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Estimates for the sequence of primes

Abstract. By elementary methods we obtain estimates for n(x) and pn which are consid-
erably sharper than those previously obtained by similar methods.

1. Introduction. Let pn be the nth prime (thus px 2, p2 3,...) and let n(x) be the number
of primes p such that p <x. Various fairly precise estimates for p„ and n(x) are known,
notably those of J. B. Rosser and L. Schoenfeld [5]. However these estimates are proved
by rather deep methods (location of the zeros of the Riemann zeta function) as well as by
heavy computations. It is therefore desirable to obtain sufficiently good estimates by
elementary methods. Such estimates are known, but it appears that it is possible to
improve them. For example, a result of Rosser-Schoenfeld [5] states that

n • log (n) < pn < n • log (n) + n • log (log(n)) for 6 < n,

while W. Sierpinski [6] is satisfied with

0.25 n • log (n) <pn<36n- log (n)

and Apostol [1] with (1/6) n • log(n) < pn < 6n • log(n). We shall prove here by similar
elementary methods that for all n > 3:

0.91 n log(n)<pn< 1.7nlog(n).

To my knowledge all elementary estimates are based on arithmetical properties of the

binomial coefficient I I. In our proofs we shall use certain multinomial coefficients

instead. Thereby we obtain sharper bounds and also - surprisingly - simpler proofs.

Notation, log denotes natural logarithm to the base e 2.718..., and [x] is the greatest
integer m such that m < x. Furthermore, p and q are variables for primes, m,n,k9...
are variables for positive integers and x, y, z,... are variables for reals.

2. Arithmetical properties of some binomial coefficients

Definition. For each real number x > 1 and each prime p let ax (p) a (p) be the integer
defined by pa{p} < x < p1 + a(p) and put

b(x)= n P*{p) •

p<Lx

Thus B(x) is the least common multiple of the integers 1, 2,..., [x]. B(x) B([x]) and
otn(p) [logp(n)]. The importance of B(n) comes from the fact that

nn(n) ==Y\n Y\ plogp(n) > B(n) > n P> where all terms are 'almost' the same.
p__n _>_.« _>__n
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Lemma 2.1. n
2 j 6h

3n
3n

<B(1.2n)B(6n) for all n>\.

Proof. Let B(1.2n) YlPa(p\ B(6n) Upßip\ n Upy{p) and
be the representations as products of prime powers. Put

D(n,p>)-.

By Legendre's Lemma (cf. Trost [7], p. 8-9)

6n\ (3n
3n np(,S(P)

m-m
y(p) *ip) ß(P)

ö(p)=XD(n,PJ)+ Z D(n9f)+ £ D(n,p>),
j=i _ ?(_»)+1 j <z(p) + i

It follows from

k n

T-l<
fknl kn

IVrV
that D(n,pJ)<2. However, if a(p) + 1 <j < ß(p)9 then 1.2n<pJ <6n and hence

D(n9pJ) t. If the pnme p divides n then D(n,pJ) 0 for all j<y(p). Thus
S (p) < 0 + 2 (cc (p) - y (p)) + (ß (p) - a (p)) a (p) + ß (p) - 2 y (p) provided p \ n9 and
S (p) < ca (p) + ß (p) otherwise. D

Lemma 2.2. B (1806 n) < B (n)
/I806n\ /903n\ (301 n\ (43n
\903n 301 n 43 n

Proof. Put B(n) Upx(p\ B(lS06n) Upß(p) and

/1806 n\ /903 n\ /301 n\ /43 ri

\903n
'

\301 n) \43n
'

\ n

1806 n

903n,602n,258n,42n,n npy(p)

and

^(n,^)»
1806n 'nl \~42nl r258nl r602nl [903 rcl\

By Legendre's Lemma y(p) ^E(n9pJ), where j runs from 1 to ß(p). We have to prove
that ß(p) — ot(p) <y(p) for all primes p.
If 1 < ß(p) - (x(p) and <x(p) <j< ß(p)9 then n < pJ < lS06n by the definition of B(x).
Select öeN such that 1806n/(a +1) < pJ < 1806n/a. Then

