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ELEMENTE DER MATHEMATIK

Revue de mathématiques élémentaires — Rivista di matematica elementare

Zeitschrift zur Pflege der Mathematik
und zur Forderung des mathematisch-physikalischen Unterrichts

El. Math. Vol. 46 Nr. 1 Seiten 1-32 ’ Basel, Januar 1991

Ueber Dreiecks-Partitionen
(1. Teil)

1. Vorbemerkungen

Mit der folgenden Untersuchung hat sich der Autor zum Ziele gesetzt, Material fiir den
Mathematik-Unterricht bereitzustellen, das auszugsweise oder auch als ganzes Paket zur
Pflege heuristischer Aktivititen genutzt werden kann. Zugleich mochte dieser Streifzug
durch die exemplarische Elementar-Mathematik in tiberschauender Manier auch iiber
einige elementare und professionelle Verfahren in der abzdhlenden Kombinatorik infor-
mieren.

Als wesentliches Werkzeug wird dabei die sog. Formel von Pick [1*] fiir den Flacheninhalt
ebener einfacher Polygon-Bereiche auf einem Quadrat-Gitter benutzt. Diese Formel sei
daher zuvor kurz vorgestelit.

Ein ebener Polygon-Bereich heisst einfach, wenn er topologisches Bild einer Kreisscheibe
ist. Sind sédmtliche Eckpunkte eines solchen Polygon-Bereiches zugleich Gitterpunkte
eines vorgegebenen Quadrat-Gitters, dann spricht man von einem einfachen Polygon-
Bereich auf dem betreffenden Quadrat-Gitter.

@ Gitterpunkt auf dem Rand,
O Gitterpunkt im Innern.

Figur 1.1.

Zu jedem Polygon-Bereich IP auf einem Quadrat-Gitter gehGren zwei charakteristische
Zahlen, ndmlich

die Anzahl r der Gitterpunkte auf dem Rand von P,
die Anzahl i der Gitterpunkte im Innern von IP.

Zur Zahl r konnen auch Gitterpunkte beitragen, die nicht Eckpunkte von IP sind.

Die Formel von Pick besagt nun, dass zwischen dem Fldcheninhalt f(IP) und den kombi-
natorischen Parametern r, i der folgende einfache Zusammenhang besteht:

fP)=i +%—1. [2*] (1,1)
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Fiir die Herleitung von (1,1) sei der Leser auf [1] (p. 253—254), [2] (Bd. 1, p. 191-197) und
[3] verwiesen.

2. Dreiecks-Partitionen

Wir machen uns nun zu einer Entdeckungsreise auf, an deren Anfang eine konkrete
Aufgabe aus der Kombinatorik steht.

Aufgabe: n sei eine natiirliche Zahl und D, bezeichne die Menge der inkongruenten
Dreiecke mit ganzzahligen Seiten vom Umfang n.

a) Man bestimme die Michtigkeit d, der Menge ID, und diskutiere die Anzahl-Folge {d};
b) Man entwickle einen Algorithmus zur Auflistung der Menge ID,.

Sind s,, s,, 55 die Seiten-Masszahlen eines Dreiecks aus ID,, dann gilt

Sl +82+S3=n (2,1)
1<s; <s,<s; 2,2)
Sy +5;>8; (2,3)
wobei
SI’SZ,S3EN' (2’4)

Durch eine geeignete Seitenbezeichnung kann immer erreicht werden, dass (2,2) erfiillt ist.
(2,3) ist die Dreiecks-Ungleichung mit der ausgezeichneten Seite s,. Wegen (2,2) bestehen
die Implikationen

S3=8, = S;+85328,+8,>5,, dh s,+5;>5,

S, + 53> 5, >s,, dh s,+s53>5,.

Die beiden anderen Dreiecks-Ungleichungen sind also automatisch erfiillt.

Man kann (2,1) zusammen mit (2,4) auch als Diophantische Gleichung in den Unbestimm-
ten s,, s,, s interpretieren, wobei (2,2) und (2,3) Nebenbedingungen darstellen. Die
Beziehung (2,2) schliesst aus, dass eine bestimmte Dreiecksform in verschiedene Losun-
gen eingeht. Jede Losung dieses Diophantischen Problems definiert demnach genau eine
Figur aus ID,.

