Zeitschrift: Elemente der Mathematik
Herausgeber: Schweizerische Mathematische Gesellschaft

Band: 46 (1991)

Heft: 1

Artikel: Estimates for the sequence of primes
Autor: Felgner, Ulrich

DOl: https://doi.org/10.5169/seals-43265

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich fur deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veroffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanalen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En regle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
gu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 14.01.2026

ETH-Bibliothek Zurich, E-Periodica, https://www.e-periodica.ch


https://doi.org/10.5169/seals-43265
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en

ElL Math., Vol. 46, 1991 17

Estimates for the sequence of primes

Abstract. By elementary methods we obtain estimates for 7(x) and p, which are consid-
erably sharper than those previously obtained by similar methods.

1. Introduction. Let p, be the n'™ prime (thus p, =2, p, = 3,...) and let n(x) be the number
of primes p such that p < x. Various fairly precise estimates for p, and n(x) are known,
notably those of J. B. Rosser and L. Schoenfeld [5]. However these estimates are proved
by rather deep methods (location of the zeros of the Riemann zeta function) as well as by
heavy computations. It is therefore desirable to obtain sufficiently good estimates by
elementary methods. Such estimates are known, but it appears that it is possible to
improve them. For example, a result of Rosser-Schoenfeld [5] states that

n-log(n) <p,<n-log(n) +n-log(log(n)) for 6<n,
while W. Sierpinski [6] is satisfied with
0.25n-log(n) < p, < 36n -log(n)

and Apostol [1] with (1/6)n - log(n) < p, < 6n - log(n). We shall prove here by similar
elementary methods that for all n > 3:

091n-log(n) < p,<1.7n-log(n).

To my knowledge all elementary estimates are based on arithmetical properties of the
binomial coefficient 2nn . In our proofs we shall use certain multinomial coefficients
instead. Thereby we obtain sharper bounds and also — surprisingly — simpler proofs.

Notation. log denotes natural logarithm to the base e = 2.718..., and [x] is the greatest

integer m such that m < x. Furthermore, p and q are variables for primes, m,n,k,...
are variables for positive integers and x, y, z,... are variables for reals.

2. Arithmetical properties of some binomial coefficients

Definition. For each real number x > 1 and each prime p let o, (p) = a(p) be the integer
defined by p*? < x < p***® and put

B(x)=T1 p*™.

psx

Thus B(x) is the least common multiple of the integers 1, 2,..., [x]. B(x) = B([x]) and
a,(p) = [log, (n)]. The importance of B(n) comes from the fact that

n"® =TT n=[] p'**™ > B(n) > [T p, where all terms are ‘almost’ the same.
psn psn psn



18 El. Math., Vol. 46, 1991

6n

Lemma 2.1. n?- (
3n

) (3") < B(1.2n)- B(6n) for all n>1.

Proof. Let B(1.2n) = [1p*®, B(6n)=[1p*®, n=T1p"® and (6 n) ' (3 n) =[1p*®
. : 3n n
be the representations as products of prime powers. Put

oer[5]-415]

By Legendre’s Lemma (cf. Trost [7], p. 8-9)

a(p) B(p)
o(p) = ZD(np’)+ (Z)HD(HP’H_(Z)HD('!,P’)

It follows from

_’.(__'1_1<[_k_n:|<@.
14 Pl p

that D(n,p’) <2. However, if a(p)+1<j<p(p), then 1.2n<p'<6n and hence
D(n,p’)=1. If the prime p divides n then D(n,p)=0 for all j<y(p). Thus

0(p) <0+ 2(x(p) —y(p) + (B(p) — (p)) = a(p) + B(p) — 27(p) provided p|n, and
o(p) < a(p) + B(p) otherwise. [

1806 n 903 n 301n 43n
L 2.2. B(180 < B(n)- . . . .
emma 2.2. B(1806n) < B(n) (903n> (301n> (43n> ( n)
Proof. Put B(n) =[] p*®, B(1806n) =[] p? and
1806 n 903 n 301n 43n 1806 n ,
: ; : — — n p) (»)
903 n 301 n 43 n n 903 n,602n,258n,42n,n
and

