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[7*] Ein linearer Operator heisst kompakt, wenn er jede beschrinkte Menge in eine Menge transformiert, deren
abgeschlossene Hiille kompakt ist, &quivalent dazu, wenn er jede beschrinkte Folge in eine Folge transfor-
miert, die eine konvergente Teilfolge enthélt. Ein kompakter linearer Operator transformiert jede schwach
konvergente Folge in eine stark konvergente, und ist der betreffende Raum reflexiv (wie z.B. 7 und L* mit
1 < p < ), so gilt auch die Umkehrung.

[8*] Beispiele von Folgen- und Funktionenrdumen, die Rieszriume bilden, findet man z. B. in G. Birkhoff, Lattice
Theory, 3. Aufl. (American Mathematical Society, Providence, RI 1967), Kap. XV, wo auch Banachverbinde
ausfiihrlich behandelt werden.
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Die Polynome von Yang-Lee und ihre Nullstellen
1. Einfiithrung

Das Ising-Modell der statistischen Mechanik fithrt zur Untersuchung der Nullstellen
spezieller Polynome in einer komplexen Variablen. Je nach den Werten der beteiligten
Parameter befinden sich diese Nullstellen auf dem Einheitskreis, auf der negativen reellen
Halbachse oder auf der Vereinigung der beiden Mengen. Es gibt aber auch Fille, in denen
sie diese Vereinigungsmenge verlassen.

Das Ising-Modell beniitzt einen Graphen G, dessen Eckpunkte ie{1,2,...,n} die Lage
der Teilchen markieren und dessen Kanten {i,j} € K Teilchenpaare verbinden, welche in
Wechselwirkung stehen. Fiir jedes Teilchen ist ein Spin o;€ {+ 1, — 1} gegeben und die
Energie des Systems berechnet sich aus

E=-J Y a,-aj—H):a,-. (1.1)

{i, ek

Dabei ist H die Magnetfeldstirke und J eine Konstante, die bei ferromagnetischen
Wechselwirkungen positiv, bei antiferromagnetischen negativ ist. Summiert man iiber alle
2" Werte des Vektors ¢ = (0, ..., d,), so erhilt man die «Partitionsfunktion»

Z,=%e T =%exp(J; X "io'j'*‘HlZO'i) (1.2

ti, jek

(k ist die Boltzmann’sche Konstante, J, = J/kT die Temperatur- und H; = H/kT die
Magnetfeldvariable). Die freie Energie ist dann

f(TH) = lim -—Elogz,,. (1.3)

n— n

Singularitdten dieser Funktion entstehen dort, wo sich Nullstellen der Z, hidufen, und
erscheinen physikalisch als Phaseniiberginge. Es ist deshalb wichtig, Aussagen iiber die
Lésungen von Z, = 0 zu gewinnen.

Wir beschrdnken uns hier auf den Fall H = 0. Man kann dann Z, im Wesentlichen als
erzeugende Funktion interpretieren: man betrachtet die o; als unabhingige Zufallsvaria-
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blen mit P(g; = 1) = P(0; = — 1) = 3, definiert als X die Anzahl {i,j} € K mit g, # ¢, und
hat (mit u = exp(—2J,)):

Z,=2"E(expJ, (K| — 2 X)) = 2" " /K| E (u¥). (1.4)

Man kann auch den allgemeineren Fall eines Graphen mit n Eckpunkten betrachten, in
welchem p; = P(o; =1) und ¢; = 1 — p; = P(0; = — 1) ortsabhéingige Grdssen sind und
die Wechselwirkungen zwischen den Punkten i und j durch Werte a;; = a;; > 0 (anstelle
von 0 oder 1) gegeben werden. Man setzt dann

X= T a5 (1.5)

6i=l,6;=-1

betrachtet die erzeugende Funktion

P, py,..,p)=EW)= X TIp(I1qu™) (1.6)

A<={l,..., n} icA Jj¢A

und fragt wieder nach deren Nullstellen. Ungewohnt ist hier, dass u als fester Parameter
und die p; als Variablen aufgefasst werden. Somit ist b;; = u* das Element einer gegebe-
nen, symmetrischen Matrix.

Man definiert jetzt z; = p,/q; und

On(zyy..52,) = > l—lzi(l_[bi,-)- (1.7)

A<={1,..., n} ied Jj¢Ad
Wegen ¥, =4, q,...4, ¢, genigt es, die Nullstellen von ¢, zu untersuchen. Wir werden

in § 3 einige Spezialfidlle behandeln, erinnern aber zuerst in § 2 an ein berithmtes Resultat
von Yang und Lee [4].