Ganzzahlige additive Zerfillungen einer natiirlichen Zahl n ohne Beriicksichtigung der
Summanden-Reihenfolge werden in der Kombinatorik als Partitionen bezeichnet. Solche
Zerlegungen kann man stets so normieren, dass die einzelnen Summanden im Sinne
nichtabnehmender Werte angeordnet werden. Man kann daher die Losungen unseres
Diophantischen Problems mit bestimmten Partitionen der Zahl n aus 3 Summanden
identifizieren. Diese speziellen Zerfillungen werden aus naheliegenden Griinden Dreiecks-
Partitionen genannt.
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Fiir die weitere Analyse des aufgeworfenen Problemkreises sollen jetzt die Dreiecks-Par-
titionen in den Vordergrund geriickt werden. IF, bezeichne fortan die Menge der Drei-
ecks-Partitionen vom Index n.

IE, ; besteht beispielsweise aus den Figuren

1+12+12 3+114+11 54 8+12 6+7+12 T+7+11 8+8+9
2+11+12 4+ 9+12 54 9+11 6+8+11 7+8+10
3+10+12 4+10+11 5+10+10 6+9+10 7+9+ 9

und jede dieser Partitionen beschreibt eine Kongruenz-Klasse von ganzseitigen Drei-
ecken mit dem Umfang 25; es ist also d(25) = 16.

Um die Figuren-Menge IF, besser erfassen zu kdnnen, fiihren wir eine geeignete Parame-
trisierung ein. Wahlt man etwa s; und s, als Parameter, dann schliesst man aus

S3=n—(s; +5,) (2,5)

auf
5; <53 <> 5, +2s,<n (2,5)
S+ 8, >8; < s+ s, >g (2,6)

Mit den Ungleichungen auf der rechten Seite von (2,5) und (2,6) sind jetzt samtliche
Nebenbedingungen in s, und s, ausgedriickt.

Bei zwei vorhandenen Parametern liegt stets eine Veranschaulichung der bestehenden
Zusammenhénge an einer ebenen Figur auf der Hand. Bezogen auf ein s, s,-Koordinaten-

\‘n\. L g
(O,-2—7; S178y°
/
1(r H
1 & o n = 25
IRSh L
S 1%%)
4 bt
N
""—Q"" n n - s +2s.= p
____¢ 1_ (Z’Z) N
be N <
+—0< ~ 5
—u—.—é_;, " .\Sl‘{‘g = 2
_.__(E)_,_, . '\‘ T™~. -
i (- N . ]\\
1 = NN
/ 10 G0N 20 (n,0)

Figur 2.1.
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system reprasentieren lineare Ungleichungen offene bzw. abgeschlossene Halbebenen
und Zahlenpaare (s, s,) mit s,, s, € N definieren Gitterpunkte auf dem Einheits-Gitter
im ersten Quadranten.

Diese Umsetzung fithrt im Falle n = 25 auf eine Konfiguration, die in der Fig. 2.1 aufge-
zeichnet ist.

Die Gitterpunkte im Innern und auf dem Rand des schraffierten Bereiches gehdren zu den
Partitionen der Zahl n mit genau 3 Summanden, die Gitterpunkte im Innern und auf dem
ausgezogenen Rand des getonten Gebietes zu den Dreiecks-Partitionen vom Index n. Die
n
2
durch die mit der Dreiecks-Ungleichung (2,3) dquivalente Ungleichung s, + s, < g defi-
niert ist.

