Zeitschrift: Elemente der Mathematik

Herausgeber: Schweizerische Mathematische Gesellschaft

Band: 46 (1991)

Heft: 1

Rubrik: Kleine Mitteilungen

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 15.12.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

El. Math., Vol. 46, 1991

much better estimated by the multinomial coefficient $\binom{6n}{3n} \cdot \binom{3n}{n} = \binom{6n}{n, 2n, 3n}$ than by $\binom{2n}{n}$ as it is usually done. An even better approximation is furnished by the multinomial coefficient used in lemma 2.2.

In conclusion I would like to offer to those who like primes with nice digit patterns two new examples, namely p = 122333221 and q = 1223334444555554444333221.

Ulrich Felgner, Mathematisches Institut der Universität Tübingen

REFERENCES

- 1 Apostol T. M.: Introduction to Analytic Number Theory. Springer, New York, Heidelberg, Berlin 1976.
- 2 Costa Pereira N.: Sharp elementary estimates for the sequence of primes. Portugaliae Math. 43, 399-406 (1986).
- 3 Hua L. K.: Introduction to Number Theory. Springer, Berlin, Heidelberg, New York 1982.
- 4 Nair M.: On Chebyshev-type inequalities for primes. Amer. Math. Monthly 89, 126-129 (1982).
- 5 Rosser J. B. and Schoenfeld L.: Approximate formulas for some functions of prime numbers. Illinois J. of Math. 6, 64-94 (1962).
- 6 Sierpiński W.: Elementary Theory of Numbers. Państwowl Wydawnictwo Naukowe, Warszawa 1964.
- 7 Trost E.: Primzahlen. Birkhäuser, Basel, Stuttgart 1968.
- © 1991 Birkhäuser Verlag, Basel

0013-6018/91/05117-13\$1.50+0.20/0

Kleine Mitteilungen

Zu K. Schüttes Verallgemeinerung des Satzes von Napoleon

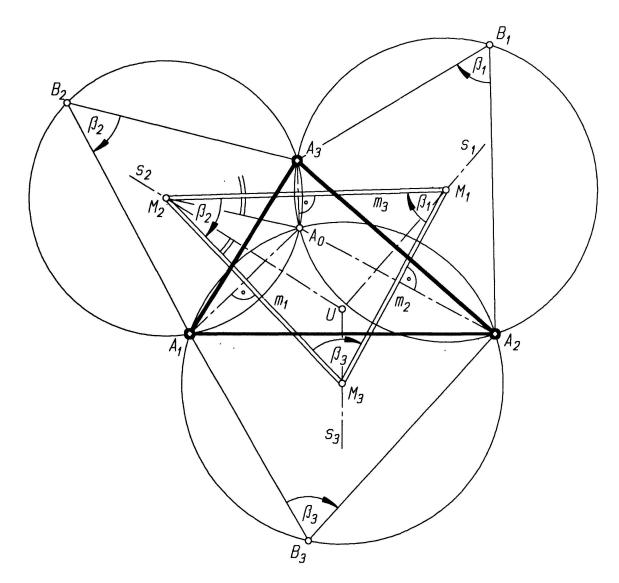
In [2] und [3] bewies K. Schütte den folgenden

Satz 1 Den Seiten des Dreiecks $A_1A_2A_3$ seien Dreiecke $A_2A_3B_1$, $A_3A_1B_2$, $A_1A_2B_3$ aufgesetzt, und zwar entweder alle nach außen oder alle nach innen. Für die Innenwinkel β_i bei B_i , i=1,2,3 gelte $\beta_1+\beta_2+\beta_3=\pi$ (siehe Abb. 1). Dann bilden die Umkreismittelpunkte M_1,M_2,M_3 der Aufsatzdreiecke ein Dreieck mit den Innenwinkeln β_1 , β_2 und β_3 , sofern nicht alle drei Umkreismitten zusammenfallen.

Im folgenden wird ein vereinfachter Beweis dieses Satzes gezeigt:

Nach dem Satz vom Zentriwinkel ist die Umkreismitte M_i für jede gerade Permutation (i,j,k) von (1,2,3) das Zentrum einer Drehung δ_i durch den Winkel $2\beta_i$, die A_j in A_k überführt. Wegen der vorausgesetzten Lage der Aufsatzdreiecke erfolgen alle drei Drehungen in demselben Sinn. Das Produkt $\delta_1 \delta_2 \delta_3$ ist eine Bewegung mit dem Drehwinkel 2π , die A_2 fix läßt, also die Identität. Da – wie vorausgesetzt – die Drehzentren verschieden sind, bilden sie ein Dreieck $M_1 M_2 M_3$ mit den halben Drehwinkeln β_1 , β_2 und β_3 als Innenwinkeln. Dies läßt sich bekanntlich wie folgt zeigen:

26 El. Math., Vol. 46, 1991



Wir setzen die Drehung δ_2 aus der Spiegelung μ_3 an der Verbindungsgeraden $m_3 = M_1 M_2$ und der Spiegelung μ_1 an der unter β_2 verdrehten Geraden m_1 durch M_2 zusammen. Analog ist $\delta_1 = \mu_2 \mu_3$, wobei für die Achse m_2 der Geradenspiegelung $\mu_2 \not\leftarrow m_2 m_3 = \beta_1$ gilt. Nun fällt wegen $\delta_3^{-1} = \delta_1 \delta_2 = \mu_2 \mu_1$ der Fixpunkt M_3 von δ_3 in den Schnittpunkt von m_1 und m_2 . Analog ist $\not\leftarrow m_1 m_2 = \beta_3$.

Dazu noch einige ergänzende Bemerkungen:

- a) Aus $\delta_i = \mu_j \mu_k$: $A_j \mapsto A_k$, also $A_j \mu_j \mu_k = A_k$ folgt $A_0 := A_1 \mu_1 = A_2 \mu_2 = A_3 \mu_3$. Dieses gemeinsame Spiegelbild A_0 liegt auf den Umkreisen aller drei Aufsatzdreiecke (vgl. [3], Lemma 3 und 5).
- b) Der Punkt A_0 ist bezüglich des Dreiecks $M_1 M_2 M_3$ isogonaler Gegenpunkt zur Umkreismitte U von $A_1 A_2 A_3$.

Beweis: M_i liegt auf der Symmetralen s_i der Seite $A_j A_k$. Die Drehung um M_i durch den Winkel β_i führt die Verbindungsgerade $M_i A_j$ in die Symmetrale s_i und gleichzeitig die Gerade m_j in m_k über. Wegen $A_0 := A_j \mu_j$ entsprechen die Geraden $M_i A_0$ und $M_i U$ einander in der isogonalen Verwandtschaft bzgl. $M_1 M_2 M_3$.

El. Math., Vol. 46, 1991

c) Nach einer Mitteilung von E. Domkowitsch gilt folgender

Zusatz: Werden in Satz 1 alle drei Aufsatzdreiecke untereinander gleichsinnig ähnlich gewählt, d. h. haben diese bei A_i stets den Innenwinkel β_i für i=1,2,3 (Abb. 1 zeigt diese Annahme), so gehen alle drei Verbindungsgeraden A_1B_1 , A_2B_2 , A_3B_3 durch den Punkt A_0 .

Beweis: Die Dreiecke $A_1 B_2 A_2$ und $A_1 A_3 B_3$ sind einander gleichsinnig ähnlich, weil sie im Innenwinkel bei A_1 und im Verhältnis der anliegenden Seiten übereinstimmen. Da die Geraden $A_1 B_2$ und $A_1 A_3$ den Winkel β_1 einschließen, gilt dies auch für die Seiten $A_2 B_2$ und $A_3 B_3$. Nach dem Peripheriewinkelsatz schneiden die beiden Seiten einander auf den Umkreisen der zwei Aufsatzdreiecke durch A_1 . Also liegt A_0 auf $A_2 B_2$ und $A_3 B_3$ und analog auf $A_1 B_1$.

Im Sonderfall $\beta_1 = \beta_2 = \beta_3 = 60^\circ$ ergibt sich abermals eine bekannte Teilaussage des Satzes von Napoleon (vgl. [1]).

H. Stachel, TU Wien

LITERATUR

- 1 Coxeter H. S. M.: Unvergängliche Geometrie. Birkhäuser Verlag, Basel 1963.
- 2 Schütte K.: Eine Verallgemeinerung des Satzes von Napoleon. Mathematische Semesterberichte 34, 256-268 (1987).
- 3 Schütte K.: Neue Fassung einer Verallgemeinerung des Satzes von Napoleon. El. Math., Vol. 44, 133-138 (1989).
- © 1991 Birkhäuser Verlag, Basel

0013-6018/91/05125-03 \$1.50 + 0.20/0

Aufgaben

Aufgabe 1025. Gegeben ist die diophantische Gleichung

$$(x + y + z + t)^2 = x y z t$$
 (1)

a) Man beweise, dass (1) unendlich viele Lösungen

$$(x, y, z, t) \in \mathbb{N}^4$$

besitzt.

b) Man ermittle alle Lösungen von (1), welche den Nebenbedingungen

$$x \le y \le z \le t$$
, $x + y + z \ge t$

genügen.

J. Sàndor, Jud. Harghita, Rumänien G. Berger, Tg-Mureş, Rumänien