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ELEMENTE DER MATHEMATIK
Revue de mathematiques elementaires - Rivista di matematica elementare

Zeitschrift zur Pflege der Mathematik
und zur Förderung des mathematisch-physikalischen Unterrichts

El. Math. Vol. 46 Nr. 1 Seiten 1-32 Basel, Januar 1991

Ueber Dreiecks-Partitionen
(l.Teil)

1. Vorbemerkungen

Mit der folgenden Untersuchung hat sich der Autor zum Ziele gesetzt, Material für den
Mathematik-Unterricht bereitzustellen, das auszugsweise oder auch als ganzes Paket zur
Pflege heuristischer Aktivitäten genutzt werden kann. Zugleich möchte dieser Streifzug
durch die exemplarische Elementar-Mathematik in überschauender Manier auch über
einige elementare und professionelle Verfahren in der abzählenden Kombinatorik
informieren.

Als wesentliches Werkzeug wird dabei die sog. Formel von Pick [1*] für den Flächeninhalt
ebener einfacher Polygon-Bereiche auf einem Quadrat-Gitter benutzt. Diese Formel sei

daher zuvor kurz vorgestellt.
Ein ebener Polygon-Bereich heisst einfach, wenn er topologisches Bild einer Kreisscheibe
ist. Sind sämtliche Eckpunkte eines solchen Polygon-Bereiches zugleich Gitterpunkte
eines vorgegebenen Quadrat-Gitters, dann spricht man von einem einfachen Polygon-
Bereich auf dem betreffenden Quadrat-Gitter.

/7--—.-.
/

Hl (h-ihH>

• Gitterpunkt auf dem Rand,
O Gitterpunkt im Innern.

Figur 1.1.

Zu jedem Polygon-Bereich P auf einem Quadrat-Gitter gehören zwei charakteristische
Zahlen, nämlich

die Anzahl r der Gitterpunkte auf dem Rand von IP,

die Anzahl i der Gitterpunkte im Innern von IP.

Zur Zahl r können auch Gitterpunkte beitragen, die nicht Eckpunkte von P sind.
Die Formel von Pick besagt nun, dass zwischen dem Flächeninhalt /(P) und den
kombinatorischen Parametern r, i der folgende einfache Zusammenhang besteht:

f(W) i + --l. [2*] (14)
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Für die Herleitung von (1,1) sei der Leser auf [1] (p. 253-254), [2] (Bd. 1, p. 191 -197) und
[3] verwiesen.

2. Dreiecks-Partitionen

Wir machen uns nun zu einer Entdeckungsreise auf, an deren Anfang eine konkrete
Aufgabe aus der Kombinatorik steht.

Aufgabe: n sei eine natürliche Zahl und _D„ bezeichne die Menge der inkongruenten
Dreiecke mit ganzzahligen Seiten vom Umfang n.

a) Man bestimme die Mächtigkeit dn der Menge _D„ und diskutiere die Anzahl-Folge {d};
b) Man entwickle einen Algorithmus zur Auflistung der Menge D„.

Sind sx, s2, s3 die Seiten-Masszahlen eines Dreiecks aus D„, dann gilt

sx+s2 + s3 n (2,1)

1 < sx < s2 < s3 (2,2)

sx+s2> s3 (2,3)

wobei

sl9s29s^eU. (2,4)

Durch eine geeignete Seitenbezeichnung kann immer erreicht werden, dass (2,2) erfüllt ist.
(2,3) ist die Dreiecks-Ungleichung mit der ausgezeichneten Seite s3. Wegen (2,2) bestehen
die Implikationen

s3>s2 => sx + s3>sx + s2> s2, d. h. sx + s3> s2

s2 + s3> s2 >sx, d. h. s2 + s3> sx.

