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und
n
v, =volV < [T (vol V)/n~ 1) = plitn=1)
i=1

Hieraus folgt fiir ein beliebiges k-dimensionales Parallelotop V; die Ungleichung

volV, < (I] vol V,\{,-}>”("' b,
iel

Daraus schliesst man jetzt, dass
n—k+1
[T volV;\———

v,= I1 volV,sI"[<HvolV,\{i})”“‘“1’= Je(l,...,n k-1
Ic{l,..., n} I \iel |JJl=k-1
=k

n-iym-1
= k-6 2 <k<n
und dies beweist die Ungleichung von Szasz.

S. B. Gaschkov,
Fakultit fiir Mechanik und Mathematik, Universitit Moskau

Die vorliegende Arbeit wurde im Sommer-Semester 1988 wihrend eines Gastaufenthaltes am Mathematischen
Institut der Universitit Ziirich verfasst.
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Elementarmathematik

Ein Satz iiber Eckentfernungen beim Dreieck

Wir betrachten ein Dreieck 4 BC mit den Seitenldngen a, b, c. Es sei E irgend ein Punkt
der Ebene, und k,, k,, k, seien drei aufeinander abgestimmte Zahlen, welche die Glei-
chung

EA? +k,=EB?+k,=EC?+k, (1)



156 El. Math., Vol. 45, 1990

erfiillen, wobei EA, EB, EC die Eckentfernungen des Punktes E sind. Das zum Punkt E
gehorende Zahlentripel (k,, k5, k;) ist additiv homogen, statt k,, k,, k; kann man eben-
sogut k, + q, k, + g, k; + g, mit irgendeiner Zahl g, einsetzen.

Fiir den Hohenschnittpunkt H gilt z. B.

HA?> +a>=HB?>+b*>=HC? + ¢~ )

Dies sieht man, wenn man die Dreiecksecken an den Mitten der Gegenseiten spiegelt.
Andererseits hat man fiir den Inkreismittelpunkt I

TA? —(s—a)? =TB* — (s — b)* = TC* — (s — c)%,

wobei s der halbe Dreiecksumfang ist. Addiert man hier allseitig den in a, b, ¢ symmetri-
schen Ausdruck g =(a?+b*+c>—2ab—2ac—2bc):4, so wird daraus, wegen
—(s—a)?+q=—bcetc,

IA*—bc=1IB*—-ca=1IC?—ab. (3)

Es soll nun gezeigt werden, dass das zum Punkt E gehdrende Zahlentripel (k,, k,, k3)
nicht nur fiir E, sondern fiir alle Punkte der Geraden durch E und den Umkreismittel-
punkt U des Dreiecks charakteristisch ist.

Es se1 P ein Punkt der Geraden U E, mit UP=AUE.

Aus PA UA 4 + PU UA—-AUE ergibt sich, wenn r_der Umkreisradius ist,
PA2=r>—2,UA" UE + A2 UE?. Ebenso PB? =1 _2AUB - UE + 2*UE?, somit
PA*> - PB*=2AUE(UB — UA) 2AUE - AB. Insbesondere fiir P = E, dh A=1,
heisst dies EA? — EB? = 2UE - AB. Ersetzt man EA? — EB? nach (1) noch durch
k, — k,, so bekommt man PA? + Ak, = PB? + ik, und, weitergehend zur Ecke C,

ﬁ2+ik1=-ﬁ_§2+},k2=—i)—éz+lk3. (4)

Dass es zu einer vorgegebenen Zahl A nur einen Punkt P gibt, der die Bedingung (4) erfiillt,
dass also umgekehrt aus (4) auch UP = A UE folgt, zeigen die Fusspunkte der Lote von
P auf die Seiten des Dreiecks. Der Fusspunkt F des Lotes auf AB ist, wegen
FA? — FB? = PA? — PB? = A(k, — k), durch A eindeutig bestimmt. Ebenso sind es die
andern.

