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Selbstreproduzierende Muster

Zusammenfassung. Auf einem Quadratgitter wird die Entwicklung von 0-1-Mustern nach
einer einfachen Spielregel verfolgt, wobei sich eine merkwiirdige Reproduktionseigen-
schaft zeigt. Aus der Diskussion dieser Erscheinung ergeben sich einige Querverbindun-
gen zu anderen mathematischen Themen.

Abstract. The development of 0-1-patterns on a square grid, obeying a simple rule is
discussed. As a result, a self-reproducing property can be oberserved. Some relations to
other mathematical subjects are set out.

1. Einleitung

Vor vielen Jahren las ich — wahrscheinlich in einer Kolumne von M. Gardner im Scientific
American — eine Notiz iiber ein «Spiel», das sich, dhnlich wie Conway’s «Game of Life»,
auf einem Quadratgitter abwickelt. Der momentane Zustand ist wie dort durch eine
bindre Belegung in jedem Gitterpunkt, z. B. mit 0 oder 1, definiert. Die Regeln sind aber
viel einfacher als bei Conway:

Im Folgezustand erhalten genau diejenigen Punkte eine 1, welche im aktuellen Zustand eine
ungerade Anzahl Nachbarn mit 1 haben.

Dabei gilt die Konvention, dass jeder Gitterpunkt 4 Nachbarpunkte besitzt. (Im Game
of Life: 8 Nachbarpunkte. Siehe Berlekamp, Conway, Guy [1], oder Jacobs [4]). Ein
einfaches Beispiel ist in Abb. 1 dargestellt. Die mit 1 belegten Punkte sind hervorgehoben.
In der erwdhnten Notiz wurde nun festgestellt, dass ein beliebiges Anfangsmuster nach
einer gewissen Anzahl von Schritten in vier identischen Kopien reproduziert wird.
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Abb. 1. Beispiel fiir einen Spielschritt
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Nach meiner Erinnerung blieb aber diese Behauptung dort unbewiesen. Falls ein Leser
die genaue Quelle kennt, bin ich froh um einen entsprechenden Hinweis. Die hiibsche
Idee liefert iibrigens eine dankbare Ubungsaufgabe fiir ein Dialogprogramm, welche ich
haufig in Anfingerkursen im Programmieren gestellt habe.

Als ich mich in den letzten Jahren wieder mit dem Problem befasste, sah ich, dass der
Beweis fiir die Reproduktionseigenschaft fast trivial ist. Beim Weiterspinnen des Fadens
kamen noch einige Gedanken hinzu, welche im folgenden wiedergegeben werden sollen.
Es zeigten sich dabei manche lose Querverbindungen zu bekannten mathematischen
Themen.

2. Die Reproduktionseigenschaft

Mit dem folgenden Satz wird die erwdhnte Behauptung iiber die Reproduktion beliebiger
Muster gleich etwas prézisiert:

Satz 1. Das Spiel werde mit einem Anfangsmuster begonnen, welches in einem Quadrat der
Seitenlinge 2*—1, k=0, 1,. .., enthalten ist. (D. h. alle Punkte ausserhalb des Quadrates
sind mit O belegt). Dann besteht die Gitterbelegung nach 2* Schritten aus vier identischen
Kopien des Anfangsmusters.

Beweis. Aus der Spielregel folgt, dass jeder mit 1 belegte Punkt fiir den Folgezustand zu
jedem Nachbarn einen Beitrag 1 liefert, und dass diese Beitrige modulo 2 zu addieren
sind. Somit geniigt es, die Abkommlinge des Anfangsmusters, das nur eine 1 enthilt, zu
diskutieren, und diese dann fiir ein beliebiges Anfangsmuster entsprechend zu superpo-
nieren. Eine einfache Induktion nach k zeigt aber, dass eine einzelne 1 nach 2* Schritten
in vier Einsen, je im Abstand 2* von der urspriinglichen, iibergeht. (Siche Abb. 2).

