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und

vn vol V < Yl (vol K)1/(w~1} vl'l\-1}.
i i

Hieraus folgt für ein beliebiges /c-dimensionales Parallelotop Vj die Ungleichung

voiF^mvoiK^y^-1».

Daraus schliesst man jetzt, dass

n voi^n-fe+1
vk= n voiF7<nmvoii/A{l}y^-^ i,c:{1, .„,

1^(1, ,n) I \iel \ |J|=fc-l
\I\ k

k-1

ü«ij>'<8=*>, 2<k<n

und dies beweist die Ungleichung von Szasz.

S. B. Gaschkov,
Fakultät für Mechanik und Mathematik, Universität Moskau

Die vorliegende Arbeit wurde im Sommer-Semester 1988 wahrend eines Gastaufenthaltes am Mathematischen
Institut der Universität Zürich verfasst
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Elementarmathematik

Ein Satz über Eckentfernungen beim Dreieck

Wir betrachten ein Dreieck ABC mit den Seitenlängen a, b, c. Es sei E irgend ein Punkt
der Ebene, und kx,k2, k3 seien drei aufeinander abgestimmte Zahlen, welche die
Gleichung

EÄ2 + kx EB2 + k2 EC2 + k3 (1)
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erfüllen, wobei EA,EB,EC die Eckentfernungen des Punktes E sind. Das zum Punkt E
gehörende Zahlentripel (kl9 k29 k3) ist additiv homogen, statt kx,k2, k3 kann man
ebensogut kx + q, k2 + q, k3 + q, mit irgendeiner Zahl q, einsetzen.

Für den Höhenschnittpunkt H gilt z.B.

WÄ2 + a2 HB2 + b2 HC2 + c2. (2)

Dies sieht man, wenn man die Dreiecksecken an den Mitten der Gegenseiten spiegelt.
Andererseits hat man für den Inkreismittelpunkt /

JA2 - (s - a)2 =lB2-(s- b)2 =TC2-(s- c)2,

wobei s der halbe Dreiecksumfang ist. Addiert man hier allseitig den in a, b, c symmetrischen

Ausdruck q (a2 + b2 + c2 — 2 a b — 2 a c — 2 b c): 4, so wird daraus, wegen
— (s — a)2 + q= —bc etc.,

TÄ2 - bc TB2 - ca TC2 - ab. (3)

Es soll nun gezeigt werden, dass das zum Punkt E gehörende Zahlentripel (kx,k2, k3)
nicht nur für E9 sondern für alle Punkte der Geraden durch E und den Umkreismittelpunkt

U des Dreiecks charakteristisch ist.
Es sei P ein Punkt der Geraden UE9 mit IIP X UE.
Aus PA UA + PU UA — XUE ergibt sich, wenn r der Umkreisradius ist,
PÄ2 r^_-2XTjA'ÜEf X2IJE2. Ebenso PW r2 -2XÜB • ÜE + X2ÜE29 somit
PA2 - PB2~2XWe(IJB -UA) 2XTlE • AB. Insbesondere für P E, d. h. X 1,

heisst dies EA2 - EB2 2XJE • ÄJ3. Ersetzt man EA2 - EB2 nach (1) noch durch
k2 — kx, so bekommt man PA2 + Xkx PB2 + Xk2 und, weitergehend zur Ecke C,

PÄ2 + Xkx PB2 + Xk2 PC2 + Xk3. (4)

Dass es zu einer vorgegebenen Zahl X nur einen Punkt P gibt, der die Bedingung (4) erfüllt,
dass also umgekehrt aus (4) auch UP X UE folgt, zeigen die Fusspunkte der Lote von
P auf die Seiten des Dreiecks. Der Fusspunkt F des Lotes auf AB ist, wegen
FA2 — FB2 PA2 — PB2 X(k2 — kx)9 durch X eindeutig bestimmt. Ebenso sind es die
andern.