Satz: Wenn bei einem Dreieck A BC, mit dem Umkreismittelpunkt U, fiir die Eckentfernun-
gen EA, EB, EC eines Punktes E die Gleichung

E—Z2+k1=ﬁz+k2=—i_c.z+k3

gilt, dann sind fiir jeden Punkt P die Aussagen

—_— -

UP=AUE

\
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und

PA? + ik, = PB?> + Ak, = PC? + Ak,
dquivalent.

Beispiele:

— Fiir die Punkte der Eulergeraden gilt, nach (2):

—_—— —_— - — S

UP=AUH<PA*>+ ia>=PB*> + Ab*=PC?* + Ac%. (5
— Fiir die Punkte der Geraden U1 gilt, wegen (3):

— —_— I S S

UP =AUlI<PA?*—ibc=PB*—Jica=PC?—iab. (6)

— Wir betrachten noch die Gerade durch U und den Lemoinepunkt L. Der Lemoine-
punkt (oder Symmedianenschnittpunkt [3] oder Grebepunkt [2]) ist bekanntlich der Punkt
im Innern des Dreiecks, dessen Abstinde d,,d,,d; von den Dreiecksseiten propor-
tional zu diesen sind. Mit dem Ansatz d, = ua, ... ergibt sich, wenn man die Inhalte
der Teildreiecke LAB, LBC, LCA zum Inhalt J des Dreiecks ABC aufsummiert:
u=2J:(a* + b? + c?). Es seien Yund Z die Fusspunkte der Lote von L auf die Seiten AC
und A B. Dann ist LA Umkreisdurchmesser des Dreiecks LY Z. Trigonometrisch ergibt
sich

-, YZ? 1 b*c*(—a*+2b*+2c%
2 — = 2 2 — 180O —_ ==
L4 sina  sin? cx(d2 +d5 = 2d, d; cos %) (@® + b* + ¢?)?

Subtrahiert man von LA? den Ausdruck 2b?c?:(a? + b? + ¢?), so erhilt man den bei
zyklischer Vertauschung invarianten Ausdruck — 3 a®b?c?:(a® + b* + ¢?)?, folglich

2b2%c? 2c%a?

UP = AUL < PA*— ) = g e
N a4+ b+t a+b2+ct

™

Wie niitzlich dieser Eckentfernungssatz bei verschiedenen Anwendungen sein kann, soll
die folgende Auswahl zeigen.

C
A

Anwendung 1

Bei einem Dreieck ABC sei P der Punkt, fiir welchen
X CBP= X PAC= < ACB ist (Fig. 1). Dieser Punkt P liegt
auf der Eulergeraden des Dreiecks.

N
Figur 1. A ' B
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Beweis:

Wir berechnen die Strecken PA, PB, PC und zeigen, dass sich (5) erfiillen lisst. Beim
Dreieck PA B, mit denWinkeln x PBA=f—7, x BAP=a—7, x APB = 3y (Wir be-
schrinken uns hier auf die Betrachtung des Falles, wo y = ¥ ACB der kleinste Winkel
csin(f —y)
sin(3y) '
Im Folgenden sollen bei allen Formeln jeweils moglichst nur die Seitenldngen a, b, ¢ des
Dreiecks A BC nebst allenfalls dem Umkreisradius r, dem Inkreisradius ¢ und dem Inhalt
, a? — b+ c? o b? — c?
J vorkommen. Aus sin § = —, cos § = —— etc., ergibt sich sin(f — y) =
2r 2ac 2ar

. . . c(3rr=c?) . — (P
und sin(3y) =3siny —4sin’y = ———5 > somit PA=———"rr, und ent-
sprechend PB=———. Bei der Berechnung von PA? — PB? wird die Formel
b(3r: — ) L
c

—a*t—b*—c*+2a*b* +2a*c2+2b%c?*=16J?=

des Dreiecks A4 BC ist. Das Endresultat ist in allen Fillen dasselbe), ist PA =

beniitzt.

r2

b2 . c2)2 B (a2 _ CZ)Z)

Pa - PB = !
(37‘2-——62)2

a? b2
r4
= TG et 2at e a4 b 2bt e B
rt (b? — a?)r?