Enp) = [1806 nJ (l:g] N [42 n] N [258 n] N [602 nJ N [903 n})
p’ p’ P I P Pl
By Legendre’s Lemma y(p) = 3 E (n, p’), where j runs from 1 to B(p). We have to prove
that f(p) — a(p) < y(p) for all primes p.
If 1 <B(p)—a(p) and a(p) <j < B(p), then n < p’ <1806 n by the definition of B(x).
Select ae N such that 1806 n/(a +1) < p/ <1806 n/a. Then

o [0 [ [ (291

A\
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and [42 n/p’] = [a/43]. Therefore

1806n]_ _[1805a]_[42a+258a+602a+903a]
] T L1806 | 1806 -

P
o | Bal 18] Taj, In
=|1806 | T[7|T 3] |2
This together with (*) implies that E(n,p’)>1 whenever n<p’<1806n. Thus
YD) =2EMnp)=BMm—ap@)- 1. O

Lemma 2.3. For 1<n: : (E <<3n <1- 2—7 .

Proof. Since our claim 1is true for n =1 let us assume for induction that it is also true for
some n>1. Then

3(n+1)\ _(3n 3(9nz+9n+2)> 1 (27TY'9n* +9n+2
n+1 n) 4n®+6n+2 = /p\4 4n*+6n+2

1 (27)"+1 36n* +36n+8 1 (27)”+ !
= — 't > | = .
3\/{, 4 36n°+54n+18 3 /ny+1 \ 4

The upper bound is confirmed similarly. [

3. Estimates for the product of the primes
Theorem 3.1. For all real numbers x >1: B(x) < 3~

Proof. We shall prove by induction that for all integers n > 1, B(n) < 3" holds (then the
claim follows for all reals x >1 since then B(x) = B([x]) < 3™ < 3%).

With the aid of a personal computer it is not difficult to verify the claim for all positive
integers n < 126420 = 70 - 1806. In fact:

B(115089) < ... < B(126420) < 3115089 < < 3126420
B(104323) < ... < B(115088) < 3104323 <« < 3115088
B(94940) <...< B(104322) < 3%%%40 < . < 3104322 ¢

Now, let n =z - 1806, where z > 70, and assume for induction that B(m) < 3™ for all
m < n. By Lemma 2.2:

(*) Bn+1)<B(n+2)<...<Bn+1806)=B(1806 - (z+1) <B(z+1)- M,
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where M is a product of four binomial coefficients (in fact a multinomial coefficient) as
in lemma 2.2. An upper bound for M is obtained as follows. Since generally we have

alb+1) ab ab+1 ab+2 . ab+a—1 abb+1)
b+1 )~ @—0)b+1 @—0)b+2 " (@-1)b+ta-1 b+l

ab a’
<
( ) (a 1)a - qya-1°

it follows inductively:

(V)< @)
p ) <4 PR .

Therefore in our case:

1806 K\ (903k\ [301k\ [43K\ oot cons
» . . . . 7259k . 43k 1954.790 596k.
(903k) (301k> (43k) (k )<4 3 B se

Together with the induction hypothesis B(z+1) < 3°*! we obtain hence from (*):
Bn+1)<B(n+2)<...<B(n+1806) < 32*1. 1954790596 +1)

But ¢1934.790596(z+1) - 31805z for 7 > 70 (take logarithms!). Hence
B(n+1)<...< B(n+1806) = B(1806(z +1)) < 318062*1 = 3n+1 |

This proves the theorem. []
Theorem 3.2. For all real numbers x >13: 2.2* < B(x).

Proof. We shall prove that for all integers n > 13, 2.2"*! < B(n) holds. Then the claim
follows for all reals x >13, since

2.2% < 22941 < B([x]) = B(x).