Satz: Wenn bei einem Dreieck ABC, mit dem Umkreismittelpunkt U,für die Eckentfernungen

EA, EB9 EC eines Punktes E die Gleichung

EÄ2 + kx~EB2 + k2~EC2 + k3

gilt, dann sindfür jeden Punkt P die Aussagen

ÜP^XUE
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und

PÄ2 + Xkx PB2 + Xk2 PC2 + Xk3

äquivalent.

Beispiele:

- Für die Punkte der Eulergeraden gilt, nach (2):

UP XlJHoPÄ2 + Xa2 PB2 + Xb2 PC2 + Xc2. (5)

- Für die Punkte der Geraden UI gilt, wegen (3):

UP XlHoPÄ2 - Xbc ¥B2 - Xca ¥C2 - Xab. (6)

- Wir betrachten noch die Gerade durch U und den Lemoinepunkt L. Der Lemoine-
punkt (oder Symmedianenschnittpunkt [3] oder Grebepunkt [2]) ist bekanntlich der Punkt
im Innern des Dreiecks, dessen Abstände dx,d2,d3 von den Dreiecksseiten proportional

zu diesen sind. Mit dem Ansatz dx pa,... ergibt sich, wenn man die Inhalte
der Teildreiecke LAB, LBC, LCA zum Inhalt J des Dreiecks ABC aufsummiert:

p 2 J: (a2 + b2 + c2). Es seien Yund Z die Fusspunkte der Lote von L auf die Seiten AC
und AB. Dann ist LA Umkreisdurchmesser des Dreiecks LYZ. Trigonometrisch ergibt
sich

YZ2 1 b2c2(-a2 + 2b2 + 2c2)
IÄ2 ^ ^LT-(d2 + d2-2d2d3cos(mo-a))

t)
)2a * * '¦

sin2a sin2oc 2 3 2 3 (a2 + b2 + c2)2

Subtrahiert man von LA2 den Ausdruck 2b2c2:(a2 + b2 + c2), so erhält man den bei

zyklischer Vertauschung invarianten Ausdruck — 3a262c2:(a2 + b2 + c2)2, folglich

> 2b2c2 2c2a2
UP=XULoPA2-X-0—-= PB2-X-2—u j (7)

a2 + b2 + c2 a2 + b2 + c2

Wie nützlich dieser Eckentfernungssatz bei verschiedenen Anwendungen sein kann, soll
die folgende Auswahl zeigen.

Anwendung 1

Bei einem Dreieck ABC sei P der Punkt, für welchen

%CBP= *PAC= ZACB ist (Fig. 1). Dieser Punkt P liegt
auf der Eulergeraden des Dreiecks.

c

Figur 1. A
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Beweis:

Wir berechnen die Strecken PA, PB, PC und zeigen, dass sich (5) erfüllen lässt. Beim
Dreieck PAB, mit denWinkeln * PBA ß-y, *BAP a-y, * APB 3 y (Wir
beschränken uns hier auf die Betrachtung des Falles, wo y £ ACB der kleinste Winkel

c sin (ß — y)
des Dreiecks ABC ist. Das Endresultat ist in allen Fällen dasselbe), ist PA

sin (3 y)
Im Folgenden sollen bei allen Formeln jeweils möglichst nur die Seitenlängen a, b, c des

Dreiecks ABC nebst allenfalls dem Umkreisradius r, dem Inkreisradius q und dem Inhalt
b a2-b2 + c2 b2-c2

J vorkommen. Aus sin ß —, cos ß etc., ergibt sich sin (ß — y)
2r 2ac 2ar

c(3r2-c2) _ (b2-c2)r2
und sin (3 y) 3 sin y — 4 sin3 y somit PA —, und ent-

z 2 2. 2 2r a(3r2-c2)
(a2-c2)r2 v

sprechend PB —. Bei der Berechnung von PA2 — PB2 wird die Formel
b(3r2-c2)

-a4-b4-c4 + 2a2b2 + 2a2c2 + 2b2c2 16J2 / benützt.

