (7,4

Man nennt dies die abzdhlende Potenzreihe fiir die Figuren-Menge der Dreiecks-Parti-
tionen bei der iiblichen Indizierung durch die jeweils zerfillte Zahl n [2*]. Die Koeffizien-
ten d(n) lassen sich hieraus tliber die Partialbruch-Zerlegung der rechten Seite erhalten,
wenn man beriicksichtigt, dass

(1—axf .o

1 © m+s—1
s—1

)(ax)" fir ae@, a+0, seN (7,5)
ist. (7,5) ldsst sich etwa unter Abstiitzung auf die leicht verifizierbare Beziehung

(1-—ax)(1+ax+a2x2+...)=(1—ax)(i (g)ajxj)=1 (7,6)

j=1

durch vollstindige Induktion nach s beweisen.

Nihere Einzelheiten zur Handhabung der formalen Potenzreihen in der abzihlenden
Kombinatorik findet der Leser in [4] (Abschnitt 2), [8] und [9].

Die vollstdndige Partialbruch-Zerlegung des hier massgebenden Quotienten ist erst im
Integritidtsbereich der formalen Potenzreihen mit Koeffizienten aus € moglich. Aus die-
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sem Grunde wurde bei der Formel (7,5) bereits darauf hingewiesen, dass deren Giiltig-
keitsbereich iiber reelle a-Werte hinausreicht.
Die Partialbruch-Zerlegung von (7,4) lautet

3

X
1=x1-x>(1-x%
1 3 1 1 1 1 1 an
T24(1—x)7° 288(1—x% 16(1+x° 32(1+x) ’
U (R U T P (P T
I\1l—-wx 1-w?’x) 16 ( l)1+ix+( _l)l—ix
mit
w = ¢! ?"3) (3, Einheitswurzel).
Unter Verwendung von (7,5) ergibt sich daraus die Anzahi-Formel
1 (n+2 13 1 (n+1 1 1
d S T _ln____ _1n - n 2n
) 24( 2 ) 288 16( 1 >( Foqm - +g@+ o)
1 . ' . Q3(n) (798)
-R((i +l)(—l)‘+(1—l)lJ)
Q,(n)
wobei ;
2 fi =
2 fiir n=0 “gz:_?
Qi,n)=1{ —1 fir n=1 (mod 3), Q,(n) = . _ (mod4)
N —2 firn=2
—1 firn=2 .
-2 fir n=3

Die beiden Terme 2, (n) und Q,(n) reprasentieren periodische Funktionen von n mit den
Perioden 3 und 4.
Die Anzahl-Formel kann schliesslich noch auf die folgende Gestalt gebracht werden:

d(n) = i—;-g(6n2 +18n—1-9(—1)"2n+ 3)+ 32Q2,(n) — 182, (n)) . (7,9)

Es sei auch hier dem Leser iiberlassen, iiber (7,9) die auf elementarem Wege gewonnene
Kurz-Formel (4,6) zu bestétigen.

Wir schliessen mit zwei Bemerkungen:

1. Eine erste Uberlegung mdge noch eine Verbindung zum friitheren Abschnitt 5 herstel-
len. Die drei dort durch Umbau von Partitions-Graphen hergeleiteten Aquivalenz-
Aussagen stehen in einer gewissen verwandtschaftlichen Beziehung zueinander. Dieser

\
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Zusammenhang kann jetzt durch folgende Identitdt zwischen formalen Potenzreihen
zum Ausdruck gebracht werden:

x3 + x4 x3
(1-x)(1—-x*)({1—-x% 1—-x)1—x})(1—-x% 1-x)1-x)(1-x%
abzihlende Potenzreihe der abzihlende Potenzreihe der abzihlende Potenzreihe der
Dreiecks-Partitionen Partitionen mit genau Partitionen mit genau
5 o g B 3 Summanden aus N, fiir die 3 Summanden aus N
1 2 3
S5, +5,<5,
gilt