O .
2k

nach 2K Schritten: o o

Abb. 2. Entwicklung des Einermusters

Fiir den Induktionsschritt hat man lediglich mit den vier Punkten des 2*-Musters als
Zentren wieder diese vier Kreuze einzusetzen, um so das doppelt so grosse Kreuz des
2k*1.Musters zu erhalten. []

Aus dem Beweis ist auch sofort ersichtlich, wie die vier Kopien angeordnet sind. Zur
Illustration des Satzes konnte etwa im Beispiel von Abb. 1 ein weiterer Schritt durchge-
fiihrt werden. Man iiberlege sich auch, wie das Muster fiir einen einzelnen Anfangspunkt
nach (2*—1) Schritten aussieht. Es ist im iibrigen amiisant, die scheinbar wirren Zwi-
schenmuster wirklich einmal auf dem Bildschirm zu verfolgen.

\
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3. Die Behandlung des Randes

Bis dahin wurde stillschweigend unterstellt, dass keine Randphdnomene auftreten, dass
also das Gitter geniigend gross sei. Diese Betrachtungsweise mag, vor allem fiir die
Programmierpraxis, angebracht sein: Der auf dem Bildschirm sichtbare Ausschnitt wird
dann nach einer gewissen Anzahl von Schritten einfach leer.

Fiir eine theoretische Behandlung befriedigt aber diese Losung nicht, insbesondere wenn
man die Gitterbelegungen als Vektoren betrachtet und Vektorriume von einer festen
endlichen Dimension haben mdéchte. Wenn man nun das Gitter z. B. auf ein Quadrat
beschriankt und fiir die Randpunkte (die zwei oder drei Nachbarn besitzen) auch die
urspriinglichen Regeln anwendet, erhélt man jedoch stérende Effekte, sobald ein Muster
den Rand erreicht.

Ein eleganter Ausweg besteht darin, dass man als Gitter ein Quadrat mit der Seitenlénge
I nimmt und je gegeniiberliegende Rénder identifiziert, also einen Torus bildet. Alle unsere
folgenden Betrachtungen werden fiir dieses Torus-Quadrat durchgefiihrt. Als Vorteil er-
gibt sich vor allem auch diec Homogenitiit des Gitters; keine der /> Punkte sind ausge-
zeichnet.

Torus-Quadrate, deren Seitenldnge | eine Zweierpotenz ist, stellen einen Sonderfall dar:

Satz 2. Mit | =2 entsteht fiir ein beliebiges Anfangsmuster nach 2*-! Schritten die Nullbele-
gung.

Der Beweis ist trivial. (Man betrachtet zunidchst wiederum das Anfangsmuster, das nur
eine 1 enthilt).

4. Der Spieloperator als lineare Abbildung

Wenn man dem Torus-Quadrat den ungerichteten Graph G=(X, K) zuordnet, dessen
Punktmenge X aus den Gitterpunkten, dessen Kantenmenge K aus den Gitterlinien
besteht, erhdlt man eine neue Deutung des Spielschrittes.

Es sein=|X|=1?,m=|K|=2n=2/% Die Teilmengen von X bilden einen n-dimensionalen
Vektorraum W, iiber Z,, diejenigen von K einen m-dimensionalen Vektorraum W,, wenn
man als Vektoraddition die Mengendifferenz beniitzt. Die Einermengen bilden je Basen
und fithren auf naheliegende Koordinatendarstellungen. Ferner betrachtet man lineare
Abbildungen zwischen den beiden Raumen, niamlich die

Randabbildung 0: W, = W,, und die
Korandabbildung §: Wy —» W, .

Der Rand einer einzelnen Kante besteht aus den beiden Endpunkten, der Korand eines
einzelnen Punktes aus den mit ihm inzidenten Kanten. Mit der Linearitit ergibt sich
dann die Definition fiir beliebige Vektoren. (Sieche Harary [3], Lauchli [5)).