P12 mi '* (V-c2)2 ia2-c2)2\
PA ~FB ~(3r2-c2)2V~~^ b^~~)

a2b2(3r2-c2)2 (- a6 + 2a4c2 -a2c4 + b6 -2b4c2 + b2c4)

r4 (b2-a2)r2
2,2.; 2 2^2 (ft2 - <*2)(3 O2 b2~16J2)= \ 2

}2
a2b2(3r2-c2)2 v 3r2-c2

Das Dreieck APC liefert PC2 — PA2 + b2 — 2PAb cos y. Mit Umformungen, wie vorhin,
erhält man

(h2 _ c2) (a2 + b2 - c2) r2
PC2-PA2 b2-K- 2jl 2x

}

a2(3r2-c2)

1

(r2 (3 a2 b2-16J2)- (b2 - c2) (a2 + b2- c2) r2)
a2(3r2-c2)

_(a2-c2)r2
3r2-c2 '

und ebenso

(b2-c2)r2
PC2-PB2~\ 2

C)\
3r2-c2

Daraus folgt
2 2 2

PÄ1 + 2 2<*2 PB2 + - l 2b2 PC2 + [ 2c2.
3r2 -c2 31* — c2 3r2 -c2
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Das heisst: P liegt auf der Eulergeraden, und es ist UP —-= r UH.3r-r
Anwendung 2

Der Mittelpunkt M des Kreises, der die drei Ankreise eines Dreiecks ABC, mit den

Seitenlängen a, b, c, umschliessend berührt (Fig. 2), liegt auf der Geraden durch den

Umkreismittelpunkt U und den Lemoinepunkt L des Dreiecks, und es gilt

i _1_ ui _i_ ^i\(a + b + c)(a2 + b2 + c2)
UM -- ^- -UL.

4abc

Figur 2

Beweis:

Gezeigt werden muss, nach (7), dass es eine Zahl X gibt, mit

2b2c2 2c2a2
MA2-^ 2 J 2=MB2-* 2 u2 2«-. (8)

a2 + b2 + c2 a2 + b2 + c2

Für die Berechnung der Eckentfernungen MA,MB,MC werden zwei Hilfssätze benützt.

Hilfssatz 1:

Bei einem Dreieck PQR sei V ein Punkt der Geraden PQ. Dann gilt

Wi^2m^jR2Pv2_w,yQ
PQ

Auf die Herleitung dieser einfachen Formel kann verzichtet werden.

Hilfssatz 2:

Wenn bei einem Dreieck ABC, mit den Seitenlängen a, b, c und dem Inhalt J,für einen

Punkt P die Differenzen der Eckentfernungsquadrate PA2 - PB2 dx, PA2 - PC2 d2
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bekannt sind, lässt sich die Eckentfernung PA mit der Formel

PÄ2 }^7#V + di)2 + c2(b2 + di)2 - (c2 + diUb2 + diH- a2 + b2 + c2)) (9)

berechnen.

Beweis:

Es seien Y und Z die Fusspunkte der Lote von P auf die Geraden AC und AB. Es ist

___» /_+ÄB\~ÄB _____ ___>__>
AZ lAP—J und PB2 (PA+AB)2 PA2 + c2 + 2PA AB,

—> c2 + ^!—? —? b2 + d2—>
somit AZ — _4B. Ebenso AY — _4C. Beim Dreieck _4 Z Y liefern die tri-

2c2 2b2
gonometrischen Sätze:

YZ2 1 > >

PA2 ----- ~7-r-(AZ - AY)2
sur a sur a

1 /(c2 + ^)2
t

(b2 + d2)2 ,(c2 + dx) (b2 + d2)u \
~T~r" —7~2— +—771 2—;r~2 ~7i—bccosa
sin2a\ 4c2 4fc2 2c2 2b2

woraus die Formel sofort folgt.
Es seien nun Ia, Ib, Ic die Ankreismittelpunkte des Dreiecks ABC und qa, qh, qc deren
Radien, q der Inkreisradius und r der Umkreisradius. Wir wenden beim Dreieck Ib Ic M