Die beiden anderen Dreiecks-Ungleichungen sind also automatisch erfüllt.
Man kann (2,1) zusammen mit (2,4) auch als Diophantische Gleichung in den Unbestimmten

sl9 s29 s3 interpretieren, wobei (2,2) und (2,3) Nebenbedingungen darstellen. Die
Beziehung (2,2) schliesst aus, dass eine bestimmte Dreiecksform in verschiedene Lösungen

eingeht. Jede Lösung dieses Diophantischen Problems definiert demnach genau eine

Figur aus D„.
Ganzzahlige additive Zerfällungen einer natürlichen Zahl n ohne Berücksichtigung der

Summanden-Reihenfolge werden in der Kombinatorik als Partitionen bezeichnet. Solche

Zerlegungen kann man stets so normieren, dass die einzelnen Summanden im Sinne
nichtabnehmender Werte angeordnet werden. Man kann daher die Lösungen unseres

Diophantischen Problems mit bestimmten Partitionen der Zahl n aus 3 Summanden
identifizieren. Diese speziellen Zerfallungen werden aus naheliegenden Gründen Dreiecks-
Partitionen genannt.
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Für die weitere Analyse des aufgeworfenen Problemkreises sollen jetzt die Dreiecks-Partitionen

in den Vordergrund gerückt werden. Fn bezeichne fortan die Menge der
Dreiecks-Partitionen vom Index n.

W25 besteht beispielsweise aus den Figuren

1 + 12 + 12

2 + 11 + 12

3 + 10+12

3 + 11 + 11

4+ 9 + 12

4 + 10+11

5+ 8 + 12

5+ 9 + 11

5 + 10+10

6 + 7 + 12

6 + 8 + 11

6 + 9 + 10

7 + 7 + 11 8 + 8 + <

7 + 8 + 10

7 + 9+ 9

und jede dieser Partitionen beschreibt eine Kongruenz-Klasse von ganzseitigen
Dreiecken mit dem Umfang 25; es ist also d(25) 16.

Um die Figuren-Menge F„ besser erfassen zu können, führen wir eine geeignete Parame-
trisierung ein. Wählt man etwa sx und s2 als Parameter, dann schliesst man aus

s3 n-(sx + s2) (2,5)

auf

s2< s3 o sx + 2s2 < n

n
sx + s2> s3 o sx+ s2 > x

(2,5)

(2,6)

Mit den Ungleichungen auf der rechten Seite von (2,5) und (2,6) sind jetzt sämtliche
Nebenbedingungen in sx und s2 ausgedrückt.
Bei zwei vorhandenen Parametern liegt stets eine Veranschaulichung der bestehenden

Zusammenhänge an einer ebenen Figur aufder Hand. Bezogen auf ein sx s2-Koordinaten-

1 r| | ' ¦<
(o^rH S

/kj / n 25/
Ci Q ¦ O C^^_1^_I8^?Cur '-v V V t^MJI m v3'r

^ ^ =:"T^llj/ ' ,x\ n
U'4 \+2s2= n

6-t
¦_ cY \ \ V

_

k \ n *--N

K

V \ \\

äl \
Vi

\^
__>.

/ 1
'

1 0 (-¥K 2 0 Cn, 0) ^
Figur 2 1
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system repräsentieren lineare Ungleichungen offene bzw abgeschlossene Halbebenen
und Zahlenpaare (sx,s2) mit sx, s2eIN definieren Gitterpunkte auf dem Einheits-Gitter
im ersten Quadranten
Diese Umsetzung fuhrt im Falle n 25 auf eme Konfiguration, die in der Fig 2 1

aufgezeichnet ist
Die Gitterpunkte im Innern und auf dem Rand des schraffierten Bereiches gehören zu den
Partitionen der Zahl n mit genau 3 Summanden, die Gitterpunkte im Innern und auf dem

ausgezogenen Rand des getonten Gebietes zu den Dreiecks-Partitionen vom Index n Die