<*• [^]- [^]-[ij. [*?]-[(\. W
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and [42 n/pJ] [a/43]. Therefore

19

1806 h

P3

Tl 805 al T42 a + 258 a + 602 a + 903 al
a>\ >

L 1806 J |_ 1806 J ~

|_1806J

a a a
— + — + —

L/J __3J L2J

This together with (*) implies that Efap3)^:! whenever n < pJ < 1806 h. Thus
y(p) zZE(n,p^)>(ß(p)-oL(p))'l. D

Lemma 2.3. For 1 < n:
1 21\ 3ri\ 1 /27V

Proof. Since our claim is true for n 1 let us assume for induction that it is also true for
some h>1. Then

3(h + 1)

H + l
3ri\3(9n2 + 9n + 2) 1 (21\9n2 + 9n + 2

n) 4n2 + 6n + 2 f^ \ 4 4n2 + 6n + 2

1 (2l\n + 1 36h2 + 36h+ 8 l 27

3v/nV4/ 36n2 + 54n + l%> i^/n~^'{~4

The upper bound is confirmed similarly.

3. Estimates for the product of the primes

Theorem 3.1. For all real numbers x > 1: B(x) <3X.

Proof. We shall prove by induction that for all integers n > 1, B(n) < 3n holds (then the

claim follows for all reals x > 1 since then B(x) B([x]) < 3[x] < 3X).

With the aid of a personal Computer it is not difficult to verify the claim for all positive
integers n < 126420 70 • 1806. In fact:

B(115089) < < B(126420) < 3115089 < < 3126420

£(104323) < < £(115088) < 3104323 < < 3115088,

£(94940) <...<£(104322)<394 940 <...<31 etc.

Now, let n z • 1806, where z > 70, and assume for induction that £(m) < 3m for all

m < n. By Lemma 2.2:

(*) £(h +1) < £(h + 2) < < B(n +1806) £(1806 • (z +1)) < B(z +1) • M,
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where M is a product of four binomial coefficients (in fact a multinomial coefficient) as

in lemma 2.2. An upper bound for M is obtained as follows. Since generally we have

a(b + l)\ (ab\ ab + 1 ab+ 2 ab + a-l a(b + l)
b + 1 \b) (a-l)b + l (a-l)b + 2 (a-l)b + a-l b + 1

'a b\ aa
< bj (a-l)0-1

it follows inductively:

ab\ ä
<a

5-1

b " \(a-l)a~^

Therefore in our case:

/1806 k\ /903 k\ /301 k\ /43 k\ 2k 790 596k
\903k) \301kJ \43kJ \ k

S

Together with the induction hypothesis £(z + l) < 3Z+1 we obtain hence from (*):

£(n + l)<£(H + 2)<...<£(H + 1806)<32 + 1-^1954790596(z + 1).

But e1954 790596(z+i) < 3i805z for z > 70 (take iogarithmsi). Hence

£(h + 1)<...<£(h + 1806) £(1806(z + 1))<318062 + 1 3n + 1 <...

This proves the theorem.

Theorem 3.2. For all real numbers x >13: 2.2X < £(x).

Proof. We shall prove that for all integers n > 13, 2.2"+1 < B(n) holds. Then the claim
follows for all reals x > 13, since

2.2*<2.2w+1<£([x]) £(x).

With the aid of a personal Computer it is easily seen that 2.2"+ 1 < B(n) is true for all
integers n such that 13 < n < 1475. For integers n such that 1476 6 • 246 < n we
proceed as follows. Choose hN such that 6k<n<6(k + l), thus k > 246. By lemma 2.1,

CD

.«_„..„B>„.(»).Ct»)_^..

lemma 2.3 and the well-known fact > 4m/2 y/m (cf. Trost [7], p. 58) we have

43*-27* 2* -13*>42*-3
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since k> 11 > 6 ^3. By theorem 3.1: £(1,2 k) < 31 2k, hence B(6k) > 42k • 31 8k > e4 75k.

