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wird und 2 m/(l +u)-(m-l) beträgt. Weiter ist & (a0) 2 mf (a0) - (m - 1) 0, d. h.

/'(ao) - (m — l)/2m. Auf [0,a0) ist a > 0 (weil & > 0) und a < a (weil /' < \9 somit
g' < m — (m — 1) — 1). Da die Klammer von (3.17) monoton mit g und g monoton mir a

wächst, wird ihr Maximum in a0 erreicht. Es beträgt, wegen G(a0)<a0, höchstens

\ — f'(a0) 1/2 m. Insgesamt bleibt also der Ausdruck in (3.17) kleiner als

l 2m
|_l+u

-.1 1 1 1~u
(m-1) —- — ——— <0.

J 2m 2m 2(1 + u)

Damit ist der Beweis beendet. Dieses letzte Beispiel lehrt, dass man starke
Symmetrieeigenschaften des Graphen postulieren muss, um die Nullstellen an 1R_ oder mindestens
JR_ u Sx zu binden. Für weitere Diskussionen vgl. [2] und [3].

Irene Hueter und Henri Carnal
Institut für mathematische Statistik, Universität Bern
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Kleine Mitteilung

On a problem by Shapiro

In 1954, H. S. Shapiro proposed the following problem: determine the minimum ofthe
cyclic sum

Sn(a)= iaJ(ax + x+ax + 2)9 (1)
i=i

with ax > 0 and ax + al+ x > 0 (an+ x ai9 an+2 a2). He conjectured that this minimum
is n/2. This is known to be true for n < 13, but false for n > 14 (see [1] for reference, and
the ränge 15 < n < 23, n odd).
In the present work we propose a method which enables us to solve the problem for n < 1.

The method is based on an application of Fourier transformation to functions of discrete

argument.
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We denote

ai a2
S — l i

n l n

a2 + a3 a3 + a4
1 1

an + ax ax+ a2

a - nüi
1 i 1 -Ulf — 1 l — 1, z,..' n

n.

k=i
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Then

«,>-i, I«k 0 (2)
k=l

and

- „ " 1 + ak25 S — > ««+!=«_, «» + 2= <*2-
*=1 j «fc+1 + <*fc + 2

For x > — 1, (1 + x) * > 1 — x, the equality being valid only for x 0.

It follows

2S> I(t+ak)(l-?ü4^)=n-|iMaH1+«H2)_«-f (3)
*=i \ 2 / 2*=_ 2

We introduce a real valued function f(x)9 such that

f(k) ak for l<fc<n and f(k) f(n + k).

From (2) it follows

£/W 0. (4)
*=i

We represent f(x) by a Fourier trigonometric polynomial

n f mk\
/(*) Z «(m)exp 2*i— (5)

m=i \ n

where

Bearing in mind that f(x) is real valued, we obtain

«(«)«-£/(*)«p(-2*f—) (6)

g(n-m) g(m). (7)
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Besides, from (5) and (6) it follows

q(n + m) q(m)9 q(n) 0. (8)

Now, the sum A can be represented as follows

n / 2% 4%
A nY. Q(n — k)q(k)\ cos — k + cos — k

k=i \ n n

n / 2n 4n
+ in _£ q(n — k)q(k)( sin — k + sin — k

it=i \ n n

Because of (7) and (8), we have (A being real)

n~l 2n 4%
A n _£ q(n — k)q(k)[ cos — k + cos — k

fc=i \ n n

Hence, by (3) and (7) it follows

S > "z - 7 "Z |«(/c)|2(cos —/c + cos~A (9)
2 4fc=i \ n n

Tt 5 TC

The function cos x + cos 2 x is non-positive for - < x < —. Thus the second term of the

last inequality (9) is non-negative for every 1 < k < n and n < 1.

Thus (1) is proved for n < 1.

The equality in (1) is obtained if and only if

ax +a2 a2 + a3 a„_1 + a„ a„ + ax =0.

For n 3,5 the last system has the following Solution:

ak 0, k l9...9n.

For n 4,6

<*i «3 ol5; a2 a4 a6 and hence

ak (-l)*a, |a|<l.

Evgenii S. Freidkin, University of the Witwatersrand, Johannesburg
Solomon A. Freidkin, Technion-Israel Institute of Technology, Haifa
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