Gerade mit der Gleichung sx + 2s2 w schhesst namhch die offene Halbebene ab, die

durch die mit der Dreiecks-Ungleichung (2,3) äquivalente Ungleichung sx + s2<
definiert ist
Die geometrische Betrachtungsweise zeigt zunächst einmal eine Möglichkeit auf, fur nicht
allzugrosse Werte von n die Menge F„ abzuzahlen und aufzulisten Wie sich gleich zeigen
wird, ist sie aber auch sehr hilfreich bei der Bewältigung der beiden aufgeworfenen
generellen kombinatorischen Probleme So kann z B der Fig 2 1 sofort der folgende
Auflist-Algorithmus fur die Menge IE^ entnommen werden

Eingabe n
d =0
Wiederhole von sx 1

Wiederhole von s2=sx
Wenn sx + s2> n/2, dann

s3 =n-(sx + s2)

drucken (sx,s29s3)
d =d + l

Ende wenn
bis s2 (n — sx)/2

bis sx n/2
ENDE

Ueber den Zahlparameter d kann damit gleichzeitig auch die Anzahl der Dreiecks-Partitionen

vom Index n bestimmt werden Zur Herleitung einer Formel fur d(n) ist aber der
vorliegende geometrische Losungsansatz noch etwas tiefer auszuloten

3. Vorbereitungen zur Herleitung einer Anzahl-Formel für die Dreiecks-Partitionen

Die mit der geometrischen Betrachtungsweise verbundene Abbildung der Dreiecks-Partitionen

vom Index n auf eine bestimmte Gitterpunkt-Menge <_?„ in der s^-Ebene suggeriert,

eine generelle Abzahlung der Dreiecks-Partitionen uber die Picksche Formel zu
versuchen Dieses Vorgehen setzt voraus, dass fur jeden genügend grossen Wert von n [3*]
ein charakteristischer Polygon-Bereich P„ gefunden werden kann, so dass die Menge der
Rand- und der Innen-Punkte von Wn mit der jeweiligen Gitterpunkt-Menge <E_ übereinstimmt
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s_ s
2 2

0,^-o ^ ______

__v-\
n 25

10
12 2 + »

b b

n,0h™Ja. -^
(t.o\ (n,0)

Figur 3 1

Die Fig 3 1 zeigt die den Dreiecks-Partitionen vom Index n entsprechende Gitterpunkt-
Menge djn (mit • markierte Gitterpunkte) und den zugehörigen Polygon-Bereich P„ fur
n 25

Die 3 Randgeraden a, b, c mit den Gleichungen

n

:2' sx + 2s2 n ¦s, =0

bestimmen ein Dreieck mit den Eckpunkten

n n\ n(n n\ _ / ^ n
3'3J' *4'4 ' C °'2 (34)

deren Koordinaten nur vereinzelt ganzzahlig sind Es sei C* der C nächstliegende Punkt
aus (Dn auf der Geraden b

C* hat offenbar die Koordinaten

(1, |(rc — 1)) wenn n ungerade

(2, \(n — 2)) wenn n gerade

und man erhalt fur die Parallele g zu a durch C* die Gleichung

*2(n+l) wenn n ungerade

(3,2)

Si + s?
\(n + 2) wenn n gerade

(3,3)
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Die Trägergeraden von Punkten aus <E_ im Parallelenfeld zu a folgen sich in vertikalen
bzw. horizontalen Abständen von einer Einheit. Man schliesst daraus, dass unterhalb der
Geraden g keine weiteren Punkte von G„ liegen.
Es sei nun weiter

Ä der A nächstliegende Punkt aus <En auf der Geraden b,

A" der A nächstliegende Punkt aus Üj_ auf der Geraden c,

B' der B nächstliegende Punkt aus G„ auf der Geraden g9

B'f der B nächstliegende Punkt aus <Dn auf der Geraden c.

