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[7*] Em linearer Operator heisst kompakt, wenn er jede beschrankte Menge in eine Menge transformiert, deren

abgeschlossene Hülle kompakt ist, äquivalent dazu, wenn er jede beschrankte Folge in eine Folge transformiert,

die eine konvergente Teilfolge enthalt Em kompakter linearer Operator transformiert jede schwach

konvergente Folge in eine stark konvergente, und ist der betreffende Raum reflexiv (wie z B £v und LP mit
1 < p < oo), so gilt auch die Umkehrung

[8*] Beispiele von Folgen- und Funktionenraumen, die Rieszräume bilden, findet man z B in G Birkhoff, Lattice
Theory, 3 Aufl (Amencan Mathematicai Society, Providence, RI 1967), Kap XV, wo auch Banachverbände
ausführlich behandelt werden
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Die Polynome von Yang-Lee und ihre Nullstellen

1. Einführung

Das Ising-Modell der statistischen Mechanik führt zur Untersuchung der Nullstellen
spezieller Polynome in einer komplexen Variablen. Je nach den Werten der beteiligten
Parameter befinden sich diese Nullstellen auf dem Einheitskreis, auf der negativen reellen
Halbachse oder auf der Vereinigung der beiden Mengen. Es gibt aber auch Fälle, in denen
sie diese Vereinigungsmenge verlassen.
Das Ising-Modell benützt einen Graphen G, dessen Eckpunkte ie {1,2,..., n) die Lage
der Teilchen markieren und dessen Kanten {i,j}eK Teilchenpaare verbinden, welche in
Wechselwirkung stehen. Für jedes Teilchen ist ein Spin ale{+ 1,-1} gegeben und die

Energie des Systems berechnet sich aus

E=-J I alaJ-H"E(Tl. (1.1)
{i,j}e_- i

Dabei ist H die Magnetfeldstärke und J eine Konstante, die bei ferromagnetischen
Wechselwirkungen positiv, bei antiferromagnetischen negativ ist. Summiert man über alle
2n Werte des Vektors a (al9...9an)9 so erhält man die «Partitionsfunktion»

Z_ _>-«"'*_-«p(J1 I «^+ #!_><) (1-2)

(k ist die Boltzmann'sche Konstante, Jx J/k T die Temperatur- und JFaf^ H/k T die

Magnetfeldvariable). Die freie Energie ist dann

f(T9H)= lim -— logZn. (1.3)
»-oo Tl

Singularitäten dieser Funktion entstehen dort, wo sich Nullstellen der Zn häufen, und
erscheinen physikalisch als Phasenübergänge. Es ist deshalb wichtig, Aussagen über die

Lösungen von Zn — 0 zu gewinnen.
Wir beschränken uns hier auf den Fall H 0. Man kann dann Zn im Wesentlichen als

erzeugende Funktion interpretieren: man betrachtet die a% als unabhängige Zufallsvaria-
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bien mit P(ax 1) P(at= - 1) ± definiert als X die Anzahl {i9j} e K mit ax / a5 und
hat (mit u exp(— 2 Jx))

Zn 2nE(expJx(\K\ -2X)) 2neJME(ux) (1 4)

Man kann auch den allgemeineren Fall eines Graphen mit n Eckpunkten betrachten, in
welchem px P(ax — 1) und qx 1 — px P(ax — 1) ortsabhangige Grossen sind und
die Wechselwirkungen zwischen den Punkten i undj durch Werte aXJ ajx>0 (anstelle
von 0 oder 1) gegeben werden Man setzt dann

X= I aXJ9 (15)
<T,= 1 Oj=-l

betrachtet die erzeugende Funktion

%(u,pu ,p„)=e(ux)= i n?,(n«/") de)
A<={1 n} teA j*A

und fragt wieder nach deren Nullstellen Ungewohnt ist hier, dass u als fester Parameter
und die px als Vanablen aufgefasst werden Somit ist btJ — u°iJ das Element einer gegebenen,

symmetrischen Matrix
Man definiert jetzt zx pjqx und

<Pn(zi, >**)= i ruaw (i7)
-_c{i n} ieA iiA

Wegen Wn qx q2 qn cpn genügt es, die Nullstellen von q>n zu untersuchen Wir werden
in § 3 einige Spezialfälle behandeln, erinnern aber zuerst in § 2 an ein berühmtes Resultat
von Yang und Lee [4]

2. Der ferromagnetische Fall

Satz 2.1. Gilt 0 < bXJ < 1, so hat das Polynom (j)n(z) (pn(z9 z) lauter Nullstellen auf
dem Einheitskreis Sx

Bemerkung Es ist z p/q, also |z| 1 <*? |pl I_?I U ~p\oRep ~ Wer denkt da
nicht an die Riemann'sche Vermutung7

Beweis Aus Stetigkeitsgrunden kann man btJ < 1 annehmen Man verifiziert leicht die
Identitäten

9«(*i> ^n)^^n(I\b)n)q>n-x(zxbln\z2b22,

+ 9»-l(zlbli,»z2b2»» >zn-lbn-l n) (21)