But e415k> 2.26{k + 1) for k > 246 (take logarithms!). Since 6 k < n < 6 (n +1) we conclude
that

£(h) > B(6k) > e* 15k > 2.26(fc+1) > 2.2"+1 D

If we restrict theorem 3.2 to integers we could say that 2.2" < £ (n) is true for all integers
h > 11. A simple proof that 2" < B(ri) < 4" for all integers n > 1 is given in M. Nair [4].

Theorem 3.3. For all integers n > 1: Yl p < 3", and for all integers n > 41: 2.1" < Yl P-
p<n p<n

Proof. By theorem 3.1: Tl p <B(n)<3n for all 1 < neN. In order to prove the lower
p__n

bound notice first that for any prime number q9 for any positive integers i,j and for any
real numbers x, y the inequalities ql < x < ql + 1 and qJ < y < qJ+1 imply xy <ql+J+2.
Hence B(xy)< B(x) • £(y) • Yl <?• Therefore if 11 < neN then by theorems 3.1 and 3.2:

2.2" < B(n) < B{Jn) • ß(^) ¦ ]J P < (3K")2 TlP-
p<n p<n

However 2.1" • 9Vn < 2.2" for n > 2231 (take logarithms!) and we conclude that
2.1" < Il P f°r all 2231 < neN. With the aid ofa personal Computer it is easily seen that

p<n
2.1" < fl P also holds for all integers n such that 41 < n < 2231.

p<n
We could strengthen theorem 3.2 to: 2.206" < £(n) for all n > 13 with the same proof
but a lot more computation. Then theorem 3.3 can be strengthened to 2.2" <Yl P for

p<n
all integers n > 59. Again the same proof works but computations have to be carried
out for all h such that 59 < n < 650841. Rosser and Schoenfeld [5] proved that
2.316" <YlP< 2.763" for n > 101 in the case of the lower bound.

p<n

4. Estimates for pn and n (x)

We shall begin with a simple proof of (an extension of) Bertrand's postulate.

Theorem 4.1. For all integers n > 8 there is a prime p such that n < p < 1.5 n.

Proof. For reals a < b let A (a; b) be the product of all primes p such that a<p <b. Then
by theorem 3.3: for n > 28:

A(n; 1.5h) =_4(1; 1.5n)/A(l;n) > 2.1x 5"/3" (3.043 .../3)" > 1

The product A(n; 1.5 n) is hence non-empty which means that there is a prime between

h and 3 h/2. The claim is obviously also true for all n such that 8 < n < 28.
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It follows from theorem 4.1 that pm+x < 1.5pm for pw > p5 11. Hence

p„+2 < i(p„+i + 2pn + x) < \(f pn + 2pn+x)<pn + pn + x

for h > 5 (even for n > 2). This is Ishikawa's theorem (cf. Trost [7], Satz 35).

Theorem 4.1 does not teil us how many primes there are between n and §n. For the
number of primes between n and 2 h however we obtain the following estimate:

3 xV*-6: ^']—7^-;<^(2x)-7i(x).5 log(2x)

To prove this we argue as in Trost [7], Satz 31: let JF^ denote the product of all primes p

such that h < p < 2h and put Pn • Qn J. By theorem 3.3: Qn < 32"/3 • (2n)Vn/2, hence

0653886169« / 4 \J/n/2

y/4n \2nJ

Taking logarithms we see that x • log (2 h) > 0,6 h for n > 19441, from which our claim
follows for all n > 19441. A simple check of tables shows that our claim is true even for
all x > 6.

Let us mention that Hua Loo Keng [3], p. 85, proves that 0.023 n/log (2 h) < 7c(2h) — n(n)
and Finsler h/3 log (2 h) < 7i(2n) — n(n) (cf. Trost [7], Satz 32). Rosser and Schoenfeld [5]
State that (3/5) • x/logx < 7c(2x) — n(x).

Theorem 4.2.