2. Der ferromagnetische Fall

Satz 2.1. Gilt 0 < b;; < 1, so hat das Polynom ¢,(z) = ¢,(z, ..., z) lauter Nullstellen auf
dem Einheitskreis S, .

Bemerkung. Es ist z = p/q, also |z|=1<>|p|=|q|=|1 —p|< Rep= % Wer denkt da
nicht an die Riemann’sche Vermutung?

Beweis. Aus Stetigkeitsgriinden kann man b;; < 1 annehmen. Man verifiziert leicht die
Identitdten

(p”(zl,...,zn) = Z”(I;[ bj,,)(p,,._l(zl b;nl,ZZ b;nz, ...,)
j¥n
+ @po1(Z1 b1y 2203y oy 2oy by 1) (2.1)

P21y 2)=2125...2,0,(27 %, ..., 27 Y). (2.2)
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L]

Wir beweisen durch vollstindige Induktion iiber n:
Izl =...=|z,] <1, @,(z(,...,2)=0=>|z,|=...=]|z,]=1. (2.3)

Der Fall n=1 ist trivial. Es sei etwa (Gegenannahme) |z,|=...=|z]|=1,
lzes1l <1,..0,12,0 <1, @,(24,...,2,) = 0. Man ldsst dann z, gegen O streben, bestimmt
2,4+, €C U {00} so, dass ¢, = 0 bleibt (¢, ist ein Polynom 1. Grades in z, , ;) und ldsst die
uibrigen z; konstant. Aus (2.1), aus der Induktionsannahme fiir den 2. Summanden und
aus |z;| <1=>|z;b;,| <1 siecht man, dass |z,,,| > 1, falls z, = 0. Man kann also einen
Wert von z, mit |z,| < 1 finden, fiir welchen |z, ,| = 1 wird. Setzt man das Vorgehen fort,
so erreicht man |z,|=...=|z,_,| =1, jedoch |z,| < 1. Nach (2.2) ist aber in diesem Fall
-1z b5, 22050 . ) =2y ...z, ([1b;) "  @p—1 (21 b1y 23 by, .. ) und die Auflsung
von (2.1) nach z, ergibt |z,| = 1! Somit hat ¢,(z) keine Nullstelle mit |z| < 1 und, wegen
(2.2), auch keine mit |z| > 1.

3. Beispiele fiir den antiferromagnetischen Fall

Wir wollen hier, wie im urspriinglichen Problem, nur die Werte a,; = 1 (falls {i,j} € K)
oder 0 zulassen, d. h. b;; = u = exp(—2J;) > 1 oder b, ; = 1. Auch nach dieser Einschrén-
kung ldsst sich keine so einfache Aussage wie in § 2 gewinnen. In besonderen Fillen liegen
die Nullstellen von ¢, auf der negativen reellen Halbachse: das wichtigste Beispiel dafiir
ist das zweidimensionale Gitter (Kanten zwischen (i, i,) und (i, + 1,i,) sowie (i,,i, * 1)),
das von Onsager [1] behandelt wurde. Nach zwei dhnlichen Modellen geben wir jedoch
auch Gegenbeispicle, in denen einige Nullstellen auf S, bleiben oder sogar die Menge
R_ U S, verlassen.

3.1. Der vollstindige Graph
Es sei b;; = u > 1 fiir alle Paare {i,j} mit i # j, also nach (1.7):

n

k) uk®=h gk (3.1)

¢T,(Z)=(P,,(Z,---,Z)= Z (

O<sk<n

Satz 3.1. Fiir u>1 hat das Polynom ¢, von (3.1) einfache, negative Nullstellen
0>z, >z,>...>z, mit z;, /z; > u>.

Beweis. Es seien 0 > y, > y,... > y,_, die Nullstellen von ¢,_, mit y,, ,/y; > u* (Induk-
tionsannahme). Aus der leicht verifizierbaren Bezichung

Gn(2) = Gy 1(u2) + 20" §,_, (z/u) (3.2)

folgt ¢,(0)>0, ¢,(v,/u) <OW,/u*>y =¢,_(y,/u’)>0), ¢,uy)< 0wy, >y,
= @,_, (U?y,) <0), ¢ (y,/u) >0, usw. Also hat ¢, (mindestens) eine Nullstelle in jedem
der n Intervalle (y,/u,0), (yo/u,uy,);...,(— o,uy,-;) qed

\
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3.2. Der zyklische Graph

Seib;,=b,3=...=b,_, ,=b,; =u,b;;=1=sonst. Sei Y die Anzahl der ie {1,...,n—1}
mito; #0;,,und X =Y + 1, ., ,(1,ist die Indikatorfunktion der Menge A4). Dann gilt
(mit z = p/q):

