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wird und 2m/(1 + u) — (m — 1) betrdgt. Weiter ist o’ (o) =2m f'(ag) —(m —1) =0, d. h.
[ (@) = (m —1)/2m. Auf [0,a,) ist 6 >0 (weil ¢’ >0) und o <a (weil f' <1, somit
¢ <m—(m— 1) =1). Da die Klammer von (3.17) monoton mit ¢ und ¢ monoton mir o
wichst, wird ihr Maximum in «, erreicht. Es betrigt, wegen o (o) < a,, hochstens

3 — f' (o) = 1/2m. Insgesamt bleibt also der Ausdruck in (3.17) kleiner als

2m 1 1 1—u
M -t — e —=——% <o.
[1+u m )] 2m 2m 20 +w

Damit ist der Beweis beendet. Dieses letzte Beispiel lehrt, dass man starke Symmetrie-

eigenschaften des Graphen postulieren muss, um die Nullstellen an IR _ oder mindestens
R _ U S, zu binden. Fiir weitere Diskussionen vgl. [2] und [3].

Irene Hueter und Henri Carnal

Institut fiir mathematische Statistik, Universitdt Bern
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Kleine Mitteilung

On a problem by Shapiro

In 1954, H. S. Shapiro proposed the following problem: determine the minimum of the
cyclic sum

5,0 = T afarrs +air), 0

with ;> 0 and q; + a;,, >0 (a,,, = a,, a,,, = a,). He conjectured that this minimum
is n/2. This is known to be true for n < 13, but false for n > 14 (see [1] for reference, and
the range 15 < n < 23, n odd).

In the present work we propose a method which enables us to solve the problem forn < 7.
The method is based on an application of Fourier transformation to functions of discrete
argument.
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We denote
a a a,_ a
S=——+—2—+...+— "
a,+as az+a, a,+a;, a;+a,
na; .
o =— -1, i=1,2,...,n.
2 4
k=1
Then

ai>_1, Zak=0
k=1

and
3 140
2§=% s Qpyg =0y, Opyyp =05,
k=1 Ok+1+ Ogyr
o

For x> —1, (1 + x)~! > 1 — x, the equality being valid only for x = 0.
It follows

A

n + 1 n
25> T (+a)(1 -2 0r2) DS eyt = — o
k=1 2 2k=1 2

We introduce a real valued function f (x), such that

fk)=0a, for 1<k<n and f(k)=f(n+k).
From (2) it follows
2 f(k=0.
k=1
We represent f(x) by a Fourier trigonometric polynomial
" mk
1= z_:lq<m)exp(2m—;;—),
where
1 mk
qim)=- 3 f(k)exp(- 2ni——-)
n k=1 n
Bearing in mind that f(x) is real valued, we obtain

q(n—m) = q(m).

\

2)

3)

4

)

(6)

(7)
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Besides, from (5) and (6) it follows
gin+my=q(m), qmn=0. ®)

Now, the sum A4 can be represented as follows

n 2 4
A=n3Y qn-— k)q(k)(cos——nk + coslk)
k=1 n n

n 2 4
+iny qn— k)q(k)(sin-’—’k + sin—”k>.
k=1 n n
Because of (7) and (8), we have (A4 being real)

n-1 2 4
A=nY qn— k)q(k)(cos—;?k +cos—r-:5k>.
k

=1

Hence, by (3) and (7) it follows

n-1 2 4
S>>0 05 1001  cos ZEk + cos —~k ). )
2 4k=1 n n

" . i n 5w
The function cos x + cos 2 x is non-positive for 3 <x< 3 Thus the second term of the

last inequality (9) is non-negative for every 1 <k <nand n<7.
Thus (1) is proved for n < 7.
The equality in (1) is obtained if and only if
OCI +062=0C2+Ot3=...=0t,,_1+an=0£,,+0(1=0.
For n = 3,5 the last system has the following solution:
Otk=0, k=1,...,n.
Forn=4,6
oy =03 =0as; o, =0a,=0ae and hence

o =(—1)a, |a|<1.

Evgenii S. Freidkin, University of the Witwatersrand, Johannesburg
Solomon A. Freidkin, Technion-Israel Institute of Technology, Haifa
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