Offenbar bildet jetzt das Polygon ÄA"B"B'C* den Rand des zum Index n gehörenden
Bereiches P„, wobei noch zu bemerken ist, dass für einzelne Werte von n Eckpunkt-
Koinzidenzen von der Art Ä A" A oder B' B" möglich sind. Als Rand-Polygone
treten somit Fünfecke, Vierecke und Dreiecke auf [4*].
Falls für den Polygon-Bereich P„ die Anzahl r der Rand-Gitterpunkte und der Flächeninhalt

/(P„) bekannt sind, dann kann daraus über die Picksche Formel die Anzahl i der

Innen-Gitterpunkte und damit die Mächtigkeit i + r der Menge flj„ bestimmt werden.
Man hat dann

_(n) |D.| |F.| |C.|

i + r + £-l +g+l)-/«) + (5 + l
(3,4)

Gerade

Parameterdarstellung Anzahl der Punkte von <E„

auf der betreffenden Geraden

(n + 1) - t > t => r

s< t

s =-(n+ l)-t
s2>sx => \

sx l+t
--t>1+t

— t
<=[>-2)_

wenn n ungerade

wenn n gerade

(3,5)
Sl =-1 +2t

s <- =>

sx =2t
n

s _ - — t

1 +2t<- m wenn n ungerade

„«! n
h 6

_ _, r- -i
n n

rc~
_3_ _4_

wenn n gerade



El Math Vol 46, 1991 7

Zunächst wollen wir für UJ, die Zahl r bestimmen. Wir gehen dabei von Parametrisierun-
gen der Randgeraden g und b aus, die bei jeweils rx Rand-Gitterpunkten diese gerade für
die Parameterwerte

f l,2,...,rx

liefern. Aus der besonderen Lage von c kann rc direkt als Anzahl der natürlichen Zahlen

n

4

n

_3_
- abgelesen werden [5*].im Intervall

Die Koordinaten von A" und B'f gehen unmittelbar aus der Fig. 3.1 hervor. Andererseits
können die Koordinaten von Ä und B' über die benutzten Parameterdarstellungen für
die Geraden c und g gewonnen werden.

Das Ergebnis ist in der folgenden Tafel zusammengefasst.

Punkt Koordinaten

Ä •

[(>

n + 3~j n

rr~\~• 2~
nl n

_6J ' 2~

1 wenn n ungerade

- wenn n gerade

A" ([ n

3j
n

_3_

B' -

\(n+\)
4

Un + 2)
4

\(n + i)- wenn n ungerade

wew« n gerade

_r
«1

4j + 1
'

_4_
?¦)

(3,6)

Die in den Koordinaten der Punkte A'9 A", B', B'- und C* auftretenden Nenner lassen

erwarten, dass die Quadratgitter-Umgebung von A und von B und damit die Form des

Polygon-Bereiches Prt durch die Restklassenlage von n modulo 12 bestimmt ist. Wir setzen
daher

n 12p + q mit p (n DIV 12), q (n MOD 12). (3,7)

In den Parametern p und q ausgedrückt, erhalten dann die Punkte A und B die Koordinaten

A[p + l,p + l\; _|(3p + |,3p + | (3,8)
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Für den Punkt A folgert man daraus drei verschiedene Umgebungs-Konfigurationen,

dennc

(3,9)).

q 1 2
denn der gebrochene Teil von p + - kann die Werte 0, -, - annehmen (Zusammenstellung

0, 3, 6, 9

1, 4, 7,10

2, 5, 8,11

Konfiguration Koordinaten

*3*

#.

A' A" - A
A(4p +| ,4p + f

A'(4p + ^,4p + *f)
A'(4p + 3z!,4p + _d.)

a'(4P + ^,4P + a±l)

A'(4p + ^,4P + *f)

q Konfiguration Koordinaten

o,

l,

2,

3,

4, 8

5, 9

6,10

7,11

4

s \y B(3p + f ,3p + f
#(3p + f ,3p + &±)
tJl- q+4 on Q+4s

osi/NV-i h H\3p + ^ ,3p + ^

•X
H

B(3p + f ,3p + f
rf(3p + ^.3p + i+1)

B<(3p + ^,3p + ^±3)

B(3p + l ,3p + |
E?(3p+^,3p+^)

> X^
"°N^'

^1

^J /XX/*
1<P ¦ :rf

\»„i

/
B

XJ\ k |/ B(3p + f ,3p + |-

ö(3p + 3±L.3p + ^)
S^/^*• Ü

/B \ "»¦ "»

(3,9)

(3,10)
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Andererseits bestehen für den gebrochenen Teil in den Koordinaten von B die vier Mög-
1 2 3

lichkeiten 0, -, -, -, woraus man entnehmen kann, dass im Punkt B vier verschiedene
4 4 4

Umgebungs-Konfigurationen auftreten (Zusammenstellung (3,10)).