5(b? —a*)(3a*b? —16J%) =

=a2b2(3r2——02) 3r2—-¢* -’

Das Dreieck A PC liefert PC? = PA? + b% — 2 PA b cos y. Mit Umformungen, wie vorhin,
erhilt man

(0% — c?)(@* + b*> — cHr?

PC2 _PA2 = h2 _
PC*—PA*=b 2067 =

- m(ﬂ@ a?b? —16J2) — (b* — c?)(a® + b% — c*)r?)

(@ —=cHr?
T 32—’
und ebenso
_— - (bz _ CZ) r2
2 _PRl=
PC*—-PB 377 2
Daraus folgt
L 2 o 2 o 2
PA® 4 g’ =PB* + 372 —c2b2 =PC* + 35—

\
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r2

Das heisst: P liegt auf der Eulergeraden, und es ist UP = UH.

3r2 —¢?

Anwendung 2

Der Mittelpunkt M des Kreises, der die drei Ankreise eines Dreiecks ABC, mit den
Seitenldngen a, b, c, umschliessend beriihrt (Fig. 2), liegt auf der Geraden durch den
Umkreismittelpunkt U und den Lemoinepunkt L des Dreiecks, und es gilt

i]—ﬁ=_(a+b+c)(a2+b2+c2)—l-]—z.
4abc

Figur 2.

Beweis:

Gezeigt werden muss, nach (7), dass es eine Zahl A gibt, mit

7y P, vy P ik

Z+b+c2 B - Z+bi+cr ®

Fiir die Berechnung der Eckentfernungen M A, M B, M C werden zwei Hilfssdtze beniitzt.

Hilfssatz 1:
Bei einem Dreieck PQR sei V ein Punkt der Geraden PQ. Dann gilt

o 2 2 R2PV2 o
Ry = RPTVO ;QQ _PV-V0.

Auf die Herleitung dieser einfachen Formel kann verzichtet werden.

Hilfssatz 2:

Wenn bei einem Dreieck ABC, mit den Seitenldngen a, b, c und dem Inhalt J, fiir einen
Punkt P die Differenzen der Eckentfernungsquadrate PA* — PB* =d,, PA* - PC* =d,
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bekannt sind, ldsst sich die Eckentfernung PA mit der Formel

_ 1

PA = 3 (0% (* +d,)* + P (07 +dy)* — (¢ +d)(b* + dy) (- a® + b7 + %) (9)
berechnen.
Beweis:

Es seien Y und Z die Fusspunkte der Lote von P auf die Geraden AC und AB. Es ist

—_— —
— (—>AB\AB
AZ =

AP——)"— und PB®>=(PA + AB)*=PA%>+c>+2PA - AB,
c c
. —_— 02+d1—-) — b2+d2————> . . . i N
somit AZ = AB. Ebenso AY = AC. Beim Dreieck A Z Y liefern die tri-

2c? 2b?
gonometrischen Sitze:

YZ? 1

2 __ — _ 2
PA?= - =— (AZ — AY)
sSin” o sin- a
1 [(2+d)?* (BP+d)* _(2+d) (b*+dy
= . | .
mnza( iz T ap? 22 ap oecose).

woraus die Formel sofort folgt.
Es seien nun I, I,, I, die Ankreismittelpunkte des Dreiecks ABC und g,, g,, ¢, deren
Radien, ¢ der Inkreisradius und r der Umkreisradius. Wir wenden beim Dreieck I, I, M

S o _— o
den Hilfssatz 1 an. Die Strecken AI, = g,:cos (5) und AI, =g, cos (5) sind bekannt,

nicht aber die andern, da der Radius x des Kreises auch gesucht ist. Setzt man fiir M1 b2
und M2 einfach (x —g,)* und (x — g,)? ein, so ergibt sich