Ein Muster unseres Spiels kann nun als Element x € W,, aufgefasst werden (x = Menge der
mit 1 belegten Punkte), der Ubergang zum Folgemuster als Anwendung einer linearen
Abbildung («Spieloperator») a: Wy — W,.
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Damit gilt dann

Satz 3. Die Zusammensetzung von Korand- und Randabbildung ergibt den Spieloperator:
a=04.

Beweis. Fiir beliebige Vektoren ke W,, xe W, gilt:
0 k=Menge der Punkte mit ungeradem Grad im durch k erzeugten Teilgraph,
d0 x=Menge der Kanten, die Punkte € x mit Punkten ¢ x verbinden.

Genau dann, wenn ein Punkt bei Anwendung von o« den Wert 1 bekommt, wenn er also
eine ungerade Anzahl Nachbarn mit 1 besitzt, hat er auch eine ungerade Anzahl
Nachbarn mit 0, ist er also jedenfalls durch eine ungerade Anzahl Kanten mit Punkten
verbunden, die von dem seinigen verschiedene Werte tragen. Daraus folgt die Behaup-
tung. [

5. Umkehrbarkeit des Spiels

Eine naheliegende Frage ist nun, ob aus einem Zwischenmuster des Spiels die Reihe der
Vorginger eindeutig rekonstruierbar sei. Mit y=ax ist offenbar genau dann auch
y=a(x+x,), wenn ax,=0. Der Vorginger von y ist also genau in dem Falle nicht
eindeutig, wo der Kern von « ein nichtverschwindendes Element enthilt.

Es ist sofort einzusehen, dass bei der Ausbreitung von Mustern in einem unbeschrankten
Gitter die eindeutige Umkehrbarkeit des Prozesses gewéhrleistet ist. Dies gilt jedoch
aufgrund des folgenden Satzes nicht (bzw. nur im unten prézisierten Sinne) fiir das
Torus-Quadrat.

Satz 4. Es gilt: dim (ker @) =t+1, wo t=dim (Z N Z'), Z = Zyklenraum, Z' = Korandraum
von G.

(Die beiden Teilrdume Z, Z' = W, sind folgendermassen definiert:

Z =ker 0. Die durch Elemente von Z erzeugten Teilgraphen zerfallen in disjunkte
Kreise.

Z'=im . S. auch Beweis Satz 3).

Beweis. Allgemein gilt fiir die Zusammensetzung von linearen Abbildungen f, g:

dim (ker (fg))=dim (ker g)+dim (ker fnim g).
Ferner ist sehr leicht zu sehen, dass dim (ker 0)=1; denn nur der Korand der leeren und
der vollen Punktmenge verschwindet. []

Die beiden Teilrdume Z, Z’ sind zwar bei beliebigen Graphen orthogonale Komplemente;
da aber das fiir diese Feststellung in naheliegender Weise definierte Skalarprodukt nicht
definit ist, konnen sie dennoch einen nichtleeren Durchschnitt besitzen (¢ > 0). Dies ist in
der Tat gerade beim Graph des Torus-Quadrates der Fall. Man findet z. B. sofort, dass
die Punktmuster, die durch die beiden Quadrat-Diagonalen gebildet werden, fiir jedes |
zum Kern von « gehoren. Fiir gerade [ sind ferner leicht zwei weitere Kernvektoren zu
entdecken.
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Um schliesslich nochmals auf die eindeutige Umkehrbarkeit von a zuriickzukommen:
Hohe und Breite des kleinsten Rechtecks, das ein gegebenes Muster enthilt, werden
durch jede Anwendung von « je um 2 erhoht, solange das Rechteck noch nicht zu gross
ist. Genauer: Es ist sicher ax#0, falls das Muster x mindestens zwei benachbarte leere
Zeilen oder leere Kolonnen besitzt. Daraus folgt aber, dass auch beim Torus-Quadrat der
Prozess von solchen Mustern aus eindeutig zuriickverfolgt werden kann, welche die
Bedingung von zwei leeren Zeilen oder Kolonnen erfiillen.

