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Ueber Dreiecks-Partitionen

(2. Teil)

6. Äquivalenz-Sätze im Umfeld der Dreiecks-Partitionen

In der Kombinatorik sind zahlreiche Äquivalenz-Sätze über Mengen aus
verschiedenartigen Partitionen bekannt (vgl. etwa [1], [2], [6]). Häufig können derartige
Äquivalenz-Aussagen auch auf ganz elementarem Wege gewonnen werden. Als Schlüsselfigur
dient dabei meist der sogenannte Partitions-Graph.
Bei der Konstruktion von Partitions-Graphen geht man davon aus, dass eine bestimmte
Partition der Zahl n in der Form

n sx + s2 + + sr; sf e N

mit

sx < s2 < < sr

notiert wird. Zur Veranschaulichung dieser Zerfällungsfigur ordnet man jedem Summanden

s( eine Knoten-Kette von entsprechender Länge zu und zeichnet dann die erhaltenen
Ketten linksbündig übereinandergelegt auf.

Beispiel:

20 1+2+3+3+5+6

Figur 6.1.

Wegen st < si+1 treten am rechten Rand des Graphen keine Einbuchtungen auf, d.h. es

entsteht eine Treppe.

Partitions-Graphen scheint N. M. Ferrers erstmals in Beweisführungen verwendet zu
haben; zu einem nützlichen Instrument der Kombinatorik hat sie aber erst J. J. Sylvester
(1814-1897) entwickelt.
Auch bei den Dreiecks-Partitionen können durch die Verwendung von Partitions-Graphen

interessante Zusammenhänge direkt einsichtig gemacht werden. An den Anfang der
folgenden Ueberlegungen stellen wir die Äquivalenzen

s_ + s2 + s3 n o (sx — 1) + (s2 — 1) + (s3 — 1) n — 3

sx^s2<s3 o (sx -1)<, (s2 -1)<> (s3 - 1)

s3<sx+s2 o (s3-l)<(sx-l) + (s2-l).
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Die rechte Seite der letzten Aequivalenz kann nun auch in der Form

(S3-1)-(S2-1)^(S1-1) (6,1)

geschrieben werden. Dies beinhaltet, dass im Partitions-Graphen zur Zerfällung

(sx - 1) + (s2 - 1) + (s3 - 1) n - 3

der Überhang in der letzten Kette höchstens so lang ist, wie die erste Kette. Beim Verlegen
dieses Überhanges über die erste Kette entsteht daher wiederum ein Partitions-Graph.
Beispiel:

sif<y\ V1
s2 O" i *• s2-l

s3_1Q \f\.s3\2?

Dreiecks-Partition von n

speziell
22 6+7+9

*s> ;;;:::
S2 Sl

Partition von n-3 mit
Summanden aus (.2,3,4}
speziell

Figur 6 2 19 2+3+3+3+4+4

Der neue Graph (mittlerer Teil in Fig. 6.2) kann nun auch vertikal geschichtet werden.
Dem entspricht eine Uminterpretation der zugehörigen Partition zur Zahl n — 3 zu einer
solchen mit lauter Summanden aus der Menge {2, 3,4}. Da der beschriebene Umbau-
Prozess umkehrbar und damit die daraus hervorgehende Abbildung a„ bijektiv ist, hat
man gleichzeitig den folgenden Äquivalenz-Satz bewiesen.

Satz: Es gibt gleichviele Dreiecks-Partitionen zur Zahl n, wie Partitionen zur Zahl n — 3

über der Referenz-Menge {2, 3, 4}.

Dieser Äquivalenz-Satz gestattet nun, die Dreiecks-Partitionen auch mit dem in [5]

vorgestellten generellen Abzähl-Algorithmus für Partitionen über irgend einer vorgegebenen

Referenz-Menge abzuzählen. Vermöge der Abbildung a„ ist es auch möglich, die
Dreiecks-Partitionen vom Index n aus den Partitionen vom Index n — 3 über der
Referenz-Menge {2, 3,4} zu konstruieren. Ein Algorithmus zur Auflistung von Partitionen
über einer beliebigen Referenz-Menge ist ebenfalls in [5] beschrieben.

