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Selbstreproduzierende Muster

Zusammenfassung. Aufeinem Quadratgitter wird die Entwicklung von 0-1-Mustern nach
einer einfachen Spielregel verfolgt, wobei sich eine merkwürdige Reproduktionseigenschaft

zeigt. Aus der Diskussion dieser Erscheinung ergeben sich einige Querverbindungen

zu anderen mathematischen Themen.

Abstract. The development of 0-1-patterns on a square grid, obeying a simple rule is
discussed. As a result, a self-reproducing property can be oberserved. Some relations to
other mathematicai subjects are set out.

1. Einleitung

Vor vielen Jahren las ich - wahrscheinlich in einer Kolumne von M. Gardner im Scientific
American - eine Notiz über ein «Spiel», das sich, ähnlich wie Conway's «Game of Life»,
auf einem Quadratgitter abwickelt. Der momentane Zustand ist wie dort durch eine
binäre Belegung in jedem Gitterpunkt, z.B. mit 0 oder 1, definiert. Die Regeln sind aber
viel einfacher als bei Conway:
Im Folgezustand erhalten genau diejenigen Punkte eine 1, welche im aktuellen Zustand eine

ungerade Anzahl Nachbarn mit 1 haben.

Dabei gilt die Konvention, dass jeder Gitterpunkt 4 Nachbarpunkte besitzt. (Im Game
of Life: 8 Nachbarpunkte. Siehe Berlekamp, Conway, Guy [1], oder Jacobs [4]). Ein
einfaches Beispiel ist in Abb. 1 dargestellt. Die mit 1 belegten Punkte sind hervorgehoben.
In der erwähnten Notiz wurde nun festgestellt, dass ein beliebiges Anfangsmuster nach
einer gewissen Anzahl von Schritten in vier identischen Kopien reproduziert wird.

o
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9-^
Abb. 1. Beispiel für einen Spielschritt
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Nach meiner Erinnerung blieb aber diese Behauptung dort unbewiesen. Falls ein Leser
die genaue Quelle kennt, bin ich froh um einen entsprechenden Hinweis. Die hübsche
Idee liefert übrigens eine dankbare Übungsaufgabe für ein Dialogprogramm, welche ich
häufig in Anfangerkursen im Programmieren gestellt habe.
Als ich mich in den letzten Jahren wieder mit dem Problem befasste, sah ich, dass der
Beweis für die Reproduktionseigenschaft fast trivial ist. Beim Weiterspinnen des Fadens
kamen noch einige Gedanken hinzu, welche im folgenden wiedergegeben werden sollen.
Es zeigten sich dabei manche lose Querverbindungen zu bekannten mathematischen
Themen.

2. Die Reproduktionseigenschaft

Mit dem folgenden Satz wird die erwähnte Behauptung über die Reproduktion beliebiger
Muster gleich etwas präzisiert:

Satz 1. Das Spiel werde mit einem Anfangsmuster begonnen, welches in einem Quadrat der

Seitenlänge 2* — 1, fc 0, 1,..., enthalten ist. (D. h. alle Punkte ausserhalb des Quadrates
sind mit 0 belegt). Dann besteht die Gitterbelegung nach 2k Schritten aus vier identischen

Kopien des Anfangsmusters.

Beweis. Aus der Spielregel folgt, dass jeder mit 1 belegte Punkt für den Folgezustand zu
jedem Nachbarn einen Beitrag 1 liefert, und dass diese Beiträge modulo 2 zu addieren
sind. Somit genügt es, die Abkömmlinge des Anfangsmusters, das nur eine 1 enthält, zu
diskutieren, und diese dann für ein beliebiges Anfangsmuster entsprechend zu superpo-
nieren. Eine einfache Induktion nach k zeigt aber, dass eine einzelne 1 nach 2k Schritten
in vier Einsen, je im Abstand 2k von der ursprünglichen, übergeht. (Siehe Abb. 2).

noch 2k Schritten:

2k

Abb. 2. Entwicklung des Einermusters

Für den Induktionsschritt hat man lediglich mit den vier Punkten des 2*-Musters als
Zentren wieder diese vier Kreuze einzusetzen, um so das doppelt so grosse Kreuz des
2k+^Musters zu erhalten.

Aus dem Beweis ist auch sofort ersichtlich, wie die vier Kopien angeordnet sind. Zur
Illustration des Satzes könnte etwa im Beispiel von Abb. 1 ein weiterer Schritt durchgeführt

werden. Man überlege sich auch, wie das Muster für einen einzelnen Anfangspunkt
nach (2*-l) Schritten aussieht. Es ist im übrigen amüsant, die scheinbar wirren
Zwischenmuster wirklich einmal auf dem Bildschirm zu verfolgen.
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3. Die Behandlung des Randes

Bis dahin wurde stillschweigend unterstellt, dass keine Randphänomene auftreten, dass

also das Gitter genügend gross sei. Diese Betrachtungsweise mag, vor allem für die

Programmierpraxis, angebracht sein: Der auf dem Bildschirm sichtbare Ausschnitt wird
dann nach einer gewissen Anzahl von Schritten einfach leer.