$u(2)=q "E@W)=q"¥,(up). (3.3)
Wir setzen, fir o, fe{+ 1, — 1}

f,,(u,ocﬂ)=E(uY1{,"=m|0‘1 = a) (3.4)

A=(” q") (3.5)
pu g

und erhalten die Rekursionsformel

for1 0, f) = =Zilf..(u, %) o, (3.6)

Daraus folgt f, (u, o, f) = Aj5 '. Weiter ist

Yln(u’p) =p(fn(us la 1) + uj;x(u’ 1’ - 1)) + q(uf,,(u, - 1a 1) + j;n(u’ - 19 - 1))
o Zﬂaﬂaf..(u,a,ﬂ)=> ¥, =Sp(A").

Da A die charakteristische Gleichung 42 = A4 + (u®> — 1) pq I erfiillt, gilt ebenfalls (man
multipliziert mit A" und nimmt Spuren):

Vi2p) =¥y (w,p) + (0> —)pq ¥, (u,p). 3.7)
Die Anfangswerte ¥, =1, ¥, =1 + 2pq(u® — 1) erlauben die Schreibweise

¥,(,p) =B’ - 1)pg) (3.8)

Ax)=1, Bx)=1+2x, F.;(x)=F.(x)+xFE(x). (3.9)
Aus (3.9) ergibt sich B,(— 3) =(3)" "', sowie

Satz 3.2. P,(x) besitzt reelle Nullstellen x} > x5 > ... und es gilt — 1> x1*'>x} >
>t > >,

Korollar 3.1. Fiir u > 1 hat ¢,(z) negative Nullstellen, fiir |u| <1 Nullstellen auf S, .
Beweis. Aus x = (u> — 1) pq < — 1 folgtim ersten Fall pq = z/(1 + z)* = ¢ <0, im zweiten

z/(1 + z)* = d > 1 und man findet jeweils zwei Losungen in der angegebenen Menge. Ist
n ungerade, so kommt z = — 1 dazu.
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Bemerkung: Rekursionsformeln der Form (3.7), in denen das charakteristische Polynom
einer Matrix A4 erscheint, lassen sich in allgemeineren Fillen herleiten, fithren aber nicht
immer zu niitzlichen Auskiinften iiber die Lage der Nullstellen.

3.3. Einfache Bdume

Der Graph G hat hier die Eckpunkte 0,1,...,m(n=m + 1) und die Kanten {0,i} fiir

1 <i<m. st o, gegeben, so ist X = |{i:g; # 6,}| binominalverteilt mit Parametern m,q
(falls 0y = + 1) bzw. m, p (falls 0, = — 1). Daher gilt (mit z = p/q):

Y, w,p)=EW)=p(p+q)+q(p"+ 9" (3.10)
D,2)=q "¥Y,=zC+uw"+(zu+1)". (3.11)

Satz3.3. Istu> 1, m> 1, so hat das Polynom ®, von (3.11) eine Nullstelle z, e (— 1,0),
eine Nullstelle z, = z7 ' € (— 00, — 1) und n — 2 Nullstellen auf S; .

\ A
~z e
v u
u—m
_1 ol Z
-1 -u z, |0
Figur 1

Beweis. a) ¥,(z) = 0 heisst — z = v™ mit v = (zu + 1)/(z+u). Fig. 1 (mit m gerade) zeigt,
dass genau eine Losung z, e(— 1,0) existiert. Es gilt sogar z, > — u™™. Die allgemeingiil-
tige Formel (2.2) beweist, dass auch z, = z; ! Nullstelle ist.
b) Ist z = €'*€ S, so setzen wir

sin o

= = in) — —e 3.12
B=f(x)=arg(u+ e arctanu_'_cosa (3.12)

zu+1 eu““'“ e ia
= =

_ ia—2p)
u+z u+e"‘“——ela " (3.13)
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Aus —z =™ ergibt sich a — t + 2kt = m(a — 2 f) oder

m—1 2k —1

b= 2m o 2m

T =g, (a). (3.14)

Fir 1 < k < m existiert eine Losung a, von g, (x) = f(a) in (0,2 ), da g, (0) < 0 = £ (0),
9, (2m)>0=f(2m)
Somit enthélt S, alle m — 1 = n — 2 noch fehlenden Nullstellen von @,

3.4. Zweistockige Bdume

Der Graph von Fig. 2 hat n = 1 + m + m? Eckpunkte sowie Kanten {0,i} und {i,mi + j}
(1 <1i,j <m). Wie in 3¢) bestimmt man zuerst ¥, (u, p) = E (v*) und dann

D,2)=z[z+wz+@Cu+D)"u]"+[z+w"uz+(zu+ 1)"" (3.15)

m+1 2m

Figur 2 0

Satz 3.4. Fiir u> 1, m > 1, besitzt das Polynom ®, von (3.15) 2 oder 4 Nullstellen in
IR\{— 1}, je nachdem, ob m ungerade oder gerade ist. Zudem liegen m? — m + 1 Nullstellen
auf S, und 2m — 2 oder 2m — 4 ausserhalb R U S, .