Mit ähnlichen Ueberlegungen können noch zwei weitere Äquivalenz-Sätze aus dem
unmittelbaren Umfeld der Dreiecks-Partitionen erhalten werden.

Satz: Es gibt gleichviele Partitionen der Zahl n mit genau 3 Summanden aus N, wie
Partitionen beliebiger Länge der Zahl n — 3 über der Referenz-Menge {1, 2, 3}.

Die Partitionen von n mit genau 3 Summanden aus N werden in der Fig. 2.1 durch die

Gitterpunkte im gefärbten Bereich repräsentiert; im Vergleich mit den Dreiecks-Partitionen

vom Index n wird also jetzt die Dreiecks-Ungleichung s3<sx+ s2 fallen gelassen.
Der Beweis der neuen Äquivalenz-Aussage ist in der Fig. 6.3 enthalten.
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\m • • •
,-1

• • • •• • • • • mu.
Partition von n mit genau
3 Summanden aus «K

speziell
18 5+6+7 Figur 6 3

2 1

Partition von n-3 mit
Summanden aus der Menge
(1,2,33
speziell

15 1+2+3+3+3+3

Satz: Es gibt gleichviele Partitionen der Zahl n mit genau 3 Summanden aus M mit
s3 > sx + s2, wie Partitionen der Zahl n — 4 über der Referenz-Menge {1, 2, 4}.

Hier werden also die Partitionen von n mit genau 3 Summanden betrachtet, welche die

Dreiecks-Ungleichung nicht erfüllen.
Der zuletzt-ausgesprochene Äquivalenz-Satz wird durch die Fig. 6.4 bewiesen.

• • • •

D3 2~ l
Partition von n mit
3 Summanden aus J^"

s0 _» s..+srt3 12
speziell

15 3+4+8

genau
wobei

O O

* + • •

Partition von n uber der
Referenz-Menge (l,2,4j,
wobei der Summand 4 mindestens
einmal vorkommt
speziell

15 - 1+2+4+4+4

Figur 6 4

Partition von n uber der
Referenz-Menge (l,2,4j

speziell
18 5+6f7

Wegen s3>sx+s2 überragt im Primär-Graphen der Ueberhang in der letzten Kette die

Länge der ersten Kette. Man kann daher von der untersten Kette stets eine Teilkette der

Länge sx abschneiden und diese über die erste Kette verlegen. Der Überhang von n zu
n — 4 beim zweiten Umbau-Schritt ist erforderlich, wenn man von der Forderung
freikommen will, dass der Summand 4 immer mindestens einmal vorkommen muss.
Es sei dem Leser überlassen, zu den vorgestellten Äquivalenz-Sätzen Paare von
korrespondierenden Figuren-Mengen zu konstruieren.

7. Ausblick

Im Anschluss an unsere elementare Herleitung einer Anzahl-Formel für die Dreiecks-
Partitionen sei noch kurz gezeigt, wie versierte Kombinatoriker dieses Problem angehen.
Sie ziehen dazu formale Potenzreihen [1*] heran, die in der abzählenden Kombinatorik
als äusserst griffiges Werkzeug bekannt sind.
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Im Integritätsbereich der formalen Potenzreihen mit Koeffizienten aus C gilt

1

(l-x2)(l-x3) (l-x4) (l + x2 + x4 + ...)(l + x3 + x6 + ...)(l + x4 + x8 +

I x2h £ x3'3 £ x4^ (7,1)

00 00 00

j2 0 j3 0 j4 0 n 0

Der Koeffizient /(n) zeigt an, wie oft der Exponent 2j2 + 3j3 + 4j4 in der Dreifach-
Summe den Wert n annimmt, d. h. f(n) ist die Anzahl der Lösungen von

Vi + 3j3 + 4;4 n (7,2)

in nicht-negativen ganzen Zahlen j2, j3, j4. Eine Lösung von (7,2) repräsentiert aber

zugleich eine Partition der Zahl n mit Summanden aus der Referenz-Menge {2, 3,4},
nämlich