/<x\ /a\
den Hilfssatz 1 an. Die Strecken AIb gb:cos! - 1 und AIC gc:cosl - J sind bekannt,

nicht aber die andern, da der Radius x des Kreises auch gesucht ist. Setzt man für MIb2
und MI2 einfach (x — Qb)2 und (x — qc)2 ein, so ergibt sich

TTli i 4QbQc QbQc
MA1 X1 X + QbQc

COS ^j
11/

J a + b + c 2{a\ s(s-a) 2Wegen gfe -, s cos2 - — und P s(s -a)(s- b)(s - c),
s — b 2 \2/ b c

wird daraus MA2 x2 x— (s — b)(s —c). Entsprechendes für MB und MC. Nun
r

kann der Hilfssatz 2 angewendet werden. Es ist

WA2 - MB2 £i__zi__x + (S _ C)(fc _ ö)s aO2 - MC2 » b(fl~C)x + (s - 6)(c - a).
r r
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Eingesetzt in (9), ergibt sich

16 J2 (x2 - — x - (s - b)(s - c)

b2Li + cJ?^x + {s_c){u x + (s_5)(c_fl)Y

c2 + C-^-^x + (s-c)(b-a^(b2 + b-^^

eine quadratische Gleichung für x. Die Auflösung ist einfacher, als es scheint, denn eine

Lösung, nämlich — \, ist bekannt (Feuerbach'scher Kreis). Mit Vieta kann die zweite, der
Radius des hier gesuchten, umschliessend berührenden Kreises, berechnet werden. Nach
einigen Umformungen ergibt sich

1

x — (a2b + a2c + ab2 + abc + ac2 + b2 c + bc2). (10)
8 J

Oben eingesetzt

WÄ2-MB2 C-^^(...) + (s-c)(b-8rJ 2ab

cs ~ acs bcs
--(a2-b2) —
ab b a

Somit gilt

-rr-, bcs ——- cas ——, abs
MA2 + MB2 + MC2 +abcDas ist die Zeile (8) mit dem Koeffizienten X — s(a2 + b2 + c2):2abc, q.e.d.

scotw
Es kann, unter Verwendung des Brocardwinkels co, auch X — geschrieben wer-

2 2 2r
S2 + Q2

den, und für den Radius ist die Darstellung x — möglich.
4q

Weniger bekannt dürfte der folgende Satz sein.

Anwendung 3

Bei einem Dreieck ABC mit dem Umkreisradius r und dem Inkreisradius q seien ka,kb, kc
die drei Kreise, welche den Umkreis von aussen undje zwei Dreiecksseiten berühren (ohne
die dritte Seite zu schneiden) (Fig. 3). Dann liegt das Potenzzentrum Z von ka,kb, kc auf
der Geraden durch den Umkreismittelpunkt U und den Inkreismittelpunkt I des Dreiecks,
und es gilt

UZ= -—^-ÜI.
2r — q
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Figur 3.

Beweis:

Es seien, wie üblich, a, b, c die Seitenlängen, s der halbe Umfang und J der Inhalt des

Dreiecks. Der Radius xa des Kreises ka kann am besten mit Hilfe der Inversion am Kreis
um A mit dem Radius y/bc berechnet werden. Diese Inversion bildet B in den Punkt B*
auf AB, mit der Entfernung b von A, ab. Entsprechend ist _4C* c. Das Dreieck AC*B*
ist dem Dreieck ABC kongruent. Der Umkreis geht über in die Gerade B*C*, der Kreis
ka in den Inkreis des Dreiecks AB*C*. Wenn T der Berührungspunkt von ka mit AB ist,

bc
ergibt sich aus AT* s — a sofort AT — und daraus

s — a

__
bcq

Es folgt hier übrigens auch unmittelbar, dass die Polare von A bezüglich ka durch den