Die geometrische Betrachtungsweise zeigt zunédchst einmal eine M 6glichkeit auf, fiir nicht
allzugrosse Werte von n die Menge IF, abzuzidhlen und aufzulisten. Wie sich gleich zeigen
wird, ist sie aber auch sehr hilfreich bei der Bewiltigung der beiden aufgeworfenen
generellen kombinatorischen Probleme. So kann z.B. der Fig. 2.1 sofort der folgende
Auflist- Algorithmus fiir die Menge IE, entnommen werden:

Gerade mit der Gleichung s, + 25, = = schliesst nimlich die offene Halbebene ab, die

Eingabe n
d:=0
Wiederhole von s, =1
Wiederhole von s, =s,
Wenn s, + s, > n/2, dann
Sy:=n—(s;+5s,)
drucken (s, s, 53)
d:=d+1
Ende wenn
bis s, =(n—s,)/2
bis s, =n/2
ENDE

Ueber den Zdhlparameter d kann damit gleichzeitig auch die Anzahl der Dreiecks-Parti-
tionen vom Index n bestimmt werden. Zur Herleitung einer Formel fiir d (n) ist aber der
vorliegende geometrische Losungsansatz noch etwas tiefer auszuloten.

3. Vorbereitungen zur Herleitung einer Anzahl-Formel fiir die Dreiecks-Partitionen

Die mit der geometrischen Betrachtungsweise verbundene Abbildung der Dreiecks-Parti-
tionen vom Index n auf eine bestimmte Gitterpunkt-Menge @, in der s,s5,-Ebene sugge-
riert, eine generelle Abzdhlung der Dreiecks-Partitionen iiber die Picksche Formel zu
versuchen. Dieses Vorgehen setzt voraus, dass fiir jeden geniigend grossen Wert von n [3*]
ein charakteristischer Polygon-Bereich IP, gefunden werden kann, so dass die Menge der
Rand- und der Innen-Punkte von IP, mit der jeweiligen Gitterpunkt-Menge G, iiberein-
stimmt.
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S, Sy
1
c=¢C
n = 25
n=12.2 + 1
= n+3
L _
~| b="b
\‘.
v ‘\
/ A ~N
7 \.gl,m L (0,0 T
[ 0% -0 - 3
10 '.\\ 20 \‘\ l
7? ) BN - x> 5
/ CEONS £ R0

Figur 3.1. 2

Die Fig. 3.1 zeigt die den Dreiecks-Partitionen vom Index n entsprechende Gitterpunkt-
Menge G, (mit @ markierte Gitterpunkte) und den zugehorigen Polygon-Bereich IP, fiir
n=25.

Die 3 Randgeraden a, b, ¢ mit den Gleichungen

n
s1+sz=5, S+ 2s,=n, S —8,=0

bestimmen ein Dreieck mit den Eckpunkten

nn nn n
53 oGy Cd) o

deren Koordinaten nur vereinzelt ganzzahlig sind. Es sei C* der C néchstliegende Punkt
aus @, auf der Geraden b.

C* hat offenbar die Koordinaten

(1,1(n—1)) wenn n ungerade
=1 (3.2)
(2,4(n—2)) wenn n gerade
und man erhélt fiir die Parallele g zu a durch C* die Gleichung
3(n+1) wenn n ungerade
S;p+8 =19, (3,3)
5(n+2) wenn n gerade.
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Die Triagergeraden von Punkten aus G, im Parallelenfeld zu a folgen sich in vertikalen
bzw. horizontalen Abstdnden von einer Einheit. Man schliesst daraus, dass unterhalb der
Geraden g keine weiteren Punkte von G, liegen.

Es sei nun weiter

A’ der A nichstliegende Punkt aus &, auf der Geraden b,
A" der A nichstliegende Punkt aus @, auf der Geraden c,

B’ der B nichstliegende Punkt aus G, auf der Geraden g,
B" der B nichstliegende Punkt aus G, auf der Geraden c.

Offenbar bildet jetzt das Polygon A’A” B” B'C* den Rand des zum Index n gehdrenden
Bereiches IP,, wobei noch zu bemerken ist, dass fiir einzelne Werte von n Eckpunkt-
Koinzidenzen von der Art A’=A"=A oder B'= B"” moglich sind. Als Rand-Polygone
treten somit Filinfecke, Vierecke und Dreiecke auf [4*].