2. Eine weitere Rekursionsformel fiir die Partitions-Zahlen d(n).
Aus (7,4) liest man ab, dass

(1—x2—~x3——x4+x5+x6+x7——x9)(2 d(n)x”>=x3 (7,10)
n=0

ist. Daraus folgt durch Koeffizientenvergleich

— d(0) =0
d(1) =
— d(0) () =0
—d(0) — d(1) +d(3) =1
—d0)—d(1) —d() +d(4) =0 (7,11)
d(0) —d(1) —d(2) — d(3) +d(5) =0
d(0) + d(1) — d(2) — d(3) — d(4) +d(6) =
dO) +d(1) +d(2) —d(3) — d(4) — d(5) +d(7) =0
d(1) +d(2) + d(3) — d(d) — d(5) — d(6) +d(8) =0

und fir n>9
—dn—9+dn—7+dn—6)+d(n—5)—dn—4)—d(n—3)—dmn—2)+dn)=0 (7,12)

(7,12) beinhaltet eine lineare homogene Rekursionsformel fiir unsere Anzahl-Folge, was
in der folgenden Schreibweise noch etwas deutlicher zum Ausdruck kommt:

din)=d(n—2)+d(n—-3)+d(n—4)—d(n—5)—d(n—-6)—d(n—-7+dn-9). (7,13)
Die Anfangswerte

d0)=0, d(1)=0, d(2)=0, d(3)=1, d(4) =0,
dS)=1, d@)=1, dN=2, d@B8 =1

kénnen aus den Gleichungen (7,11) errechnet werden.
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An den Partitionszahlen d (n) bestétigt sich hier ein in der abzidhlenden Kombinatorik
wohl bekannter Sachverhalt, dass ndmlich fiir eine Anzahl-Folge immer dann eine
generelle lineare homogene Rekursionsformel gefunden werden kann, wenn die abzih-
lende Potenzreihe der betreffenden Figuren-Menge Quotient zweier Polynome ist und
zugleich das Zihler-Polynom einen kleineren Grad aufweist, als das Nenner-Polynom
[3*]. Diese Fakten kennzeichnen eine sog. lineare Schieberegister-Folge,; das erwihnte
Nenner-Polynom ist das Riickkopplungs-Polynom des Schieberegisters [4*]. Insbeson-
dere erfolgt beim vorliegenden Beispiel mit jedem Iterationsschritt eine 9-Tupel-Ver-
schiebung

dn—-1,dn—-2),...,dn—-9) — (d@m,dn—1),...,d(n—238)),
wobei das jeweils neu hinzutretende Glied d(n) durch die Rekursionsformel (7,13)
din=Rdn—-1),dn—-2),...,d(n—9))

gegeben ist.
M. Jeger, ETH Ziirich
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ANMERKUNGEN

[1*] Die Arbeit mit Potenzreihen in der abzdhlenden Kombinatorik bringt es mit sich, dass man sich eigentlich

stindig mit Konvergenzfragen auseinanderzusetzen hitte. Selbst Euler tat dies aber nicht, wohl in der
Gewissheit, dass sich diesbeziiglich alles in Ordnung bringen liesse. In den letzten Jahrzehnten haben sich
Mathematiker immer wieder die Frage gestellt, ob denn diese Konvergenzprobleme iiberhaupt mitgeschleppt
werden miissen. Eingehende Untersuchungen haben gezeigt, dass dies nicht erforderlich ist. In der Theorie der
Potenzreihen steckt ndmlich ein algebraischer Kern, der bei den meisten Anwendungen in der abzéhlenden
Kombinatorik nicht iiberschritten wird; man kann also dort bei der Handhabung von Potenzreihen auf die
topologische Komponente ganz verzichten. Stiitzt man sich auf dieses von H. Rademacher (1892-1969)
initiierte Konzept, dann spricht man von formalen Potenzreihen.

[2*] Je nach dem vorliegenden Abzihlproblem sind bei Partitionen auch andere Indizierungen erforderlich,

insbesondere auch mehrstufige. Letztere fiihren auf abzihlende formale Potenzreihen in mehreren Unbe-
stimmten.

[3*] Vgl [3] und [4], p. 48-59.
[4%] Vgl. [7], p. 99-106.

© 1991 Birkhéduser Verlag, Basel 0013-6018/91/02040-07 $ 1.50 +0.20/0

y



	Über Dreiecks-Partitionen. 2. Teil