Ankreismittelpunkt Ia läuft, ein Satz von A. Mannheim [4].
Nun sollen für die weitere Rechnung Koordinaten zu Hilfe genommen werden,
angemessenerweise baryzentrische. Dazu eine kurze

Zwischenbetrachtung:

1) Unter den baryzentrischen Koordinaten (px/p2/p3) eines Punktes P, bezüglich eines

Dreiecks ABC, versteht man das multiplikativ homogene Zahlentripel, verschieden von
(0/0/0), das die Gleichung

pxPA+ p2PB + p3 PC 0 (11)

erfüllt [1]. Man kann P auffassen als Schwerpunkt der mit den Gewichten px,p2,p3
versehenen Punkte _4, B, C. Für den Vektor QP von irgendeinem Punkt Q zum Punkt
P(Pi/Pi/Pd gut

np P1W+P2QB+P3QC
Pl + P2 + J>3
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denn es ist

pi^+p2^ + p3QC=pxQA+p2QB+p3QC
-(pxl^ + p2PB+p3PC) pxQP +p2QP +p3QP.

Die baryzentrischen Koordinaten eines Punktes P sind proportional zu den (orientierten)
Inhalten der Dreiecke PBC,PCA9PAB. Dies folgt aus

p3(PB x¥c) ¥ß x(-pxPA -p2PB)

- px (PB x~PA) px (PA x ~PB) etc.

Beispielsweise hat der Dreiecksschwerpunkt 5, wegen der Inhaltsgleichheit der
Teildreiecke SBC, SCA, SAB, die Koordinaten (1/1/1). Der Inkreismittelpunkt / hat die
Koordinaten (a/bjc\ der Ankreismittelpunkt Ia die Koordinaten (— a/b/c); man achte auf
den Umlaufsinn der Dreiecke.
Bei Berechnungen ist es häufig nützlich, das baryzentrische Koordinatentripel (px/p2/p3)
noch durch px + p2 + p3 zu dividieren, also so zu normieren, dass die Koordinatensumme

2) Wenn die Eckentfernungen ZA, ZB, ZC eines Punktes Z bekannt sind, lässt sich seine

Entfernung von einem beliebigen Punkt P(pjp2/p3), dessen baryzentrische Koordinaten
normiert sind (px + p2 + p3 1), mit der folgenden wichtigen Formel berechnen:

ZP2=pxYÄ2 + p2ZB2 + p3ZC2-(a2p2p3 + b2p3px+c2pxp2). (13)

Beweis:

Aus (11) folgt, immer unter Berücksichtigung der Normiertheit,

~ÄP ~ÄP + (1 - p2 - p3)PA + p2PB +p3PC p2ÄB + p3ÄC.

PÄ2 p2c2 + 2p2p3bccosa + p\b2 p\c2 + p2p3(- a2 + b2 + c2) + p\b2.

pxZÄ2 + p2ZB2 + p3ZC2 =px(ZP + PA)2 +

(Die Punkte stehen für die weiteren Glieder, die aus dem ersten durch zyklische Vertauschung

hervorgehen)

px(ZP2 + 2ZP • PA + PÄ2) + ZP2 + (pxPÄ2 +

ZP2 + ((pxp22c2 + pxp2p3(- a2 + b2 + c2) + pxp23b2) +

Es muss noch nach a2, b29 c2 geordnet werden.

~ZP2 + p2p3a2 + p3pxb2+pxp2c29 q.e.d.



164 El Math Vol 45, 1990

Z.B. ergibt sich für die Strecke UI die bekannte Euler'sche Formel

77-72 a 2 2
b c \ i abc 2 *UI2 — r2 + ...- a2 — — + =r2-—- r2-2r6.2s \ 2s2s 2s

Ende der Zwischenbetrachtung.