2 + 2 + + 2 + 3 + 3 + + 3 + 4 + 4++4 n (7,3)

j2 Summanden j3 Summanden j^ Summanden

Aufgrund des ersten Äquivalenz-Satzes von Abschnitt 6 gilt daher für die Anzahl-Folge
bei den Dreiecks-Partitionen

Man nennt dies die abzählende Potenzreihe für die Figuren-Menge der Dreiecks-Partitionen

bei der üblichen Indizierung durch die jeweils zerfällte Zahl n [2*]. Die Koeffizienten

d (ri) lassen sich hieraus über die Partialbruch-Zerlegung der rechten Seite erhalten,
wenn man berücksichtigt, dass

1 00 /mXc_1\
7i \-s=Z[ x

)(ax)n für ae€, a + 0, seN (7,5)
(l-ax)S n o\ 5-1 /

ist. (7,5) lässt sich etwa unter Abstützung auf die leicht verifizierbare Beziehung

(1 -ax)(l + ax + a2x2 + -ax)(l (o)^^)"1 (7,6)

durch vollständige Induktion nach s beweisen.
Nähere Einzelheiten zur Handhabung der formalen Potenzreihen in der abzählenden
Kombinatorik findet der Leser in [4] (Abschnitt 2), [8] und [9].
Die vollständige Partialbruch-Zerlegung des hier massgebenden Quotienten ist erst im
Integritätsbereich der formalen Potenzreihen mit Koeffizienten aus C möglich. Aus die-
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sem Grunde wurde bei der Formel (7,5) bereits darauf hingewiesen, dass deren
Gültigkeitsbereich über reelle a-Werte hinausreicht.
Die Partialbruch-Zerlegung von (7,4) lautet

(l-x2) (l-x3) (l-x4)
1 1 13 1 1 1 1

24 (1 - x)3 288 (1 - x) 16 (1 + x)2 32 (1 + x)
(7,7)

+Ki^ + i^) + ^((1 + 0i+^ + (,-°T^)
mit

co ei{2n/3) (3. Einheitswurzel).

Unter Verwendung von (7,5) ergibt sich daraus die Anzahl-Formel

d(n)- j/n + 2

24 V 2
¦)_ü-i(" + 1>)(-ir--(-ir+V+«»ta)

03(n)

-jg((l + 0(-i)" + (l -i)F)
Q4 (n)

wobei

Q2 (n)=<

r 2 für

-1 für

-1 für

n 0

n l
n 2

(mod 3), fl4(») -

2 für
2 für

-2 für

-2 für

n 0

n l
n 2

n 3

(7,8)

(mod 4)

Die beiden Terme Q3(n) und ß4(n) repräsentieren periodische Funktionen von n mit den
Perioden 3 und 4.

Die Anzahl-Formel kann schliesslich noch auf die folgende Gestalt gebracht werden:

d(n) -J- (6n2 + 18n -1 - 9 (-l)n (2n + 3) + 32Q3(ri) - 18 Q4(n)).
288

(7,9)

Es sei auch hier dem Leser überlassen, über (7,9) die auf elementarem Wege gewonnene
Kurz-Formel (4,6) zu bestätigen.

Wir schhessen mit zwei Bemerkungen:

1. Eine erste Überlegung möge noch eine Verbindung zum früheren Abschnitt 5 herstellen.

Die drei dort durch Umbau von Partitions-Graphen hergeleiteten Äquivalenz-
Aussagen stehen in einer gewissen verwandtschaftlichen Beziehung zueinander. Dieser
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Zusammenhang kann jetzt durch folgende Identität zwischen formalen Potenzreihen

zum Ausdruck gebracht werden:

(l-x2) (l-x3) (l-x4)
abzählende Potenzreihe der
Dreiecks-Partitionen

s, + s7> s.