4. Die Anzahl-Folge bei den Dreiecks-Partitionen

Als Beispiel wollen wir uns den Fall q 1 ausführlich vornehmen. Wir lassen uns dabei

von der früheren Fig. 3.1 leiten, in der die geometrische Situation für n 12 • 2 + 1 25

dargestellt ist. Diese Figur repräsentiert jetzt gleichzeitig den Form-Typus der Polygon-
Bereiche P_, der zur Restklasse der n mit der Zerfällung n 12 p + 1 gehört. In der
Fig. 3.1 sind auch bereits einige Ergänzungen angebracht, die erst an dieser Stelle zum
Tragen kommen.
Für q 1 ist der Rand von I_^ ein Fünfeck. Es ist dann gemäss (3,5)

r r0 + rb + rc - 1 3p + 2p + (4p - 3p) - 1 6p - 1.

L.kompensiert die Doppelzähung von C*

Der Flächeninhalt beträgt aufgrund der in (3,2), (3,9) und (3,10) vorgefundenen Eckpunkt-
Koordinaten

f(Pi2P+i) =f(AOC*B') + f(AOB'B") +f(AOB"A") + f(AOA"A') +f(AOA'C*)
0

1 3p

6p 3p + l
1 3p 3p + l

3p + l 3p + l
1

+
2

4p 4p —1

4p 4p + l
1

+
2

4p-l 1

4p + l 6p
(4,1)

so dass

d(12p + l)=/(P12p+1) + ('^ (4,2)

ist. Grundsätzlich kann man auf diese Weise für jeden Wert von q zu einer generellen
Anzahl-Formel gelangen.
Bevor wir das Problem der Anzahl-Formel weiter verfolgen, wollen wir anhand der
Fig. 3.1 noch eine Rekursionsformel für die Anzahl-Folge {d(n)} herleiten. Damit lässt
sich nämlich die ganze Diskussion wesentlich vereinfachen.
Ist n eine ungerade Zahl, dann lässt sich zunächst zeigen, dass die beiden Polygon-
Bereiche Fn und Pn+3 kongruent sind. Diese Tatsache kann sofort aus unserer geometrischen

Veranschaulichung entnommen werden, wenn man die beiden massgebenden

Gitterpunkt-Mengen zu den Indizes n und n n + 3 gemäss Fig. 3.1 auf zwei verschiedene
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Koordinatensysteme bezieht. Aus der Fig. 3.1 lässt sich unmittelbar ablesen, dass g g,
b~=b, c c und dies besagt, dass die entsprechenden Polygon-Bereiche identisch sind.
Damit ist für die Funktion n -> d(n) die partiell gültige Rekursionsformel

d (n + 3) d (n) für n ungerade (4,3a)

nachgewiesen. Zugleich ist damit gezeigt, dass nur 6 Form-Typen von Polygon-Bereichen
Fn vorhanden sind.
Es liegt jetzt auf der Hand, beim entsprechenden Sprung von n zu n n + 3 bei geradem
n nach einer analogen Gesetzmässigkeit Ausschau zu halten und damit allenfalls die
Rekursionsformel (4,3a) zu ergänzen.
Bei gleichem Vorgehen erhält man jetzt aber eine Figur, in der die beiden Punkte C* und
C* nicht zusammenfallen und dies hat zur Folge, dass g ^ g ist. Im ersten Moment
scheint sich hier eine Enttäuschung anzubahnen. Ueberlegt man sich die Sache aber

genauer, dann kann man auch in diesem Falle zu einer Rekursionsformel gelangen. Beim
Uebergang von n zu n n + 3 kommen nämlich jetzt zu den Gitterpunkten von 1^, genau
die Punkte auf g n I*- hinzu. Ihre Anzahl ist aufgrund von (3,5)