6. Ein Hilfssatz

Fiir die nachfolgende Betrachtung (in Nr. 7) ist ein Hilfssatz niitzlich, der hier gerade in
einer etwas allgemeineren Form, die wohl an sich Interesse verdient, als Satz S formuliert
wird.

Wir gehen von einem quadratischen Gitterausschnitt mit Seitenldnge ! aus und bilden
damit einerseits das Torus-Quadrat und dessen Punktraum W,. Andererseits erzeugen
wir durch Zusammenheften von g dieser kleinen Quadrate und Identifikation an den
Nabhtstellen ein grosses Quadrat der Seitenlinge I' =gl und damit dann wieder ein
Torus-Quadrat mit dem Punktraum Wj. Die Spieloperatoren in den beiden Ridumen
seien a und «'. Ausgehend von einem x’'e W beobachtet man nun, dass das gleiche
Resultat erhalten wird, ob man zuerst auf x’' h-mal den «grossen» Spieloperator o
anwendet und dann die Muster der g2 kleinen Quadrate additiv iiberlagert, oder ob man
zuerst diese Uberlagerung durchfiihrt und dann h-mal den «kleinen» Spieloperator o
anwendet. Es sei U: W/ —» W, die lineare Abbildung, weiche dieser Uberlagerung ent-
spricht.

Eine entsprechende Feststellung kann bei Anwendung der linearen Abbildung R:
W, — W, gemacht werden, welche darin besteht, dass das Muster von W,, (nur I> Punkte!)
in g> Kopien in die kleinen Quadrate von W/, gesetzt wird. Es gilt dann

Satz 5. Fir h=0, 1, ... gelten die Gleichungen
1) U@)=a"U
(2) Roa" = (¢)" R.

Beweis. Es ist sofort zu sehen, dass U o' x'= a U x’ fiir |x'| = 1, und damit auch fiir alle
x'e Wy,. Die Behauptung (1) ergibt sich dann durch h-maliges Hiniiberziehen des Spiel-
operators von der rechten auf die linke Seite von U mit U o' = a U. Genau gleich beweist
man (2). [

7. Periodizitiit

Das Funktionieren des Spieloperators auf W, konnte auch in der Terminologie der
endlichen Automaten beschrieben werden (bzw. als dynamisches System, sieche Jacobs [4]),
da ja jedes Muster nur von seinem unmittelbaren Vorgidnger abhidngt. Der Automat hitte
2" Zustinde, von denen keiner als Anfangszustand ausgezeichnet ist. Da keine Zeichen
von aussen gelesen werden (was auf dasselbe herauskommt, wie wenn das Eingabealpha-
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bet nur aus einem Zeichen besteht), wird der Prozess nach einer eventuellen Anfangs-
phase sicher periodisch.

Wir werden sehen, dass leicht etwas iiber die Periodenldngen ausgesagt werden kann. Der
Fall | = 2* soll aufgrund von Satz 2 gleich ausgeschlossen werden. (Triviale Periode der
Liange 1). Zunichst sei  ungerade. Wie schon vorher, geniigt es wieder, mit dem Muster,
das nur eine 1 enthélt, zu beginnen. Wir legen diese 1 z. B. in die vier identifizierten Ecken
des Torus-Quadrates und numerieren die Punkte der Grundlinie von 0 bis . Nach 2*
Schritten enthalten genau die beiden Punkte mit den Nummern a fiir 2* = +a (mod ])
eine 1. Dasselbe spielt sich auch auf den tlibrigen Randlinien des Quadrates ab, im Inneren
verschwinden dann alle Werte.