+
X4 X3

(l-x) (l-x2) (l-x*) (l-x) (l-x2) (l-x3)
abzählende Potenzreihe der
Partitionen mit genau
3 Summanden aus N, für die

abzählende Potenzreihe der
Partitionen mit genau
3 Summanden aus N

st + s2< s3

gilt

2. Eine weitere Rekursionsformel für die Partitions-Zahlen d(n).
Aus (7,4) liest man ab, dass

(1 - x2 - x3 - x4 + x5 + x6 + x7 - x9) £ d(n) x") x3 (7,10)

ist. Daraus folgt durch Koeffizientenvergleich

-„(0) =0
„(1) =0

-„(0) „(2) =0
- „(0) - „(1) + „(3) 1

- d(0) - d(l) - d(2) +„(4) =0 (7,11)

„(0)-„(l)-„(2)-_(3) +d(5) 0

„(0) + „(l)-„(2)-„(3)-„(4) + d(6) =0
„(0) + „(l) + _(2)-_(3)-_(4)-_(5) +„(7) =0

„(1) + „(2) + „(3) - „(4) - „(5) - „(6) + „(8) 0

und für n > 9

-d{n-9) +d(n-7) + d(n-6) + d(n-S)-d(n-4)-d(n-3)-d(n-2) + d(n)=0 (7,12)

(7,12) beinhaltet eine lineare homogene Rekursionsformel für unsere Anzahl-Folge, was
in der folgenden Schreibweise noch etwas deutlicher zum Ausdruck kommt:

d(n) d(n-2) + d(n-3) +d{n-4)-d(n-5)-d(n-6)-d(n-7) + d(n-9). (7,13)

Die Anfangswerte

„(0) 0, _(1) 0, „(2) 0, _(3)=1, _(4) 0,

„(5) 1, „(6)=1, _(7) 2, „(8) 1

können aus den Gleichungen (7,11) errechnet werden.
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An den Partitionszahlen d(n) bestätigt sich hier ein m der abzählenden Kombinatorik
wohl bekannter Sachverhalt, dass nämlich für eine Anzahl-Folge immer dann eine
generelle lineare homogene Rekursionsformel gefunden werden kann, wenn die abzählende

Potenzreihe der betreffenden Figuren-Menge Quotient zweier Polynome ist und
zugleich das Zähler-Polynom einen kleineren Grad aufweist, als das Nenner-Polynom
[3*]. Diese Fakten kennzeichnen eine sog. lineare Schieberegister-Folge, das erwähnte
Nenner-Polynom ist das Rückkopplungs-Polynom des Schieberegisters [4*]. Insbesondere

erfolgt beim vorliegenden Beispiel mit jedem Iterationsschritt eine 9-Tupel-Verschiebung

(d(n-l)9d(n-2)9...9d(n-9)) h-> (d(n)9d(n - 1),..., d(n - 8)),

wobei das jeweils neu hinzutretende Glied d(ri) durch die Rekursionsformel (7,13)

d(n) R(d(n - l)9d(n -2),...9d(n- 9))

gegeben ist.

M. Jeger, ETH Zürich
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ANMERKUNGEN

[1*] Die Arbeit mit Potenzreihen in der abzählenden Kombinatorik bringt es mit sich, dass man sich eigentlich
ständig mit Konvergenzfragen auseinanderzusetzen hatte Selbst Euler tat dies aber nicht, wohl in der

Gewissheit, dass sich diesbezüglich alles in Ordnung bnngen liesse In den letzten Jahrzehnten haben sich

Mathematiker immer wieder die Frage gestellt, ob denn diese Konvergenzprobleme überhaupt mitgeschleppt
werden müssen Eingehende Untersuchungen haben gezeigt, dass dies nicht erforderlich ist In der Theone der
Potenzreihen steckt namhch ein algebraischer Kern, der bei den meisten Anwendungen in der abzahlenden

Kombinatorik nicht uberschntten wird, man kann also dort bei der Handhabung von Potenzreihen auf die

topologische Komponente ganz verzichten Stutzt man sich auf dieses von H Rademacher (1892-1969)
initiierte Konzept, dann spncht man von formalen Potenzreihen

[2*] Je nach dem vorliegenden Abzahlproblem sind bei Partitionen auch andere Indizierungen erforderlich,
insbesondere auch mehrstufige Letztere führen auf abzählende formale Potenzreihen in mehreren
Unbestimmten

[3*] Vgl [3] und [4], p 48-59
[4*] Vgl [7], p 99-106
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