(i) 0.788 -^— < n (x) for all reals x > 5.
log(x)

x
(ii) n(x) < 1.5 -—— for all reals x > 2.

log(x)

Proof. (i) Since 2.2* < £(x) £([x]) < [x]*(W) < xn(x) by theorem 3.2 for x > 13 the claim
follows by taking logarithms and a direct check in the case 5 < x < 13.

(ii) A simple check of tables shows that our claim is true for all integers n such that
2 < n < 103854 6 • 17309. In fact:

n (2) < < 7i(10) 4 < 1.5 • 2/log 2 < < 1.5 • 10/log 10,

etc. (notice that tt (103 854) 9919). Now let k > 17309 and assume for induction that
7i (n) < 3 h/2 log (n) is true for 2 < n < 6 k. /^, \ /<>»\
If q is a prime such that k<q<6k then q divides I I

f
(see lemma 5.2). Therefore

by lemma 2.3: \3V\ "

-''-¦•^n^(X)<-H!)"
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Taking logarithms and using the induction hypothesis for n(k) we get

7.568 425 589 k 6 k 6 k
n(6k) < — 1.261404266 -—- < 1.493

log k log k log (6 k)

where the last inequality holds since k > 17309. We conclude that

tt (6k + 6) ti (6k + 5) < ti (6k + 4) + 1 tc (6k + 3) + 1 n(6k + 2) + 1

7i(6/c + l) + l<7r(6/c) + 2<2 + l .493

6k + l 6k + 6
<1.5: — -<...<1.5-

log(6/c)

log(6/c + l) log(6/c + 6)

(again for fc > 17309).
Let us mention that Apostol [1] proves h/6 log n < n (n) < 6 n/log n and Trost [7]
2 h/3 log n < k (n) < 1.6 n/log n based on checking of tables for n < 70000. The following
lemma is due to N. Costa Pereira [2].

Lemma 4.3. For n > 1: n" < B(pn).

Proof. m • log (pj tt (pj-log (pm)<l.5 pm by theorem 4.2 (ii). Since 1.5e< log (pj
for pm > 59 we obtain em<pm for pm > 59. In fact em<pm holds for all m > 10

(i.e. pm > 29).

For 1 < h < 10 it is easy to verify that n" < B(pn). Now let n > 10 be given and asumme
for induction that the claim of the lemma is true for all k < n. Then B(pn) > pn • £(p„_ x)

>en(n- lf'1. But e > f —5— j hence B(pn) > nn.

Theorem 4.4. For n > 3: 0.91 n • logn < p„ < 1.1 n • logn.

Proof. n" < B(pn) < 3Pn by theorem 3.1 and lemma 4.3. By taking logarithms it follows
that 0.91 h • log n<(n- log n)/log 3 < pn.
Concerning the upper bound of pn notice first that 1.7 log n> 13 for n > 2095 and

(logz)/z < 0.199764706 for z>13. Hence (log (1.7logn))/(l.7logn) < 0.199764706 for
h > 2095. By theorem 4.2(i): 1/tc(x) < (logx)/(0.788x) for x > 5. For x 1.7h • logn we
obtain therefore

h h • log(1.7nlogn)
tt(1.7nlogn) 0.788 • 1.7 • n • logn

n • log n n • log (1.7 • log n)

0.788 • 1.7 • n • logn 0.788 • 1.7n • logn

for n > 2095, that is n<n(1.7nlogn). Since

p„<1.7nlogn o n n(pn)<n(1.1 nlogn)
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the claim of the theorem is proved for all n > 2095. An easy check of tables shows that
our claim is even true for all n > 3. In fact p1474 12343 <... <p2094 18269

< 1.7 • 1474 • log (1474) < etc.

The argument of theorem 4.4 shows that p„ < 1.5n • log (n) for all n > 127 888158 (replace
1.7 by 1.5 in the proof). More generally the argument shows that for any constant
k > 1/0.788 1.269 035 53... there exists an integer M such that pn < k • n • log n for all
n>M.