Der Mittelpunkt Ma des Kreises ka hat die Koordinaten

bxa cxjbxalcxa\^/ bxa cxalbxalcxa
2 2 I 2 I 2 \ 23 23\ 2J\ 2J

Entsprechend zyklisch

__^/i _^_^__!/^__!l caQ

2J\ 23 23123)' Xb~(s-b)2'

Gibt es nun auf der Geraden UI einen Punkt Z, der die Potenzbedingung

ZM/-x] ZM?-x2 ZM2-x2 (14)

erfüllt? Nach (6) erfüllt Z, wenn UZ Xul ist, die Gleichung

ZÄ2 - Xbc ZB2 - Xca ZC2 - Xab. (15)

Nach (13) ist

Setzt man, gemäss (15), für ZA2, ZB2, ZC2 hier k + Xbc9k + Xca9k + Xab ein, wobei k
die nicht weiter bekannte Konstante der Zeile (15) ist, und geht man mit (16) in (14), so
erhält man eine (zyklisch fortlaufende) Gleichung für X. Es genügt vorerst, nur den
vorderen Teil von (14): ZM2 — x\ — ZMb — x2 zu betrachten. Die Auflösung nach X

ergibt nach kurzer Umformung - dass k herausfällt, ist schnell ersichtlich - den Ausdruck

A=-

\bcL2 + \^-b-c\(b + c^-x2bac\h^

23c(bxa(— + 2a-b-c)-axbl — + 2b-a-c))

Nachdem man für die Radien eingesetzt hat, bleibt nur nachzuweisen, dass dieserAus-
druck symmetrisch ist in a, b9 c, das heisst invariant bei zyklischer Vertauschung der



El Math Vol 45, 1990 165

Seiten. Dies bedeutet dann, dass mit diesem X, wie gewünscht, die ganze Zeile (14) erfüllt
werden kann. Ohne Computerunterstützung wieder eine etwas mühsame Umformung.
Das Resultat:

— 4abc
a3 - a2b - a2c - ab2 + 6abc - ac2 + b3 - b2c - bc2 + c3

— 4abc —abc 2r
4 ab c — 8 (s — a)(s — b)(s — c) abc — 2s q2 2r — q

Damit reiht sich der Punkt Z würdig in die Gesellschaft der besonderen Punkte des

Dreiecks ein.

Die Kollinearität der Punkte Z, U, I lässt sich auch auf andere Weise nachweisen. Der
hier beschrittene Weg hat den Vorteil, dass er die genaue Lage von Z auf UI liefert und
dass damit für weiterführende Rechnungen allfällig Verhältnisse, Streckenlängen usw. zur
Verfügung stehen.
So kann z. B. auch der Kreis berechnet werden, der die drei Kreise ka,kb, kc nicht wie der
Umkreis von aussen, sondern umschliessend berührt. Sein Mittelpunkt V liegt auch auf
UI, man denke an die Inversion am Orthogonalkreis von ka, kb, kc. Sein Radius ist
r(4r — 3o) > 4r—>

-, und es gilt UV UI.
Q Q

Interessant ist ferner das Dreieck A'B'C, gebildet durch die drei äusseren gemeinsamen
Tangenten der Kreise ka, kb, kc. Es ist zentralkollinear zum Dreieck ABC. Die äussere

Ähnlichkeitsgerade von ka,kb, kc ist die Kolhneationsachse. Das Kollineationszentrum
liegt - wieder eine Merkwürdigkeit - auch auf der Geraden UI, es ist der Schnittpunkt
von UI mit der Geraden durch den Schwerpunkt und den Gergonnepunkt des Dreiecks
ABC.
Schliesslich sei noch bemerkt, dass man zu analogen Resultaten gelangt, wenn man als

Kreise ka, kb, kc nicht die den Umkreis von aussen berührenden Seitenberührkreise
nimmt, sondern diejenigen innen. Auch ihr Potenzzentrum liegt auf der Geraden UI.

R. Stärk, Kantonsschule Schaffhausen
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