<P»(Zl> >Zn) ZlZl Zn<Pn(zll> > Zn~ *) (2 2)
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Wir beweisen durch vollständige Induktion über n:

\zx\ \zn\<l9 ^(z1,...,z„) 0=>|z1| |zj l. (2.3)

Der Fall n — t ist trivial. Es sei etwa (Gegenannahme) |z1| |zfc| l,
|zk+ x

| < 1,..., \zn\ < 1, cpn(zx,..., zn) 0. Man lässt dann zn gegen 0 streben, bestimmt
zk+1eCu{oo}so, dass q>n 0 bleibt (cpn ist ein Polynom 1. Grades in zk+ x) und lässt die
übrigen zf konstant. Aus (2.1), aus der Induktionsannahme für den 2. Summanden und
aus \zt\ < 1 => \z{bxn\ < 1 sieht man, dass |zfc+1| > 1, falls zn 0. Man kann also einen
Wert von z„ mit |z„| < 1 finden, für welchen \zk+ x

| 1 wird. Setzt man das Vorgehen fort,
so erreicht man |z1| |zll_1| l, jedoch |zj < 1. Nach (2.2) ist aber in diesem Fall
<Pn-i (zi bin>zi bin1* • • •) zi • • • Zn-1 (11 bJn)~

*
<pn. x (zx bXn9z2 b2n9...) und die Auflösung

von (2.1) nach zn ergibt \zn\ 1! Somit hat $„(z) keine Nullstelle mit |z| < 1 und, wegen
(2.2), auch keine mit |z| > 1.

3. Beispiele für den antiferromagnetischen Fall

Wir wollen hier, wie im ursprünglichen Problem, nur die Werte a(j= 1 (falls {i9j}eK)
oder 0 zulassen, d. h. btj u exp (— 2 Jx) > 1 oder bx< j — 1. Auch nach dieser Einschränkung

lässt sich keine so einfache Aussage wie in § 2 gewinnen. In besonderen Fällen liegen
die Nullstellen von <j>n auf der negativen reellen Halbachse: das wichtigste Beispiel dafür
ist das zweidimensionale Gitter (Kanten zwischen (il9i2) und (ix ± 1, i2) sowie (il9i2 ± 1)),

das von Onsager [1] behandelt wurde. Nach zwei ähnlichen Modellen geben wir jedoch
auch Gegenbeispiele, in denen einige Nullstellen auf Sx bleiben oder sogar die Menge
R_ kjSx verlassen.

3.1. Der vollständige Graph

Es sei bxj u > 1 für alle Paare {i,j} mit i #;, also nach (1.7):

^(z) <p.(z,...,z)= _: ("W*>z\ (3.1)

Satz3.1. Für u>l hat das Polynom (f>H von (3.1) einfache, negative Nullstellen
0 > zx > z2 > > zn mit zi+x/zt > u2.

Beweis. Es seien 0 > yx > y2... > yB_ x die Nullstellen von #„_ x mit yi+x/yt > u2

(Induktionsannahme). Aus der leicht verifizierbaren Beziehung

<M*) <t>n-l("z) + Ztf-ifa-Az/u) (3.2)

folgt ^n(0)>0, (t>n(yllu)<0(yxlu2>y1^^x(yju2)>0)9 <l>n(uyx)<0(u2yx>y2
=> <f>n-. x (u2 yx) < 0), <l)(y2/u) > 0, usw. Also hat <t>n (mindestens) eine Nullstelle in jedem
der n Intervalle (yx/u9 0), (y2/u9 u yx)9...,(- oo, u yn_ x) q.e.d.
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3.2. Der zyklische Graph

Sei bX2 b23= =bn_x n bnX=u9bij l= sonst. Sei Ydie Anzahl der ie {1, ...9n — i}
mit <xf # cri+! und X 7 4- l{<Tn#ffl} (1^ ist die Indikatorfunktion der Menge A). Dann gilt
(mit z p/g):

^(z) £7-"E(^) _7-'"PII(u,p). (3.3)

Wir setzen, für ol, ß e {+ 1, — 1}

fn(u9OLß) E(uYl{<Tn=ß}\ax <x) (3.4)

*-(' *") (3.5)
\pu q)

und erhalten die Rekursionsformel

fn + x(u,<x,ß) £ /n(u,a,y)a^. (3.6)
y=±l

Daraus folgt /„ (u, a, ß) An^1. Weiter ist

VMP) Pifnfo U1) + ufn(u, 1, - 1)) + q(ufn(u> - 1,1) + /„(", - 1, - 1))

Z^«/„(w,a,j3)^^ Sp(A").