Beweis. a) §,(z) =0 bedeutet —z=y" mit y=(zu+w)/(z+uw), w=1v",v=_(zu+ 1)/
(z + u). Fig. 3 zeigt das entsprechende Bild auf (— 1,0) fiir ein gerades m. Es gibt offen-
sichtlich zwei Losungen z, und z, von y,, = — z. Fiir ein ungerades m gibe es nur eine.
Dazu kommen z; !, bzw. z; '€ (— o0, — 1),
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A

i —:1 \ - / z; / z:1 e

Figur 3

b) Fir z=¢" ist w=¢"” mit y=m(ax—2p8) (vgl. 3.13). Wir setzen o =0 —y =
2mpB —(m—1)a, ¢ = f (o) und haben (wie bei 3.13)

__zu+w__qu+1

- - =ei(o—2;)
z+uw wz+u

y

Aus —z = y™ folgt a —m=m(oc — 2¢) + 2k n oder

o 2k+1 o
_§+ 2m n_ﬂ_hk(a)

e=2mf(ax)—(m—1)a, e = f(0)). (3.16)

4

Fiir 0 < k < (m?* —m)/2 ist b, (0) > 0 = fa(0), h,(n) < f° o (m), also existiert in (0, 7] eine
Losung von h, (¢) = f ° 6 (), (n selber kommt fiir k = (m? — m)/2 als Lésung vor). Zusam-
men mit den Losungen z = exp(— i «) hat man (mindestens) m> — m + 1 Nullstellen von
&, auf S, . Wir zeigen nun, dass h, — f o o auf (0, ) eine negative Ableitung besitzt. Daraus
folgt, dass die angegebene Anzahl Nullstellen nicht iiberschritten wird:

insbesondere gibt es fiir k ¢ [0, (m? — m)/2] keine Losung, da entweder h, (0) < f > 5 (0) oder
h, () > foa(n). Es ist

2 1+2ucoso+ u?

—3=. (3.17)

dh, df do da(l 1+ucosa ) 1

Ist 0’ <0, so ist der ganze Ausdruck negativ, da die Klammer positiv bleibt. Wegen
" =2mf < 0gilt ' > 0 auf einem Intervall [0, a,), wobei das Maximum in « = 0 erreicht

\
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wird und 2m/(1 + u) — (m — 1) betrdgt. Weiter ist o’ (o) =2m f'(ag) —(m —1) =0, d. h.
[ (@) = (m —1)/2m. Auf [0,a,) ist 6 >0 (weil ¢’ >0) und o <a (weil f' <1, somit
¢ <m—(m— 1) =1). Da die Klammer von (3.17) monoton mit ¢ und ¢ monoton mir o
wichst, wird ihr Maximum in «, erreicht. Es betrigt, wegen o (o) < a,, hochstens

3 — f' (o) = 1/2m. Insgesamt bleibt also der Ausdruck in (3.17) kleiner als

2m 1 1 1—u
M -t — e —=——% <o.
[1+u m )] 2m 2m 20 +w

Damit ist der Beweis beendet. Dieses letzte Beispiel lehrt, dass man starke Symmetrie-

eigenschaften des Graphen postulieren muss, um die Nullstellen an IR _ oder mindestens
R _ U S, zu binden. Fiir weitere Diskussionen vgl. [2] und [3].

Irene Hueter und Henri Carnal

Institut fiir mathematische Statistik, Universitdt Bern
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Kleine Mitteilung

On a problem by Shapiro

In 1954, H. S. Shapiro proposed the following problem: determine the minimum of the
cyclic sum

5,0 = T afarrs +air), 0

with ;> 0 and q; + a;,, >0 (a,,, = a,, a,,, = a,). He conjectured that this minimum
is n/2. This is known to be true for n < 13, but false for n > 14 (see [1] for reference, and
the range 15 < n < 23, n odd).

In the present work we propose a method which enables us to solve the problem forn < 7.
The method is based on an application of Fourier transformation to functions of discrete
argument.
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