With the aid of a personal computer it is easily seen that 2.2"*! < B(n) is true for all
integers n such that 13 < n < 1475. For integers n such that 1476 = 6 - 246 < n we pro-
ceed as follows. Choose k € N such that 6k < n < 6 (k + 1), thus k > 246. By lemma 2.1,

2
lemma 2.3 and the well-known fact ( ":n) > 4’"/2ﬁ (cf. Trost [7], p. 58) we have

B(12k)- B(6Kk) > k* (6") (3") K2-882T ok g
2/3k-3/k- 4
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since k > 11 > 6ﬁ. By theorem 3.1: B(1,2k) < 31-2* hence B(6k) > 4% - 31-8k 5 o475k
But e*7°% > 2.26®*+1 for k > 246 (take logarithms!). Since 6 k < n < 6 (n + 1) we conclude
that

B(n) > B(6k) > e*7%% > 220k > 2 n+t -

If we restrict theorem 3.2 to integers we could say that 2.2" < B(n) is true for all integers
n > 11. A simple proof that 2" < B(n) < 4" for all integers n > 7 is given in M. Nair [4].

Theorem 3.3. For all integers n > 1: [] p < 3", and for all integers n > 41: 21" < [] p.

p<n psn

Proof. By theorem 3.1: J] p < B(n) < 3" for all 1 <nelN. In order to prove the lower

p<n
bound notice first that for any prime number g, for any positive integers i,j and for any

real numbers x,y the inequalities ¢' < x <¢'*! and ¢/ <y <¢’*! imply xy < ¢'*/*2.
Hence B(xy) < B(x) - B(y)* 1] q. Therefore if 11 < ne N then by theorems 3.1 and 3.2:

qsxy

22"<B() < B(/n B(/n) - TTp<@"-TIp.

pP<n p=<n

However 2.1"-9V" < 22" for n> 2231 (take logarithms!) and we conclude that
2.1" < T pfor all 2231 < ne IN. With the aid of a personal computer it is easily seen that

psn

21" < [T p also holds for all integers n such that 41 <n <2231. [J

p<n

We could strengthen theorem 3.2 to: 2.206" < B(n) for all n > 13 with the same proof

but a lot more computation. Then theorem 3.3 can be strengthened to 2.2" < [ p for
psn
all integers n > 59. Again the same proof works but computations have to be carried

out for all n such that 59 <n <650841. Rosser and Schoenfeld [5] proved that
2.316" < [T p < 2.763" for n > 101 in the case of the lower bound.

p=n

4. Estimates for p, and 7 (x)
We shall begin with a simple proof of (an extension of) Bertrand’s postulate.
Theorem 4.1. For all integers n > 8 there is a prime p such that n < p <1.5n.

Proof. For reals a < b let A(a; b) be the product of all primes p such that a < p < b. Then
by theorem 3.3: for n > 28:

Am1.5n) = A(1;1.5n)/A(1;n) > 2115737 = (3.043 .. /3" > 1.

The product A (n;1.5n) is hence non-empty which means that there is a prime between
n and 3n/2. The claim is obviously also true for all n such that 8 <n <28. [
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It follows from theorem 4.1 that p,,, < 1.5p,, for p,, > ps = 11. Hence

Pn+2 S%(pn-i*l +2P,41) S%(%Pn +2Pus 1) SPut Puts
for n > 5 (even for n > 2). This is Ishikawa’s theorem (cf. Trost [7], Satz 35).

Theorem 4.1 does not tell us how many primes there are between n and 3n. For the
number of primes between n and 2n however we obtain the following estimate:

Vx> 6: 0>
x>6: -
5 log(2x)

<nt(2x)—7m(x).

To prove this we argue as in Trost [7], Satz 31: let P, denote the product of all primes p

2 _
suchthatn<p<2nandputP,-Q, = ( n). By theorem 3.3: @, < 32" - (2n)V"/?, hence
n

£0-653886169n 1 Vnj2
IZ.>———--< ) =(2n)*

Jan

Taking logarithms we see that x - log(2n) > 0,6 n for n > 19441, from which our claim
follows for all n > 19441. A simple check of tables shows that our claim is true even for
all x > 6.

Let us mention that Hua Loo Keng [3], p. 85, proves that 0.023 n/log(2n) < n(2n) — n(n)
and Finsler n/3log(2n) < n(2n) — n(n) (cf. Trost [7], Satz 32). Rosser and Schoenfeld [5]
state that (3/5) - x/log x < n(2x) — n(x).