— 4
MA? = x? — Qbe”x+g,,gc~——gi—gi-—.
Qb+gc C052 E
2
J a+b+c () s(s—a) 3
= ——— = = — )= = -_ -—-b - C),
Wegen g, P s ) , COS (2) o und J*=s(s—a)(s—b)(s—¢)

- b — —
wird daraus M A% = x? — —;c—x — (s — b)(s — ¢). Entsprechendes fiir M B und M C. Nun

kann der Hilfssatz 2 angewendet werden. Es ist

s ____c(a-—b)

MA? - MB? x+(s—c)(b—a), MA2—MC?=

bm:”x+@—m@—@.
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Eingesetzt in (9), ergibt sich

16.]2(x2 - ér—gx —(s—b)(s — c))

— 2
=b2(c2 + c(“r_b)x +(s-c)(b—a))2 +c2(b2 + b(ar 9 . +(s-—-b)(c-—-a)>

~ (02 +i(a—:—b)x+(s——c)(b—a))(b2+9—(—a—r——c—)x+(s——b)(c——a)>(—a2 + b +¢?),

eine quadratische Gleichung fiir x. Die Auflésung ist einfacher, als es scheint, denn eine
Loésung, nimlich — 7, ist bekannt (Feuerbach’scher Kreis). Mit Vieta kann die zweite, der
Radius des hier gesuchten, umschliessend beriihrenden Kreises, berechnet werden. Nach
einigen Umformungen ergibt sich

1
x=§7(azb+azc+ab2+abc+acz+b20+b02)- (10)

Oben eingesetzt

W _7ip: = b YR ) PPN _
MA* ~MB = ——=(.) + (=9 (b—a) = ——>(..) = 2ab(s — )
_CS g2 _pyy = 0Cs _bes
—ab(a 5) b a
Somit gilt

MA+ S w4 C% _pger 4 288
a b c
Das ist die Zeile (8) mit dem Koeffizienten A = — s(a® + b% + ¢?):2abc, q.e.d.

scotw

Es kann, unter Verwendung des Brocardwinkels w, auch 4 = —
2 2

geschrieben wer-

den, und fiir den Radius ist die Darstellung x =

moglich.
Weniger bekannt diirfte der folgende Satz sein.

Anwendung 3

Bei einem Dreieck A BC mit dem Umbkreisradius r und dem Inkreisradius ¢ seien k,, k,, k,
die drei Kreise, welche den Umbkreis von aussen und je zwei Dreiecksseiten beriihren (ohne
die dritte Seite zu schneiden) (Fig. 3). Dann liegt das Potenzzentrum Z von k,, k,, k, auf
der Geraden durch den Umkreismittelpunkt U und den Inkreismittelpunkt I des Dreiecks,
und es gilt

— 2r —

UZ = I.

—2r—Q
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Figur 3.

Beweis:

Es seien, wie iiblich, a, b, ¢ die Seitenldngen, s der halbe Umfang und J der Inhalt des
Dreiecks. Der Radius x, des Kreises k, kann am besten mit Hilfe der Inversion am Kreis
um A mit dem Radius \/EE berechnet werden. Diese Inversion bildet B in den Punkt B*
auf A B, mit der Entfernung b von A, ab. Entsprechend ist AC* = c. Das Dreieck AC* B*
ist dem Dreieck A BC kongruent. Der Umkreis geht iiber in die Gerade B* C*, der Kreis
k, in den Inkreis des Dreiecks A B* C*. Wenn T der Beriithrungspunkt von k, mit A B ist,

ergibt sich aus AT* = s — a sofort AT =

und daraus
s—a

. = bco
“T(s—a?

Es folgt hier iibrigens auch unmittelbar, dass die Polare von A4 beziiglich k, durch den
Ankreismittelpunkt I, 1auft, ein Satz von A. Mannheim [4].