Dass dies richtig ist, leuchtet ohne weiteres ein, kann aber nach Satz 5, (1) verifiziert
werden, indem man zuerst das Ein-Punkt-Muster in einem geniigend grossen Wy, sich
ausbreiten ldsst und dann die Uberlagerung durchfiihrt. Aus dem vorher Gesagten folgt
nun, dass nach 2* Schritten, wenn 2= +1 (mod ), dasselbe Muster wie nach einem
Schritt vorhanden ist. Ein solches k existiert auch tatsdchlich, denn die zu ! primen
Restklassen modulo [ bilden eine multiplikative Gruppe. 2 gehort dazu und erzeugt eine
Untergruppe. Damit ist der folgende Satz bewiesen:

Satz 6. Sei | ungerade, k die kleinste positive natiirliche Zahl, fiir welche 2= +1 (mod I).

Dann ist fiir beliebige Anfangsmuster die Folge der durch a erzeugten Muster nach dem
ersten Schritt periodisch mit einer Periodenlinge r=2*—1.

In der folgenden Tabelle sind einige Periodenldngen aufgefiihrt:

l 3 5 7 9 11 13 15 17 19
r 1 3 7 7 31 63 15 15 511

Im allgemeinen konnen kiirzere Periodenldngen auftreten, die aber Teiler von r sind. Die
Zuriickfiihrung des Falles von geraden [ (mit ungeradem Primteiler) auf ungerade ! wird
dem Leser iiberlassen.

8. Beziehung zu anderen Themen

Hier moge noch auf eine gewisse Verwandtschaft zwischen unserem Spieloperator und
dem ILaplace-Operator 4 hingewiesen werden. Eine grobe Diskretisierung des letzteren in
einem Quadratgitter fiihrt bekanntlich dazu, fiir Au in einem Gitterpunkt ndherungsweise
den Mittelwert der Funktionswerte von u in den vier Nachbarpunkten zu setzen. Demge-
geniiber ist die 0-1-Belegung von « x in jedem Punkt gleich der Summe modulo 2 der vier
Nachbarwerte desselben Punktes in x.

Und um die Analogie noch etwas weiter zu strapazieren konnte man hier, entsprechend
den Eigenfunktionen von 4, nach den Eigenvektoren von o fragen. Zum Eigenwert 0
gehoren offenbar die nichtverschwindenden Elemente x des Kerns, fiir welche also o x =0
ist. Diese wurden in Nr. 5 bereits besprochen.
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Die Eigenvektoren zum Eigenwert 1 sind die nichtverschwindenden Fixpunkte x von o,
also mit o x = x. Fiir [ = 2* existieren keine solchen. (S. Satz 2). Je ein Beispiel fiir [ = 3
und /=5 ist in Abb. 3 angegeben.

I
.

NEERE

[
B

1=3 T=3
Abb. 3. Beispiele fiir Fixpunkte von o

Mit diesem bekommt man nach Satz 5, (2) auch sofort entsprechende Fixpunkte fiir alle
I, die Vielfache von 3 oder 5 sind. Beispiele fiir andere [ habe ich nicht gefunden.
Schliesslich noch eine Querverbindung zu einem weiteren aktuellen Thema: In Nr. 7
wurde das Spiel als ein endlicher Automat interpretiert. Ebensogut kann man natiirlich
in jedem Gitterpunkt einen sehr einfachen Automaten setzen, das Ganze also als zellula-
ren Automaten (bzw. neuronales Netz) sehen. Jeder Knoten kann dann zwei Zustinde
annehmen, und der Folgezustand hidngt geméss unseren Spielregeln vom aktuellen Zu-
stand der vier Nachbarn ab.

Ein anderes, interessantes Beispiel fiir einen zellularen Automaten auf einem Quadratgit-
ter findet sich in Dewdney [2].

P. Lauchli, Institut fiir Theor. Informatik, ETH Ziirich
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