Theorem 4.2.

(i) 0788 —— <n(x) for all reals x > 5.
log (x)
(i) n(x)<1.5 X for all reals x > 2.
log(x)

Proof. (i) Since 2.2* < B(x) = B([x]) < [x]*®? < x*™ by theorem 3.2 for x > 13 the claim
follows by taking logarithms and a direct check in the case 5 < x < 13.

(ii) A simple check of tables shows that our claim is true for all integers n such that
2<n<103854 =6-17309. In fact:

1) <...<n(10)=4<1.5-2/log2<...<15-10/log10,

etc. (notice that 7 (103854) = 9919). Now let k > 17309 and assume for induction that
n(n) < 3n/2log(n) is true for 2<n < 6k. K\ /3 k
If q is a prime such that k < g < 6 k then g divides ( ) ( ) (see lemma 5.2). Therefore
by lemma 2.3: 3k/\ k

6k\ /3k 1 (27V
kn(ﬁk)—ﬂ(k) < S 43': R < 6.068425589k .
< JL.p (3k)(k>< 2 (4) ¢
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Taking logarithms and using the induction hypothesis for 7 (k) we get

7.568425589 k 6k 6k
6k) < — 1261404266 —— <1493 —— _
n(6k) log k log k log (6 k)

where the last inequality holds since k > 17309. We conclude that

n(6k+6)=n6k+5)<n(6k+4)+1=n(6k+3)+1=n(6k+2)+1=

—n(6k+1)+1<n(6k+2<2+1493 <

log (6 k)
<15 6k+1 - <15 6k+6
Tlog(6k+1) T log(6k+6)

(again for k >17309). [
Let us mention that Apostol [1] proves n/6logn < mn(n) < 6n/logn and Trost [7]

2n/3logn < n(n) < 1.6 n/log n based on checking of tables for n < 70000. The following
lemma is due to N. Costa Pereira [2].

Lemma 4.3. For n>1: n" < B(p,).

Proof. m - log(p,,) = n(p,,) - log(p,,) < 1.5p, by theorem 4.2(ii). Since 1.5¢ <log(p,,)
for p,, > 59 we obtain em < p,, for p, >59. In fact em < p,, holds for all m >10
(ie. pn =29)

For 1 <n < 101t is easy to verify that n" < B(p,). Now let n > 10 be given and asumme
for induction that the claim of the lemma is true for all k < n. Then B(p,) = p, - B(p,-1)

n—1
>en-(n—1)""'. But e > (n_?—_l) , hence B(p,)=n". [

Theorem 4.4. For n>3: 091n-logn<p,<1.7n-logn.

Proof. n" < B(p,) < 37~ by theorem 3.1 and lemma 4.3. By taking logarithms it follows
that 0.91n - logn < (n - logn)/log3 < p,.

Concerning the upper bound of p, notice first that 1.7logn > 13 for n > 2095 and
(logz)/z £0.199764706 for z >13. Hence (log (1.7 logn))/(1.71ogn) < 0.199764 706 for
n > 2095. By theorem 4.2(i): 1/n(x) < (log x)/(0.788 x) for x > 5. For x =1.7n - logn we
obtain therefore

n - n-log(1.7nlogn) _
n(1.7nlogn) 0.788 -1.7-n-logn
n-logn n-log (1.7 - logn)
T 0.788-1.7-n-logn ' 0.788 - 1.7n-logn

for n > 2095, that is n < n (1.7 n logn). Since

p,<17nlogn < n=n(p,) <n(1.7nlogn)
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the claim of the theorem is proved for all n > 2095. An easy check of tables shows that
our claim is even true for all n>3. In fact p,,,,=12343 <... <Pp,p94 = 18269
<1.7-1474 -log(1474) < ..., etc. [

The argument of theorem 4.4 shows that p, < 1.5n - log(n) for all n > 127888 158 (replace
1.7 by 1.5 in the proof). More generally the argument shows that for any constant
k >1/0.788 = 1.26903553 ... there exists an integer M such that p, < k - n - logn for all
n>M.