Für eine theoretische Behandlung befriedigt aber diese Lösung nicht, insbesondere wenn
man die Gitterbelegungen als Vektoren betrachtet und Vektorräume von einer festen

endlichen Dimension haben möchte. Wenn man nun das Gitter z. B. auf ein Quadrat
beschränkt und für die Randpunkte (die zwei oder drei Nachbarn besitzen) auch die

ursprünglichen Regeln anwendet, erhält man jedoch störende Effekte, sobald ein Muster
den Rand erreicht.
Ein eleganter Ausweg besteht darin, dass man als Gitter ein Quadrat mit der Seitenlänge
/ nimmt und je gegenüberliegende Ränder identifiziert, also einen Torus bildet. Alle unsere

folgenden Betrachtungen werden für dieses Torus-Quadrat durchgeführt. Als Vorteil
ergibt sich vor allem auch die Homogenität des Gitters; keine der l2 Punkte sind
ausgezeichnet.

Torus-Quadrate, deren Seitenlänge / eine Zweierpotenz ist, stellen einen Sonderfall dar:

Satz 2. Mit l 2k entstehtfür ein beliebiges Anfangsmuster nach 2*"1 Schritten die Nullbelegung.

Der Beweis ist trivial. (Man betrachtet zunächst wiederum das Anfangsmuster, das nur
eine 1 enthält).

4. Der Spieloperator als lineare Abbildung

Wenn man dem Torus-Quadrat den ungerichteten Graph G (X,K) zuordnet, dessen

Punktmenge X aus den Gitterpunkten, dessen Kantenmenge K aus den Gitterlinien
besteht, erhält man eine neue Deutung des Spielschrittes.

Es sei n |X\ /2, m \K\ 2 n 212. Die Teilmengen von X bilden einen n-dimensionalen
Vektorraum W0 über Z2, diejenigen von K einen m-dimensionalen Vektorraum Wx, wenn
man als Vektoraddition die Mengendifferenz benützt. Die Einermengen bilden je Basen
und führen auf naheliegende Koordinatendarstellungen. Ferner betrachtet man lineare
Abbildungen zwischen den beiden Räumen, nämlich die

Randabbildung 6: Wx -*• W0, und die

Korandabbildung ö: W0 -> Wx.

Der Rand einer einzelnen Kante besteht aus den beiden Endpunkten, der Korand eines

einzelnen Punktes aus den mit ihm inzidenten Kanten. Mit der Linearität ergibt sich
dann die Definition für beliebige Vektoren. (Siehe Harary [3], Läuchli [5]).
Ein Muster unseres Spiels kann nun als Element x e W0 aufgefasst werden (jc Menge der
mit 1 belegten Punkte), der Übergang zum Folgemuster als Anwendung einer linearen
Abbildung («Spieloperator») a: W0 -? W0.
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Damit gilt dann

Satz 3. Die Zusammensetzung von Korand- und Randabbildung ergibt den Spieloperator:
a 8<5.

Beweis. Für beliebige Vektoren ke Wx, xe W0 gilt:
8 k Menge der Punkte mit ungeradem Grad im durch k erzeugten Teilgraph,
öx Menge der Kanten, die Punkte ex mit Punkten $x verbinden.

Genau dann, wenn ein Punkt bei Anwendung von <x den Wert 1 bekommt, wenn er also
eine ungerade Anzahl Nachbarn mit 1 besitzt, hat er auch eine ungerade Anzahl
Nachbarn mit 0, ist er also jedenfalls durch eine ungerade Anzahl Kanten mit Punkten
verbunden, die von dem seinigen verschiedene Werte tragen. Daraus folgt die Behauptung.

D

5. Umkehrbarkeit des Spiels

Eine naheliegende Frage ist nun, ob aus einem Zwischenmuster des Spiels die Reihe der

Vorgänger eindeutig rekonstruierbar sei. Mit y—ccx ist offenbar genau dann auch

y a(x + x0), wenn axo 0. Der Vorgänger von y ist also genau in dem Falle nicht
eindeutig, wo der Kern von a ein nichtverschwindendes Element enthält.
Es ist sofort einzusehen, dass bei der Ausbreitung von Mustern in einem unbeschränkten
Gitter die eindeutige Umkehrbarkeit des Prozesses gewährleistet ist. Dies gilt jedoch
aufgrund des folgenden Satzes nicht (bzw. nur im unten präzisierten Sinne) für das

Torus-Quadrat.