Nun sollen fiir die weitere Rechnung Koordinaten zu Hilfe genommen werden, angemes-
senerweise baryzentrische. Dazu eine kurze

Zwischenbetrachtung:

1) Unter den baryzentrischen Koordinaten (p,/p,/p,) eines Punktes P, beziiglich eines
Dreiecks A B C, versteht man das multiplikativ homogene Zahlentripel, verschieden von
(0/0/0), das die Gleichung

— — Y

erfiillt [1]. Man kann P auffassen als Schwerpunkt der mit den Gewichten p,,p,,p;
versehenen Punkte A, B, C. Fiir den Vektor QP von irgendeinem Punkt Q zum Punkt
P(p./p,/p,) &ilt

B
—Q——I-; plQA +p,Q +p3QC’ (12)
P1+Pp2+Pps

\
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denn es ist

PlQA"*‘I’zQB’‘*‘PaQC’="'P1QA'+P2QB’"’l"%Q(f
— — —_— —_— —_ —
—(pyPA +p,PB+p3;PC)=p, QP +p, QP +p;QP.

Die baryzentrischen Koordinaten eines Punktes P sind proportional zu den (orientierten)
Inhalten der Dreiecke PBC, PC A, PAB. Dies folgt aus

_— — — — —
—_ — —_ —
= —p,(PB xPA)=p,(PA x PB) etc.
Beispielsweise hat der Dreiecksschwerpunkt S, wegen der Inhaltsgleichheit der Teil-
dreiecke SBC, SCA, SAB, die Koordinaten (1/1/1). Der Inkreismittelpunkt I hat die

Koordinaten (a/b/c), der Ankreismittelpunkt I, die Koordinaten (— a/b/c); man achte auf
den Umlaufsinn der Dreiecke.

Bei Berechnungen ist es héufig niitzlich, das baryzentrische Koordinatentripel (p,/p,/ps)
noch durch p; + p, + p; zu dividieren, also so zu normieren, dass die Koordinatensumme

. o111 a/b|c
gleich 1 wird: S<§/3/3>, I(Zs/Zs/Zs)

2) Wenn die Eckentfernungen Z A, Z B, Z C eines Punktes Z bekannt sind, lésst sich seine
Entfernung von einem beliebigen Punkt P (p,/p,/p;), dessen baryzentrische Koordinaten
normiert sind (p, + p, + p; = 1), mit der folgenden wichtigen Formel berechnen:

ZP*=p,ZA* + p,ZB* + p3 ZC* — (@®p,p3 + b p3py + ¢* p1 po). (13)
Beweis:
Aus (11) folgt, immer unter Beriicksichtigung der Normiertheit,

_ — _— — —_ — —

AP =AP +(1—p,—p;)PA +p, PB + p, PC=p, AB + p, AC.

PA%? =p2c* +2p,psbccosa+ p2b® =p2c? + p,ps(— a? + b? + c?) + pib.
p,ZA? +p,ZB* + p,ZC? = p,(ZP + PAY +....

(Die Punkte stehen fiir die weiteren Glieder, die aus dem ersten durch zyklische Vertau-
schung hervorgehen)

— —_— — —— _
=p,(ZP* +2ZP -PA + PA>)+...=ZP*+ (p, PA*> +..)
=ZP? + ((pyp3c® + p1p2ps(— a> + b2 + D) + p, p3bH) + ..).

Es muss noch nach a?, b?, ¢ geordnet werden.

=ZP?+p,p;a®> +p,p, b* + p,p,c?, qed
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Z.B. ergibt sich fiir die Strecke U die bekannte Euler’sche Formel

— b b
U12=ir2+...-< —i—--ig—-}— )—r -—az—c—--r —2rg
SZ8 S

Ende der Zwischenbetrachtung.