5. Final remarks

The source for our estimates of p, and 7 (x) are lemma 2.1 and lemma 2.2. Both lemmata

might seem a bit obscure and we feel that we should motivate the truth of them.

All that is needed for a full understanding of these lemmata is a precise knowledge of the

prime divisors of the binomial coefficients. Let p be a prime. If n < p < 2n then p divides
2n 2n

( " ) Erdos observed that p does not divide ( " ) if 2n < p < n. The following lemma

is an extension of this observation.

Lemma 5.1. Let p be a prime and 1 <keN, k <n.
2

(i) If k <p and n/k < p <2n/(2k —1) then p divides ( n).
n

. 2
(i) f2k—1<p, k>2and 2n/2k—1) < p < n/(k —1), then p does not divide ( n").

Proof. 1 < k <n implies n/k <2n/2k —1) < n/(k —1). Ad (i): by assumption n < kp,
hence p* ¥n! (since ptk—1) and (k—1) p <n, hence p*~!|n!. Again by assumption
p**~1|(2n)! and the claim follows. Ad (ii): Similarly p*~!|n!, p*¥n!, p* 1 y(2n),
p*722m!. O

Lemma 5.2. Let p be a prime and 2 < k <n.
3
(1) If k <pand 2n/(k+1) < p <3n/(1+ [3k/2]) then p divides ( nn).

3
@) If 3n/(1+[3k/2]) <p < 2n/k then p does not divide < nn).

Proof. Notice first that

2n 3n 2n 3n 2n 3n 2n

k12 1+PBk+12 k+1 1+Bk2 "k “1+Bk=12 “k=1

From this both claims follow as in lemma 5.1. [J
It follows from 5.1 and 5.2 that the product of all primes p in the interval n <p <6n

6 3 6 3
divides (3 :) . ( n)‘ If p? divides ( 3 :) ( nn) then p < 1.2 n. Thus products of primes are
n
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6 3
much better estimated by the multinomial coefficient ( 3 n) : ( n) = ( on
n

than b
n n,2n,3n> an by

2n\ .. N : . :
< 0 ) as it is usually done. An even better approximation is furnished by the multinomial

coefficient used in lemma 2.2.
In conclusion I would like to offer to those who like primes with nice digit patterns two
new examples, namely p = 122333221 and q = 1223334444 555554444 333221.

Ulrich Felgner, Mathematisches Institut der Universitit Tiibingen
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Kleine Mitteilungen

Zu K. Schiittes Verallgemeinerung des Satzes von Napoleon
In [2] und [3] bewies K. Schiitte den folgenden

Satz 1 Den Seiten des Dreiecks A, A, A5 seien Dreiecke A, A3By, A3A,B,, A{A,B,
aufgesetzt, und zwar entweder alle nach auflen oder alle nach innen. Fiir die Innenwinkel p;
bei B;, i=1,2,3 gelte B, + B, + B; = n (siehe Abb. 1). Dann bilden die Umkreismittel-
punkte M, M,, M, der Aufsatzdreiecke ein Dreieck mit den Innenwinkeln B,, B, und f5,
sofern nicht alle drei Umkreismitten zusammenfallen.

Im folgenden wird ein vereinfachter Beweis dieses Satzes gezeigt:

Nach dem Satz vom Zentriwinkel ist die Umkreismitte M, fiir jede gerade Permutation
(i,j,k) von (1,2,3) das Zentrum einer Drehung é; durch den Winkel 2 §;, die 4; in 4,
iiberfiihrt. Wegen der vorausgesetzten Lage der Aufsatzdreiecke erfolgen alle drei Dre-
hungen in demselben Sinn. Das Produkt 8, d, d, ist eine Bewegung mit dem Drehwinkel
2, die A4, fix 14Bt, also die Identitdt. Da — wie vorausgesetzt — die Drehzentren verschie-
den sind, bilden sie ein Dreieck M, M, M; mit den halben Drehwinkeln f,, f, und f,
als Innenwinkeln. Dies 148t sich bekanntlich wie folgt zeigen:
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