Satz 4. Es gilt: dim (ker a) t +1, wo t dim (Z n Z')9 Z Zyklenraum, Z' Korandraum
von G.

(Die beiden Teilräume Z, Z' ___ Wx sind folgendermassen definiert:
Z=kerö. Die durch Elemente von Z erzeugten Teilgraphen zerfallen in disjunkte
Kreise.
Z' — im ö. S. auch Beweis Satz 3).

Beweis. Allgemein gilt für die Zusammensetzung von linearen Abbildungen/, g:
dim (ker (/g)) dim(kerg)+dim (ker fn im g).

Ferner ist sehr leicht zu sehen, dass dim (ker 8)== 1; denn nur der Korand der leeren und
der vollen Punktmenge verschwindet.

Die beiden Teilräume Z, Z' sind zwar bei beliebigen Graphen orthogonale Komplemente;
da aber das für diese Feststellung in naheliegender Weise definierte Skalarprodukt nicht
definit ist, können sie dennoch einen nichtleeren Durchschnitt besitzen (t>0). Dies ist in
der Tat gerade beim Graph des Torus-Quadrates der Fall. Man findet z.B. sofort, dass

die Punktmuster, die durch die beiden Quadrat-Diagonalen gebildet werden, für jedes /

zum Kern von a gehören. Für gerade l sind ferner leicht zwei weitere Kernvektoren zu
entdecken.
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Um schliesslich nochmals auf die eindeutige Umkehrbarkeit von oc zurückzukommen:
Höhe und Breite des kleinsten Rechtecks, das ein gegebenes Muster enthält, werden
durch jede Anwendung von a je um 2 erhöht, solange das Rechteck noch nicht zu gross
ist. Genauer: Es ist sicher ax^O, falls das Muster x mindestens zwei benachbarte leere
Zeilen oder leere Kolonnen besitzt. Daraus folgt aber, dass auch beim Torus-Quadrat der
Prozess von solchen Mustern aus eindeutig zurückverfolgt werden kann, welche die
Bedingung von zwei leeren Zeilen oder Kolonnen erfüllen.

6. Ein Hilfssatz

Für die nachfolgende Betrachtung (in Nr. 7) ist ein Hilfssatz nützlich, der hier gerade in
einer etwas allgemeineren Form, die wohl an sich Interesse verdient, als Satz 5 formuliert
wird.
Wir gehen von einem quadratischen Gitterausschnitt mit Seitenlänge / aus und bilden
damit einerseits das Torus-Quadrat und dessen Punktraum W0. Andererseits erzeugen
wir durch Zusammenheften von q2 dieser kleinen Quadrate und Identifikation an den

Nahtstellen ein grosses Quadrat der Seitenlänge l q l und damit dann wieder ein

Torus-Quadrat mit dem Punktraum W'0. Die Spieloperatoren in den beiden Räumen
seien oc und et!. Ausgehend von einem x' e W'0 beobachtet man nun, dass das gleiche
Resultat erhalten wird, ob man zuerst auf x' n-mal den «grossen» Spieloperator a'

anwendet und dann die Muster der q2 kleinen Quadrate additiv überlagert, oder ob man
zuerst diese Überlagerung durchführt und dann n-mal den «kleinen» Spieloperator a
anwendet. Es sei U: W'0 -» W0 die lineare Abbildung, welche dieser Überlagerung
entspricht.

Eine entsprechende Feststellung kann bei Anwendung der linearen Abbildung R:

W0 -? W'0 gemacht werden, welche darin besteht, dass das Muster von W0 (nur J2 Punkte!)
in q2 Kopien in die kleinen Quadrate von W'0 gesetzt wird. Es gilt dann

Satz 5. Für h 0, 1, gelten die Gleichungen
(1) U((x')h <xhU

(2) R<xh (a')h R.

Beweis. Es ist sofort zu sehen, dass Utx'x'-aUx' für |x'| 1, und damit auch für alle
x'e W'0. Die Behauptung (1) ergibt sich dann durch n-maliges Hinüberziehen des

Spieloperators von der rechten auf die linke Seite von U mit U a' a U. Genau gleich beweist

man (2).