Falls fiir den Polygon-Bereich P, die Anzahl r der Rand-Gitterpunkte und der Fliachen-
inhalt f(IP,) bekannt sind, dann kann daraus iiber die Picksche Formel die Anzahl i der
Innen-Gitterpunkte und damit die Méchtigkeit i+r der Menge @, bestimmt werden.
Man hat dann

d(n) =|D,| = K| =G,|

34
=i+r=(i+~;——1>+<%+1)=f(]&,)+<~;~+1). o4

Ge- | Parameterdarstellung Anzahl der Punkte von G,
rade auf der betreffenden Geraden
BESL 1 1
—m+1)—t=>t = r,=|-(n+ 1) | wenn n ungerade
=imin—t |2 v [4( )] g
g1 S 28, =
s;,=1+¢ n 1
n ——t>1+t = r,=| —(n—2) | wenn n gerade
Sy = — t 2 4
| 2
- (3,5
n n+3
1 -14+2t<z =2r1,= wenn n ungerade
S2 = (n + 1) -t 3 6
2
b < 2
4 —_— > <
$2<3
s, =2t - -
n n
n 2t < - =r,=|- wenn n gerade
§, = 5 -t 3 _6_
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Zunichst wollen wir fiir IP, die Zahl r bestimmen. Wir gehen dabei von Parametrisierun-
gen der Randgeraden g und b aus, die bei jeweils r, Rand-Gitterpunkten diese gerade fiir

die Parameterwerte
t=1,2,...,r
liefern. Aus der besonderen Lage von ¢ kann r, direkt als Anzahl der natiirlichen Zahlen

im Intervall l:[%], [g]] abgelesen werden [5*].

Die Koordinaten von A” und B” gehen unmittelbar aus der Fig. 3.1 hervor. Andererseits
konnen die Koordinaten von A’ und B’ iiber die benutzten Parameterdarstellungen fiir
die Geraden ¢ und g gewonnen werden.

Das Ergebnis ist in der folgenden Tafel zusammengefasst.

Punkt Koordinaten
3
(2 [n * 3] -1, T [n + :D wenn n ungerade
6 2 6
Al
n n o |n
21 = , === wenn n gerade
el - 5[
4 [ n n (3.,6)
E ’ 3 ’
E t : 1 ! + 1) d
7 n+1) 3 n+1) 2 (n wenn n ungerade
B :1 1 1
<_Z (n+ 2):| , E(n +2)— [Z (n+ 2):’) wenn n gerade
B’ (] i
| 4 ’ 4

Die in den Koordinaten der Punkte A’, A”, B, B"- und C* auftretenden Nenner lassen
erwarten, dass die Quadratgitter-Umgebung von A und von B und damit die Form des

Polygon-Bereiches IP, durch die Restklassenlage von n modulo 12 bestimmt ist. Wir setzen
daher

n=12p+q mit p=(@mDIV12), ¢gq=mnMODI12). 3,7

In den Parametern p und ¢ ausgedriickt, erhalten dann die Punkte A und B die Koordi-
naten

q . q q q
Ip+3); 2 2). 38
A(p+3,p+3), B(3p+4,3p+4) (3,8)
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Fir den Punkt A folgert man daraus drei verschiedene Umgebungs-Konfigurationen,

12
denn der gebrochene Teil von p + g kann die Werte 0, 33 annehmen (Zusammenstellung
(3,9)).

q Konfiguration Koordinaten
0, 3, 6, 9 \l\
1 . _
b =& Abp + 3 Lbp + 3 )
1
l
\ U
1, 4, 7,10 i
N ~4 +2
A Acap + 457, 4p + 5 (3,9)
| /1A% 3 5
Mbp + g-g—l-,l&p + _q_g_l_)

4. ]
2, s, 8,11 k I

. ) _
I\ A.(l;p + %"AP + ‘9‘3—2)

N

Acap + L2,4p + Ly

T

q Konfiguration Koordinaten

B(3p+'2‘ ,3p+—2~ )
B3p + 3 3p + 2
B(3p + L4, 3p 4 L

B(3p + ¢ 3p+ 3)
B(3p + 3#»31’ + 'CL+*3‘)
Bop + 12,3p + 13

(3,10)
2, 6,10

B(3p + ¢ 3P+ )
B3p + 2,3, 4 L2

B(3p + 4,3 +7 )
B3p + LL,3p + Ly
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Andererseits bestehen fiir den gebrochenen Teil in den Koordinaten von B die vier Mog-

. 23 . . .
lichkeiten O, e woraus man entnehmen kann, dass im Punkt B vier verschiedene

Umgebungs-Konfigurationen auftreten (Zusammenstellung (3,10)).