.-[^?H-GH-E + 1

weil n + 3 ungerade ist. Damit ergibt sich in Ergänzung zu (4,3a)

d(n + 3) d(n)+ ^ +1 für n gerade. (4,3b)

Mit den Rekursionsformeln (4,3) kann man jetzt die Anzahl-Folge {d(n)} mühelos aus
den Anfangswerten

d(3) l, d(4) 09 d(5) l

berechnen. Insbesondere erhält man etwa

d(25) d(22) + 6 d(19) + 6 d(16) + 11 <*(13) + 11 d(10) + 14

d(l) +14 d(4) +16 16.

Die Rekursionsformeln (4,3) sind in anderer Gestalt bereits bekannt [6*]. Bemerkenswert
an der vorliegenden Herleitung ist die Tatsache, dass nur elementare Ueberlegungen
erforderlich sind. Sie zeigt zugleich, dass die geometrische Betrachtungsweise oft
überraschende Einsichten freilegt.
Wir wollen jetzt die begonnene Herleitung einer Anzahl-Formel weiterführen. Aufgrund
der Rekursionsformel (4,3a) können wir uns bei der Durchforstung der verschiedenen

Form-Typen bei den Polygon-Bereichen Vn auf die ungeraden q-Werte beschränken. Mit
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analogen Ueberlegungen wie im Falle q 1 wird man auf die in der folgenden Tafel

zusammengestellten Terme für die Anzahlen d(12p + q) geführt:

q n d(12p + q) h -(q + 3)2 + 48/i

1

3

5

7

9
11

12p+ 1

12p+ 3

12p+ 5

12p+ 7

12p+ 9

12p + ll

3p2 + 2p
3p2 + 3p+l
3p2 + 4p + l
3p2 + 5p + 2

3p2 + 6p+ 3

3p2 + 7p + 4

0
1

1

2

3

4

-15 =-16
-36+48= 12

-64+ 48 -16
-100+ 96= -4
_ 144 + 144 0

-196 + 192= -4

Die quadratischen Polynome in p in der dritten Kolonne lassen sich auf die Gestalt

3p2 + Uq + 3)p + h (4,4)

bringen. Die jeweiligen Werte von h sind in der vierten Kolonne nochmals aufgeführt.
Unser Ziel ist es, die festgestellten Anzahlen

d(\2p + q) 3p2+±(q + 3)p + h

in der Primär-Variablen n 12 + q auszudrücken. Wir ziehen dazu die quadratische
_<Ergänzung von 3 p2 + \ (q + 3) heran und setzen

d{Up + q) — (144p2 + 12 • 2 (q + 3)p + 48h)

^~((12p + (q + 3))2 + (-(<? +3)2 + 48Ä)).
4o -

n + 3 c

Der jeweilige Wert von c ist in der fünften Kolonne unserer Tafel notiert. Ihr kann man
entnehmen, dass

16<-(4 + 3)2 + 48/z< + 12

ist. Für ungerade n gilt somit

~((n + 3)2-16) < d(n) < ^((n + 3)2 + 12) (4,5)

Gleichheit Gleichheit

für für
q 1,5 q 3
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28
Die vorliegende Abschätzung basiert auf einem Intervall der Breite —, in dem höchstens

eine ganze Zahl enthalten sein kann. Da d(n) ganzzahlig ist, folgert man aus (4,5), dass

1

d(n)
48

((n + 3)2 + 12)l für n ungerade.

Ueber die Rekursionsformel (4,3a) lässt sich dies noch ergänzen mit

d(n) d(n + 3) __((h-3) + 3)2 + 12)]-£>«2 + 12)

Damit steht für die Dreiecks-Partitionen die Anzahl-Formel

für n ungerade

- (n2 + 12) für n gerade

für n gerade.

din)-

L((„ + 3)2 + 12)l

]
(4,6)

fest. Wie man leicht bestätigt, liefert sie auch dann die richtigen Werte, wenn in unserer
geometrischen Veranschaulichung die Formel von Pick noch nicht benutzt werden kann.