5. Final remarks

The source for our estimates of pn and 7i(x) are lemma 2.1 and lemma 2.2. Both lemmata
might seem a bit obscure and we feel that we should motivate the truth of them.
All that is needed for a füll understanding of these lemmata is a precise knowledge of the

prime divisors of the binomial coefficients. Let p be a prime. If n < p < 2 n then p divides

Erdös observed that p does not divide [ 1 if | n < p < n. The following lemma\nj
is an extension of this Observation.

Lemma 5.1. Let p be a prime and 1 < &eN, k < n.
<2n

(i) If k <p and n/k<p< 2n/(2k-1) then p divides
V n

(ii) If 2 k -1 < p, k > 2 and 2 n/(2 k -1) < p < n/(k -1), then p does not divide I

Proof. l<k<n implies n/k < 2n/(2k — 1) < n/(k — 1). Ad (i): by assumption n</cp,
hence pk )(n\ (since p)(k — l) and (k — l)p<n, hence pfc_1|n!. Again by assumption
p2fc"1|(2n)! and the claim follows. Ad (ii): Similarly pk~x\n\, pk)(n\, p2fc~1^(2n)!,
p2*-2|(2n)!. D

Lemma 5.2. Let p be a prime and 2<k<n.
(i) If k < p and 2n/(k +1) < p < 3 n/(l + [3 k/2]) then p divides

(3n
(ii) If 3 n/(l + [3 k/2]) <p<2n/k then p does not divide

Proof. Notice first that

2n 3n 2n 3n 2n 3n 2n
.< < < < < —TT<-

k + 2 l + [3(k + l)/2] k + l 1 +- [3/c/2] k 1 + [3(k-l)/2] k-1

From this both Claims follow as in lemma 5.1.

It follows from 5.1 and 5.2 that the product of all primes p in the interval n < p < 6n

divides f • J. Ifp2 divides ^
I I then p < 1.2 n. Thus products of primes are

\3nJ \nj \3nJ\nJ
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much better estimated by the multinomial coefficient • than by
/2n\ VW W \n,2n,3nj

f
as it is usually done. An even better approximation is furnished by the multinomial

coefficient used in lemma 2.2.

In conclusion I would like to offer to those who like primes with nice digit patterns two
new examples, namely p 122 333 221 and q 122 333 4444 55555 4444 333 221.

Ulrich Felgner, Mathematisches Institut der Universität Tübingen
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Kleine Mitteilungen

Zu K. Schuttes Verallgemeinerung des Satzes von Napoleon

In [2] und [3] bewies K. Schütte den folgenden

Satz 1 Den Seiten des Dreiecks AXA2A3 seien Dreiecke A2A3BX, A3AXB2, AXA2B3
aufgesetzt, und zwar entweder alle nach außen oder alle nach innen. Für die Innenwinkel ßt

bei Blf i 1,2,3 gelte ßx + ß2 + ß3 n (siehe Abb. 1). Dann bilden die Umkreismittelpunkte

Mx, M2, M3 der Aufsatzdreiecke ein Dreieck mit den Innenwinkeln ßx, ß2 und ß3,
sofern nicht alle drei Umkreismitten zusammenfallen.

Im folgenden wird ein vereinfachter Beweis dieses Satzes gezeigt:

Nach dem Satz vom Zentriwinkel ist die Umkreismitte Mt für jede gerade Permutation
(i,j,k) von (1,2,3) das Zentrum einer Drehung öt durch den Winkel 2ßl9 die A} in Ak
überführt. Wegen der vorausgesetzten Lage der Aufsatzdreiecke erfolgen alle drei
Drehungen in demselben Sinn. Das Produkt ^i ^2^3 ist e*ne Bewegung mit dem Drehwinkel
2 tt, die A2 fix läßt, also die Identität. Da - wie vorausgesetzt - die Drehzentren verschieden

sind, bilden sie ein Dreieck Mx M2M3 mit den halben Drehwinkeln ßl9 ß2 und ß3

als Innenwinkeln. Dies läßt sich bekanntlich wie folgt zeigen:
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