4. Die Anzahl-Folge bei den Dreiecks-Partitionen

Als Beispiel wollen wir uns den Fall g =1 ausfiihrlich vornehmen. Wir lassen uns dabei
von der fritheren Fig. 3.1 leiten, in der die geometrische Situation flirn=12-2+1 =25
dargestellt ist. Diese Figur reprisentiert jetzt gleichzeitig den Form-Typus der Polygon-
Bereiche P, der zur Restklasse der n mit der Zerfillung n=12p + 1 gehort. In der

Fig. 3.1 sind auch bereits einige Ergdnzungen angebracht, die erst an dieser Stelle zum
Tragen kommen.

Fiir g =1 ist der Rand von P, ein Fiinfeck. Es ist dann gemiss (3,5)
r=rt,+r,+r.—1=3p+2p+@4p—-3p)—1=6p—1.
L kompensiert die Doppelzihung von C*

Der Flacheninhalt betrdgt aufgrund der in (3,2), (3,9) und (3,10) vorgefundenen Eckpunkt-
Koordinaten

S(Py,41)=f(40C*B) + f(AOB B") + f(AO B"A") + f (A0 A" A") + f (AO A'C¥)

N, s

0
11 3p +1 3p 3p+1} 1}4p 4p—1} 1|4p—1 1 1)
T 216p 3p+1| 2(3p+13p+1| 2|4p 4p+1| 2|4p+1 6p|

so dass

. 1 1
d(12p+1)=f(IP12,,+1)+<~;-+1>=(3p2——p+§>+<3p——§+1)=3p2+2p 4,2)

ist. Grundsitzlich kann man auf diese Weise fiir jeden Wert von q zu einer generellen
Anzahl-Formel gelangen.

Bevor wir das Problem der Anzahl-Formel weiter verfolgen, wollen wir anhand der
Fig. 3.1 noch eine Rekursionsformel fiir die Anzahl-Folge {d(n)} herleiten. Damit lasst
sich ndmlich die ganze Diskussion wesentlich vereinfachen.

Ist n eine ungerade Zahl, dann ldsst sich zundchst zeigen, dass die beiden Polygon-
Bereiche IP, und IP, , ; kongruent sind. Diese Tatsache kann sofort aus unserer geometri-
schen Veranschaulichung entnommen werden, wenn man die beiden massgebenden Git-
terpunkt-Mengen zu den Indizes n und 72 = n + 3 gemiss Fig. 3.1 auf zwei verschiedene
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Koordinatensysteme bezieht. Aus der Fig. 3.1 14sst sich unmittelbar ablesen, dass § = g,
b =b, ¢ =c und dies besagt, dass die entsprechenden Polygon-Bereiche identisch sind.
Damit ist fiir die Funktion n — d(n) die partiell giiltige Rekursionsformel

d(n+3)=d(n) fiir n ungerade (4,3%)

nachgewiesen. Zugleich ist damit gezeigt, dass nur 6 Form-Typen von Polygon-Bereichen
IP, vorhanden sind.

Es liegt jetzt auf der Hand, beim entsprechenden Sprung von n zu 7i = n + 3 bei geradem
n nach einer analogen Gesetzmaissigkeit Ausschau zu halten und damit allenfalls die
Rekursionsformel (4,3%) zu ergénzen.