Der Mittelpunkt M, des Kreises k, hat die Koordinaten

J bx, c¢x,[bx,[cx,\ 1 bx, c¢x,[bx,/[cx,
2 2/2/]2)" 2J  2J)2J]25)

Entsprechend zyklisch

ax, cx, axlcx, cag
M, (2% )1 - oxy= 20 e,
”(21/ 27 21/21) %= pr o

Gibt es nun auf der Geraden U I einen Punkt Z, der die Potenzbedingung

ZM? —x2=ZM,> — x} =ZM?> — x? (14)
erfiillt? Nach (6) erfiillt Z, wenn U} =AUl ist, die Gleichung
ZA*— Abc=ZB*—Aca=ZC?—Jab. (15)

Nach (13) ist

S bx bx il S
VA 2 1 — a 2 Xa 2 _a 2
M, ( 2J 2J>ZA Y ARy R

—(a bc x? LB )c ) 16)

477 2 J
Setzt man, gemiss (15), fiir Z A2, ZB%, ZC? hier k+Abc,k + Aca, k + Aab ein, wobei k
die nicht weiter bekannte Konstante der Zeile (15) ist, und geht man mit (16) in (14), so
erhilt man eine (zyklisch fortlaufende) Gleichung fiir 4. Es geniigt vorerst, nur den
vorderen Teil von (14): ZM,? — x2 = ZM,* — x? zu betrachten. Die Auflésung nach A
ergibt nach kurzer Umformung — dass k herausfillt, ist schnell ersichtlich — den Ausdruck

2J
xﬁbc(a2+<—x———b——c>(b+c))—-xfac(b2+ (gx—{ —c~a)(a+c)> +4J%(x2 —x2)
A= : u :
2Jc(bx,,<2—1+2a——b-—c)——ax,,(g—{+2b——a-—c))
Xq Xp

Nachdem man fiir die Radien eingesetzt hat, bleibt nur nachzuweisen, dass dieserAus-
druck symmetrisch ist in a, b, ¢, das heisst invariant bei zyklischer Vertauschung der

\
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Seiten. Dies bedeutet dann, dass mit diesem A, wie gewiinscht, die ganze Zeile (14) erfiillt
werden kann. Ohne Computerunterstiitzung wieder eine etwas miithsame Umformung.
Das Resultat:

—4abc

1=
a®—a*b—a*c—ab®>+6abc—ac’+b>—b*c—bc*+c3

B —4abc _ —abc _ 2r
"~ 4abc—8(s—a)(s—b)(s—c) abc—2s¢* 2r—o’

Damit reiht sich der Punkt Z wiirdig in die Gesellschaft der besonderen Punkte des
Dreiecks ein.

Die Kollinearitiat der Punkte Z, U, I ldsst sich auch auf andere Weise nachweisen. Der
hier beschrittene Weg hat den Vorteil, dass er die genaue Lage von Z auf U liefert und
dass damit fiir weiterfilhrende Rechnungen allfillig Verhéltnisse, Streckenldngen usw. zur
Verfiigung stehen.

So kann z. B. auch der Kreis berechnet werden, der die drei Kreise k,, k,, k, nicht wie der
Umkreis von aussen, sondern umschliessend beriihrt. Sein Mittelpunkt V liegt auch auf
UlI, man denke an die Inversion am Orthogonalkreis von k,, k;, k.. Sein Radius ist

r(4r—3p) o ey 4r—
——  ,undes git UV = — —UI

4 Q
Interessant ist ferner das Dreieck A’ B’ C’, gebildet durch die drei dusseren gemeinsamen
Tangenten der Kreise k,, k,, k.. Es ist zentralkollinear zum Dreieck ABC. Die dussere
Ahnlichkeitsgerade von k,, k;, k_ ist die Kollineationsachse. Das Kollineationszentrum
liegt — wieder eine Merkwiirdigkeit — auch auf der Geraden U I, es ist der Schnittpunkt
von U mit der Geraden durch den Schwerpunkt und den Gergonnepunkt des Dreiecks
ABC.
Schliesslich sei noch bemerkt, dass man zu analogen Resultaten gelangt, wenn man als
Kreise k,, k,, k. nicht die den Umkreis von aussen beriihrenden Seitenberiihrkreise
nimmt, sondern diejenigen innen. Auch ihr Potenzzentrum liegt auf der Geraden U I.

R. Stirk, Kantonsschule Schaffhausen
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