5. Dreiecks-Kompositionen

Herrn F. Bachmann in Burgdorf verdanke ich den Hinweis, dass eine elementare Herleitung

der Anzahl-Formel für die Dreiecks-Partitionen auch in Anlehnung an eine Aufgabe
aus dem bekannten Lehr- und Übungsbuch von Polya-Szegö [5] möglich ist. Dort ist in
Aufgabe 31 von Abschnitt I die Frage nach der Anzahl Lösungen der Diophantischen
Gleichung

sx +s2 + s3 n-9 sx,s2,s3eN

gestellt, die den Nebenbedingungen

sx<s2 + s3; s2<s3 + sx; s3<sx+s2

genügen. Ersetzt man diese Nebenbedingungen durch

sx<s2 + s3; s2<s3+ sx; s3<sx+ s2

(5,1)

(5,2)

dann repräsentiert jedes Lösungs-Tripel ein Dreieck vom Umfang n mit ganzzahligen
Seiten. Im Gegensatz zum Abschnitt 2 erhält man jetzt aber Tripel, zu denen dieselbe
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Figur in _D„ gehört So beschreiben etwa die Tripel

(6,7,12), (6,12,7), (7,6,12), (7,12,6), (12,6,7), (12,7,6)

dasselbe Dreieck vom Umfang n 25

In der neueren Kombinatorik bezeichnet man additive Zerlegungen einer natürlichen Zahl
n bei Berücksichtigung der Summanden-Reihenfolge als Kompositionen Dementsprechend
wollen wir nun die Losungs-Figuren

Si + S2 + 53

von (5,1), (5,2) als Dreiecks-Kompositionen ansprechen
Zur Abzahlung der Dreiecks-Kompositionen vom Index n schlagt F Bachmann in einer
brieflichen Mitteilung an den Autor das folgende Prozedere vor Stutzt man sich
wiederum auf die Parameter sx und s29 dann erhalt man vermöge

s3 n-(sx +s2)

anstelle der Ungleichungen (5,2) die neuen Restriktionen

s, <l-2, *2<2, ~x • -*- 2
sx + s2> (5,3)

Dementsprechend lassen sich die Dreiecks-Kompositionen durch die Gitterpunkte im
Innern eines Bereiches veranschaulichen, der von einem rechtwinklig-gleichschenkligen
Dreieck berandet wird (Fig 5 1)

S2 2 31 + n Sl=2 s -s 0/ 1 2

V
1

1

'

\ !<
.__ n

s2~ 2

n=18

ül ^
¦^

s,+2s n

___

1 2

//
/ i\\ Sl

(5.0) x

Figur 5 1
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Zur Bestimmung der Anzahl g (n) der Dreiecks-Kompositionen genügt nun die Kenntnis
der Anzahl Gitterpunkte in der jeweils obersten Reihe; ihre Anzahl beträgt

—-— wenn n ungerade

n n-4
2 —-— wenn n gerade.

Daraus entnimmt man jetzt

'SM), l/w-l\/w-l \ 1

2 l~li/ l~T~ +
/ 8

~~ + ^ Wem H mgerade

x / v (5,4)
SM, 1 (n-4\(n-4 \ 1

2 l—9—/ l—2—h / 8
n ~ WW" " ^rflflfe*

#(«)

Aus (5,4) geht hervor, dass auch bei den Kompositions-Zahlen

g (n + 3) g (n) wenn n gerade (5,5)

gilt.
Um von den Kompositions-Zahlen g(n) zu den Partitions-Zahlen d(n) zu gelangen, kann
man die Partitionen als Klassen von permutationsgleichen Kompositionen interpretieren.