Bei gleichem Vorgehen erhélt man jetzt aber eine Figur, in der die beiden Punkte C* und
C* nicht zusammenfallen und dies hat zur Folge, dass § # g ist. Im ersten Moment
scheint sich hier eine Enttduschung anzubahnen. Ueberlegt man sich die Sache aber
genauer, dann kann man auch in diesem Falle zu einer Rekursionsformel gelangen. Beim
Uebergang von n zu 71 = n 4+ 3 kommen ndmlich jetzt zu den Gitterpunkten von P, genau
die Punkte auf § N IP, hinzu. Thre Anzahl ist aufgrund von (3,5)

fg=[-‘1{(n+3)+1]=[2(n+4)i|=[ﬂ+1

weil n 4+ 3 ungerade ist. Damit ergibt sich in Ergidnzung zu (4,3%)

din+3)=d(n) + l}] + 1 fir n gerade. (4,3%

Mit den Rekursionsformeln (4,3) kann man jetzt die Anzahl-Folge {d (n)} miihelos aus
den Anfangswerten

d@3) =1, d@=0, d()=1

berechnen. Insbesondere erhilt man etwa

d25)=d(22)+6=d(19)+ 6 =d(16) + 11 =d(13) + 11 =d(10) + 14
d(7) +14=d4) +16=16.

Die Rekursionsformeln (4,3) sind in anderer Gestalt bereits bekannt [6*]. Bemerkenswert
an der vorliegenden Herleitung ist die Tatsache, dass nur elementare Ueberlegungen
erforderlich sind. Sie zeigt zugleich, dass die geometrische Betrachtungsweise oft iiber-
raschende Einsichten freilegt.

Wir wollen jetzt die begonnene Herleitung einer Anzahl-Formel weiterfithren. Aufgrund
der Rekursionsformel (4,3%) konnen wir uns bei der Durchforstung der verschiedenen
Form-Typen bei den Polygon-Bereichen IP, auf die ungeraden g-Werte beschrianken. Mit
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analogen Ueberlegungen wie im Falle ¢ =1 wird man auf die in der folgenden Tafel
zusammengestellten Terme fiir die Anzahlen d(12p + q) gefiihrt:

q " d(12p+q) h —(q+3) +48h
1 2p+ 1 3p*+2p 0 —15 =—16
3 122p+ 3 3pP+3p+1 1 —36+ 48= 12
5 12p+ S 3p*+4p+1 1 —64+ 48=—16
7 12p+ 7 3p*+5p+2 2 —100+ 96= —4
9 12p+ 9 3p*+6p+3 3 —1444+144= 0

1 12p + 11 3p2 4+ Tp+4 4 —196+192= —4

Die quadratischen Polynome in p in der dritten Kolonne lassen sich auf die Gestalt
3pP+i@+3)p+h 4.4)

bringen. Die jeweiligen Werte von h sind in der vierten Kolonne nochmals aufgefiihrt.
Unser Ziel ist es, die festgestellten Anzahlen

d(12p+q) =3p*+1(@+3)p+h

in der Primér-Variablen n = 12 + g auszudriicken. Wir ziehen dazu die quadratische
Erginzung von 3 p? + 1 (¢ + 3) heran und setzen

1
d(12p+q)=1§(144p2 +12-2(q+3)p+48h)

=£§«12p+(q+3»2 +(=(g+37+48h).

Nme— ———— —

n+3 c

Der jeweilige Wert von c ist in der fiinften Kolonne unserer Tafel notiert. Ihr kann man
entnehmen, dass

16<—(q+3)*+48h<+12

ist. Fiir ungerade n gilt somit

1 1 2
g+ —16 < di < 2(n+3’+12) (4.5)

ng v

Gleichheit  Gleichheit
Sur Sur
g=15 qg=3
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. . i . : .28, .
Die vorliegende Abschétzung basiert auf einem Intervall der Breite 8’ in dem hochstens

eine ganze Zahl enthalten sein kann. Da d(n) ganzzahlig ist, folgert man aus (4,5), dass

d(n) = [:1% (n+3)* + 12)]‘ fiir n ungerade.

Ueber die Rekursionsformel (4,3%) ldsst sich dies noch erginzen mit

din=dn+3)= [Zlé (n—=3)+372+ 12)] = [% (n* + 12):| fiir n gerade.

