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Das exakte Differential

(Wx*—y—x)dy + (Jx*—y —x)*dx
besitzt die Stammfunktion

20 — 7 (x? —y)%-xy-
37 3

H. Herold, Fachbereich Mathematik, Universitdt Marburg
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A very elementary proof of a probabilistic limit relation

Let
=T 0

It is well known that

lima, = 2
This limit relation has a definite probabilistic flavor. In «wise» terms, a, is the probability
that the sum of n independent, equally distributed Poisson random variables with param-
eter A = 1 is smaller than mean value. Relation (2) hence follows immediately as a very
particular case of the Central Limit Theorem.

(I first met quantities (1) when dealing with certain problems concerning probability
measures in R™ confronting Gaussian distribution versus discrete measures concentrated
on vertices of the n-cube.)

One inevitably encounters (1) and (2) in quite simple probabilistic considerations con-
cerning interrelation between Poisson, normal and binomial distributions. A glance at the
first few chapters of W. Feller's book [1] (its examples and exercises) will suffice to
ascertain this.

(SIS
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Relation (2) however deserves an interest of its own. D. Newman has included it in his
charming Problem Seminar [2] (Problem 96). There are several ways of proving (2); as a
rule, they start from the integral representation of Taylor’s remainder and then use some
more or less advanced calculus methods (Euler’s gamma function, Lebesgue Dominated
Convergence Theorem, Poisson integral, and so on; Stirling’s formula is the cheapest). It
might be therefore of some interest to see an entirely elementary proof of (2).

Even deprived of its natural probabilistic context, relation (2) retains some grace. The sum
in (1) is the initial segment of the power series representation of e*, taken at x =n;
summation is carried as long as the terms increase and stops when they begin to decrease.
Thus, asymptotically, (2) asserts that the «growing part» of the series 3" n*/k! carries about
a half of its entire mass. With this comment (and with a proof which avoids the use of
nontrivial methods), formula (2) can be taught at the very beginning of a course of
calculus. (It is then recommended to return to it several times during, say, two years to
exhibit new possibilities given by more advanced techniques.)

Proof of Limit Relation (2). Split ¢" into three summands,

e"=A4,+B,+C,, (3)
where
n—1 nk 2n—-1 k o0 nk
A = —, B = —, C,= —
" kE%)k! " kmp K kg%nk!

The idea is to show that A, and B, are approximately equal, whereas the «tail» C, is
negligible, as compared with e".
We have

n"- 1

=

(1+ Zn "H(n J))
n" n—1 k

B"=7(1+ Z nkn(n+j)_1),
n: k=1 j=1

and since n"~!/(n — 1)! = n"/n!, this yields

nnp—1

B,—A,== X F(n,K), @
N k=1
where
_ n* (n—1)...n—k) Nk
F(n’k)_(n+1)...(n+k)— n* " D(nk)’ ©)

with numerator

N(nk)=n* —n?>—-1)...(n*> —k?
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and denominator

D(nk)y=r*(n+1)...(n + k).

These are positive numbers, so that
F(n,k)>0. (6)

Consider the k-th degree polynomial
k
P(x)= [T (n* —j*x).
j=1

It has k roots in (1, + o0), hence it is convex in (— oo, 1], hence is supported by the straight
line y = L(x),

k
L(x) —_ n2k _ n2k—2< 2 jz)x_
j=1

Setting x = 1 in the inequality L(x) < P (x) we obtain for the numerator of (5) the estimate

k
N(nk) < n2"“2j;1j2 =n?*"2.- Lk + )2k +1) S n*2k3 7

As to the denominator, note that if k = 2 then

k
m+1)..n+k> X ijonk2

i,j=1

k 2 k 1
=%""'2((.2 f) - <.Z f’)) = Pk DGR — k=) 242
J J

this being true also for k = 1. Thus
D(nk)>in?*"2k*

and so, by (5), (6) and (7),
8
O<F (n, k) < ;c‘

Hence, in view of (4),

n" n-11

—A)e "<8- -, 8
0<(B,—A,)e "<8 o Tk (8)
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Stirling would now lead a quick way to (11). In our desire to be as elementary as possible
we may also argue like this: the inequalities

1\"*3
(1 +—) <e, 9)
n

1
nle">n""3 (10)
hold for n=1,2,3,...; (9) is proved by standard calculus method (examine
@ (x) =log(x + 1) — log x — (x + )~ ') and then (10) is proved by induction, with the aid
of (9). Since the sum on the right hand of (8) is o (n'/3), we get from (8) and (10)
lim(B, — 4,)e~" = 0. (1)

We are left with the «tail» term C, (see (3)). But this is immediate:

C,= 2"(1+2nn(2 +i)" ) ST L
"= 2n)! i) S ennET T e

In view of (10), 2n)! > (2n)*"e~ 2", and therefore C, < 2! %" 2", whence

limC,e~" = 0. (12)
Now, relations (3), (11) and (12) yield the desired conclusion

lima, = lim A, e™" = lim3((4, + B))e™" + (4, — B,)e ") =1

Marcin E. Kuczma, Institute of Mathematics, University of Warsaw
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