Dabei ist zu beachten, dass eine bestimmte Partition aus einer

1-er Klasse ] [ 3 gleiche
3-er Klasse > entsteht, je nachdem ob sie < 2 gleiche Summanden besitzt.
6-er Klasse J [ lauter ungleiche

Eine 1-er Klasse von Kompositionen ist gekennzeichnet durch sx= s2 s3; eine solche
existiert offenbar genau dann, wenn n durch 3 teilbar ist.
Bei einer 3-er Klasse von Kompositionen ist

Si=s2^s3 oder s2 s3^sx oder s3 sx^s2.

s2 n - (st + s2) n - (sx + s2) sx

Die entsprechenden Gitterpunkte liegen auf den in der Fig. 5.1 eingezeichneten Geraden

f\,f2,f3> Aus Gründen der Symmetrie enthalten alle drei Geraden gleichviele
Gitterpunkte, nämlich deren

m
[4-1

wenn n ungerade

wenn n gerade
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ist. So liegen bei ungeradem n auf der Geraden fx genau die Gitterpunkte mit den
Abszissen

l,3,...,2h-l<

so dass also h <
bedingung

2'

n + 1

ist. Andererseits schliesst man für gerades n auf die Abszissen-

2,4,...,2fc< 2'

aus der man h <
~n-2l

entnimmt.

Falls n durch 3 teilbar ist, schneiden sich die Geraden fx,f2, f3 in einem Gitterpunkt, der
als Ausnahmepunkt (sx s2 s3) ausgeschieden werden muss.
In 6-er Klassen eingebunden sind alle übrigen markierten Gitterpunkte in der Fig. 5.1.

Die Anzahl der 3-er Klassen ist nun gerade gleich der Anzahl Gitterpunkte auf einer der
drei Geraden fx,f2,f3, wobei der Schnittpunkt der drei Geraden - falls er ein Gitterpunkt

ist - nicht mitzuzählen ist.

Mit dieser Ueberlegung folgt etwa für gerades n

~n-2

„(n)
4

~n-2~
_~4~~_

+ 0(«)-3
1

-l) + l+-(0(n)-3

3-er Klassen

n-2
~4~

n-2
+ 2

1 1

¦lq(n) +
~1

1 1

¦lq(n) + -1

n-2
~4~

'n-2^
+ -

falls3Jfn

falls 3/n

6-er Klassen

1-er Klasse

Man kann dies auch zuammenfassen in

_(n) ^<-4)(»-2) + I n-2l 1"|
(5,6)

Da

°^ 4

-2 'n-2
4

1

< - für n gerade

ist, folgt weiter

d(n) [ko-«*-»*^- "1
48

[1
—

48

;(n2-6n+8 + 6n-12 + 16)

(n2 + 12)']•
(5,7a)
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Für ungerade n erhält man mit den analogen Ueberlegungen

d(n) ^(n-l)(n + l) +i^ + il= 1(^-1 + 6n + 6 + 16)l

l((w + 3)2 + 12)

(5,7b

Damit ist die Formel (4,6) neu hergeleitet.
M. Jeger, ETH-Zünch

(Fortsetzung im nächsten Heft)
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ANMERKUNGEN

[1*] Benannt nach dem Mathematiker G Pick (1859-1942)
[2*3 Masseinheit fur den Flacheninhalt f(F) ist die Gitter-Masche (Quadrat)
[3*] Man kann sich überlegen, dass die Picksche Formel auf <D„ anwendbar ist, sobald zwei Punkte von <G„ auf

der Geraden mit der Gleichung st +2s2 n liegen Aus der Fig 3 1 liest man ab, dass dies zutrifft fur

3 <-, d h n > 9, wenn n ungerade,

4 < -, d h n > 12, wenn n gerade

[4*] Der Rand von IJ ist die konvexe Hülle der Gitterpunkt-Menge <Er„

[5*] [a] bezeichnet die grosste ganze Zahl kleiner oder gleich a

[6*] Vgl etwa [2] (Bd 2, p 54-55) und [4] (p 91)
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