Damit steht fiir die Dreiecks-Partitionen die Anzahl-Formel

, —

Zlé((n +3)* + 12):| fiir n ungerade
din)={ _

_ (4,6)
1
— (n? + 12)} fiir n gerade

48

fest. Wie man leicht bestitigt, liefert sie auch dann die richtigen Werte, wenn in unserer
geometrischen Veranschaulichung die Formel von Pick noch nicht benutzt werden kann.

5. Dreiecks-Kompositionen
Herrn F. Bachmann in Burgdorf verdanke ich den Hinweis, dass eine elementare Herlei-
tung der Anzahl-Formel fiir die Dreiecks-Partitionen auch in Anlehnung an eine Aufgabe
aus dem bekannten Lehr- und Ubungsbuch von Polya-Szegé [5] méglich ist. Dort ist in
Aufgabe 31 von Abschnitt I die Frage nach der Anzahl Losungen der Diophantischen
Gleichung

S;+S;+s3=n; 51,5,,83€N (5,1)
gestellt, die den Nebenbedingungen

5,58, + 583, §, <83+ 8, $53<8;+5;
geniigen. Ersetzt man diese Nebenbedingungen durch

5; <585 + 83, 5,<83+58;; S3<S;+8S, (5,2)

dann reprisentiert jedes Losungs-Tripel ein Dreieck vom Umfang n mit ganzzahligen
Seiten. Im Gegensatz zum Abschnitt 2 erhédlt man jetzt aber Tripel, zu denen dieselbe

\
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Figur in ID, gehort. So beschreiben etwa die Tripel
6,7,12), (6,12,7), (7,6,12), (7,12,6), (12,6,7), (12,7,6)

dasselbe Dreieck vom Umfang n = 25.
In der neueren Kombinatorik bezeichnet man additive Zerlegungen einer natiirlichen Zahl

n bei Beriicksichtigung der Summanden-Reihenfolge als Kompositionen. Dementsprechend
wollen wir nun die Losungs-Figuren

Sy + 8, + 83

von (5,1), (5,2) als Dreiecks-Kompositionen ansprechen.

Zur Abzidhlung der Dreiecks-Kompositionen vom Index n schlagt F. Bachmann in einer
brieflichen Mitteilung an den Autor das folgende Prozedere vor. Stiitzt man sich wie-
derum auf die Parameter s, und s,, dann erhélt man vermoge

s3=n—(s; +5,)
anstelle der Ungleichungen (5,2) die neuen Restriktionen

n n n
s, < S, <—; S;+8,>—. 5,3
1 2 2 1 2 2 ( )
Dementsprechend lassen sich die Dreiecks-Kompositionen durch die Gitterpunkte im

Innern eines Bereiches veranschaulichen, der von einem rechtwinklig-gleichschenkligen
Dreieck berandet wird (Fig. 5.1).

n
2 ZS1“5\2= n 5172 B8 O
\ i
N \ |
n 4R
(0’ )_’-‘—.» 52 2
n=18
NI
1 T sl+282= n
./ -
B T“\T\ 5,
(3:0)

Figur 5.1.
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Zur Bestimmung der Anzahl g (n) der Dreiecks-Kompositionen geniigt nun die Kenntnis
der Anzahl Gitterpunkte in der jeweils obersten Reihe; ihre Anzahl betrigt

n—1

2

wenn n ungerade

——2= wenn n gerade.

Daraus entnimmt man jetzt

1lni=1) 1/n—1\/(n—-1 1
Y k== +1)==-(Mm—1)(1n+1) wenn n ungerade

P 2\ 2 2 8
= < 5’4
g(n) ISR TCETA\VET I L At . G4
=— =—(n—4) (n — 2) wenn n gerade.
= T2\ 2 2 8 #
Aus (5,4) geht hervor, dass auch bei den Kompositions-Zahlen
gn+3)=g(n) wenn n gerade (5,9

gilt.