7. Periodizität

Das Funktionieren des Spieloperators auf W0 könnte auch in der Terminologie der
endlichen Automaten beschrieben werden (bzw. als dynamisches System, siehe Jacobs [4]),
da ja jedes Muster nur von seinem unmittelbaren Vorgänger abhängt. Der Automat hätte
2" Zustände, von denen keiner als Anfangszustand ausgezeichnet ist. Da keine Zeichen
von aussen gelesen werden (was auf dasselbe herauskommt, wie wenn das Eingabealpha-
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bet nur aus einem Zeichen besteht), wird der Prozess nach einer eventuellen Anfangsphase

sicher periodisch.
Wir werden sehen, dass leicht etwas über die Periodenlängen ausgesagt werden kann. Der
Fall / 2k soll aufgrund von Satz 2 gleich ausgeschlossen werden. (Triviale Periode der
Länge 1). Zunächst sei / ungerade. Wie schon vorher, genügt es wieder, mit dem Muster,
das nur eine 1 enthält, zu beginnen. Wir legen diese 1 z. B. in die vier identifizierten Ecken
des Torus-Quadrates und numerieren die Punkte der Grundlinie von 0 bis /. Nach 2k

Schritten enthalten genau die beiden Punkte mit den Nummern a für 2k +a (mod /)

eine 1. Dasselbe spielt sich auch auf den übrigen Randlinien des Quadrates ab, im Inneren
verschwinden dann alle Werte.
Dass dies richtig ist, leuchtet ohne weiteres ein, kann aber nach Satz 5, (1) verifiziert
werden, indem man zuerst das Ein-Punkt-Muster in einem genügend grossen W'0 sich

ausbreiten lässt und dann die Überlagerung durchführt. Aus dem vorher Gesagten folgt

nun, dass nach 2k Schritten, wenn 2k ± 1 (mod /), dasselbe Muster wie nach einem

Schritt vorhanden ist. Ein solches k existiert auch tatsächlich, denn die zu / primen
Restklassen modulo / bilden eine multiphkative Gruppe. 2 gehört dazu und erzeugt eine

Untergruppe. Damit ist der folgende Satz bewiesen:

Satz 6. Sei l ungerade, k die kleinste positive natürliche Zahl, für welche 2k +1 (mod /)•

Dann ist für beliebige Anfangsmuster die Folge der durch a erzeugten Muster nach dem

ersten Schritt periodisch mit einer Periodenlänge r 2k — l.

In der folgenden Tabelle sind einige Periodenlängen aufgeführt:

/ 3 5 7 9 11 13 15 17 19

r 1 3 7 7 31 63 15 15 511

Im allgemeinen können kürzere Periodenlängen auftreten, die aber Teiler von r sind. Die
Zurückführung des Falles von geraden / (mit ungeradem Primteiler) auf ungerade / wird
dem Leser überlassen.

8. Beziehung zu anderen Themen

Hier möge noch auf eine gewisse Verwandtschaft zwischen unserem Spieloperator und
dem laplace-Operator A hingewiesen werden. Eine grobe Diskretisierung des letzteren in
einem Quadratgitter führt bekanntlich dazu, für Au in einem Gitterpunkt näherungsweise
den Mittelwert der Funktionswerte von u in den vier Nachbarpunkten zu setzen.
Demgegenüber ist die 0-1-Belegung von ax in jedem Punkt gleich der Summe modulo 2 der vier
Nachbarwerte desselben Punktes in x.
Und um die Analogie noch etwas weiter zu strapazieren könnte man hier, entsprechend
den Eigenfunktionen von _d, nach den Eigenvektoren von a fragen. Zum Eigenwert 0

gehören offenbar die nichtverschwindenden Elemente x des Kerns, für welche also a x=0
ist. Diese wurden in Nr. 5 bereits besprochen.
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Die Eigenvektoren zum Eigenwert 1 sind die nichtverschwindenden Fixpunkte x von a,
also mit a x x. Für / 2k existieren keine solchen. (S. Satz 2). Je ein Beispiel für / 3

und / 5 ist in Abb. 3 angegeben.

I T—? 1

A A

o o

6—o

o—o

o o

o o

0—6

1 =3 1 =5
Abb. 3. Beispiele für Fixpunkte von a

Mit diesem bekommt man nach Satz 5, (2) auch sofort entsprechende Fixpunkte für alle
/, die Vielfache von 3 oder 5 sind. Beispiele für andere / habe ich nicht gefunden.
Schliesslich noch eine Querverbindung zu einem weiteren aktuellen Thema: In Nr. 7

wurde das Spiel als ein endlicher Automat interpretiert. Ebensogut kann man natürlich
in jedem Gitterpunkt einen sehr einfachen Automaten setzen, das Ganze also als zellularen

Automaten (bzw. neuronales Netz) sehen. Jeder Knoten kann dann zwei Zustände
annehmen, und der Folgezustand hängt gemäss unseren Spielregeln vom aktuellen
Zustand der vier Nachbarn ab.

Ein anderes, interessantes Beispiel für einen zellularen Automaten auf einem Quadratgitter
findet sich in Dewdney [2].

P. Läuchli, Institut für Theor. Informatik, ETH Zürich
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