Um von den Kompositions-Zahlen g(n) zu den Partitions-Zahlen d(n) zu gelangen, kann
man die Partitionen als Klassen von permutationsgleichen Kompositionen interpretie-
ren. Dabei ist zu beachten, dass eine bestimmte Partition aus einer

1-er Klasse 3 gleiche
3-er Klasse ¢ entsteht, je nachdem ob sie | 2 gleiche Summanden besitzt.
6-er Klasse lauter ungleiche

Eine 7-er Klasse von Kompositionen ist gekennzeichnet durch s; = s, = s5; eine solche
existiert offenbar genau dann, wenn n durch 3 teilbar ist.
Bei einer 3-er Klasse von Kompositionen ist

R S e
s;=n—(s; +5,) n—(s, +s;)=s,

Die entsprechenden Gitterpunkte liegen auf den in der Fig. 5.1 eingezeichneten Geraden
f1s f2, f5- Aus Griinden der Symmetrie enthalten alle drei Geraden gleichviele Gitter-
punkte, nimlich deren

[n + l:l
5 wenn n ungerade

-2
[n ] wenn n gerade

&

\
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ist. So liegen bei ungeradem n auf der Geraden f, genau die Gitterpunkte mit den
Abszissen

n
13,...2h—1<2,
<3

1
so dass also h < [n +

] ist. Andererseits schliesst man fiir gerades n auf die Abszissen-
bedingung

n
2.4, . 2h<2,
<3

aus der man h < [E—[%] entnimmt.

Falls n durch 3 teilbar ist, schneiden sich die Geraden f, f,, f; in einem Gitterpunkt, der
als Ausnahmepunkt (s, = s, = s;) ausgeschieden werden muss.

In 6-er Klassen eingebunden sind alle librigen markierten Gitterpunkte in der Fig. 5.1.
Die Anzahl der 3-er Klassen ist nun gerade gleich der Anzahl Gitterpunkte auf einer der
drei Geraden f,, f,, f;, wobei der Schnittpunkt der drei Geraden — falls er ein Gitter-
punkt ist — nicht mitzuzéhlen ist.

Mit dieser Ueberlegung folgt etwa fiir gerades n

_ -2 1 1[n—2
[”—4-2-] + %<g(n)_3[%—]> =—6~g(n)+5[f’—z—] falls 3m

d(n) =
n—2 1 n—2 1 1l n—2 1
— = - -3 — =- - — 4= lis 3
([ 1 ] 1>+1+6<g(n) 3[ 2 ]+2) 6g(n)+2|: 2 ]+3 falls 3/n
N— o —— ——
3-er Klassen 6-er Klassen

1-er Klasse

Man kann dies auch zuammenfassen in

1 1[n=27 1
d(n)=|:2§(n—4)(n—2)+5[ 7 ]+§]. (5,6)

Da

— -2 1
0$n42_[n4 ]SE fiir n gerade

ist, folgt weiter

]

1 1n-2 1
d(n)=[2§(n——4)(n—z)+~—-—+-]

1 2
—(n*— 8+6n—124+16
54 13 [48(n 6n+8+6n + )]

| (57
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Fiir ungerade n erhdlt man mit den analogen Ueberlegungen

d(n)=[Z%(n—l)(n+1)+iﬁ_—l+l]=[Zlg(nz—1+6n+6+16)]

2 4 3
; (5.7
N 2
_[48 (n+3) +12)].

Damit ist die Formel (4,6) neu hergeleitet.

M. Jeger, ETH-Ziirich
(Fortsetzung im nichsten Heft)
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ANMERKUNGEN

[1*] Benannt nach dem Mathematiker G. Pick (1859-1942).

[2*] Masseinheit fiir den Flidcheninhalt f (IP) ist die Gitter-Masche (Quadrat).

[3*] Man kann sich liberlegen, dass die Picksche Formel auf G, anwendbar ist, sobald zwei Punkte von G, auf
der Geraden mit der Gleichung s, + 25, = n liegen. Aus der Fig. 3.1 liest man ab, dass dies zutrifft fiir

3< g, d.h. n > 9, wenn n ungerade,
n
3
[4*] Der Rand von P, ist die konvexe Hiille der Gitterpunkt-Menge G@,.
[5*] [a] bezeichnet die grisste ganze Zahl kleiner oder gleich a.

[6*] Vgl. etwa [2] (Bd. 2, p. 54-55) und [4] (p. 91).

4 < -, d.h. n>12, wenn n gerade.
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