Da .4 die charakteristische Gleichung A2 A + (u2 — l)pql erfüllt, gilt ebenfalls (man
multipliziert mit An und nimmt Spuren):

¥n+2(u9p)=Wn+x(u9p) + (u2-l)pqVn(u9p). (3.7)

Die Anfangswerte Wx 1, !F2 1 + 2pq(u2 — 1) erlauben die Schreibweise

%(u9p) Pn((u2-l)pq) (3.8)

Px(x) l9 P2(x) l+2x9 Pn+2(x) Pn+x(x) + xPn(x). (3.9)

Aus (3.9) ergibt sich P„(- £) (f)"~\ sowie

Satz 3.2. Pn (x) besitzt reelle Nullstellen x\>xn2> und es gilt - \ > x*^ l > x\ >
*S+1>*!_:> x"?+1 >x% >

Korollar3.1. Für u>t hat <i>n(z) negative Nullstellen, für \u\<l Nullstellen auf Sx.

Beweis. Aus x (u2 — l)pq< — ~ folgt im ersten Fall p q z/(l + z)z c < 0, im zweiten

z/(l + z)2 d > \ und man findet jeweils zwei Lösungen in der angegebenen Menge. Ist
n ungerade, so kommt z — 1 dazu.
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Bemerkung: Rekursionsformeln der Form (3.7), in denen das charakteristische Polynom
einer Matrix A erscheint, lassen sich in allgemeineren Fällen herleiten, führen aber nicht
immer zu nützlichen Auskünften über die Lage der Nullstellen.

3.3. Einfache Bäume

Der Graph G hat hier die Eckpunkte 0,1,..., m (n m + 1) und die Kanten {0, i) für
1 < i < m. Ist a0 gegeben, so ist X | {i: ox ^ a0} | binominalverteilt mit Parametern m, q
(falls a0 +1) bzw. m,p (falls a0 — 1). Daher gilt (mit z p/q):

Wn(u,p) E(ux) p(p + qT + q(pn + q)m

<Pn(z) q-* Wn z(z + u)m + (zu + l)m.

(3.10)

(3.11)

Satz3.3. Ist u> l,m>l, so hat das Polynom <Pn von (3.11) eine Nullstelle zxe(— 1,0),
eine Nullstelle z2 zx

x e(— oo, — 1) und n — 2 Nullstellen auf Sx.

i i

\-z V/ u

i nil V =W

U

-1 1
'-u1

Zl K J

Figur 1

Beweis, a) #„(z) 0 heisst —z vm mit v~(zu + l)/(z + u). Fig. 1 (mit m gerade) zeigt,
dass genau eine Lösung zx e(— 1,0) existiert. Es gilt sogar zx> —u~m. Die allgemeingültige

Formel (2.2) beweist, dass auch z2 — zxl Nullstelle ist.

b) Ist z eia€SX9 so setzen wir

ß f((x) arg(u + e1*) arctan
sina

u + cos a
(3.12)

zu + 1 ,u + e

u + z u + e -ia (3.13)
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Aus — z vm ergibt sich a — n + 2kn m(<x — 2ß) oder

„ m-1 2/c-l
2m 2m

135

(3.14)

Für 1 < k < m existiert eine Lösung ak von gk(oi) /(a) in (0,27t), da gk(0) <0 /(0),
^(2tx)>0 /(2tc).
Somit enthält Sx alle m — 1 n — 2 noch fehlenden Nullstellen von #„.

3.4. Zweistöckige Bäume

Der Graph von Fig. 2 hat n 1 + m 4- m2 Eckpunkte sowie Kanten {0, i} und {i9 m i +j]
(1 < i,j < m). Wie in 3c) bestimmt man zuerst %(u,p) E(ux) und dann

#„(z) z[(z + u)mz + (zu + l)mu]m + [(z + üjTuz + (zu + l)m]m (3.15)

m+1 2m

m

m2+m

Figur 2

Satz 3.4. Für u > 1, m > 1, besitzt das Polynom $n von (3.15) 2 oder 4 Nullstellen in

1R\{ — i),je nachdem, ob m ungerade oder gerade ist. Zudem liegen m2 — m + 1 Nullstellen

auf Sx und 2m — 2 oder 2m —4 ausserhalb Ru^.
Beweis, a) #„(z) 0 bedeutet -z y™ mit y (zu + w)/(z + uw)9 w vm9 v (zu + 1)/
(z + ü). Fig. 3 zeigt das entsprechende Bild auf (- 1,0) für ein gerades m. Es gibt
offensichtlich zwei Lösungen z, und z2 von ym - z. Für ein ungerades m gäbe es nur eine.

Dazu kommen zxl9 bzw. z2le(— oo, — 1).
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y > i

uw=-zy < -1

Figur 3

b) Für z eia ist w ely mit y m(a — 2ß) (vgl. 3.13). Wir setzen <r a — y-
2 mß — (m — l)a, e f(a) und haben (wie bei 3.13)

y
zu + w wzu + 1

z + uw wz + u
e',»(<r-2e)

Aus —z ym folgt a — ti m(a — 2e) + 2kn oder

a 2k + l ol
f t ve=2+-^r^2^=Ma)

(a 2m/(a) - (m - l)a, e f(a)). (3.16)

Für 0 < k <> (m2 - m)/2 ist hk(0) > 0 /° a(0), hk(n)<f°<j(n)9 also existiert in (0,tc] eine

Lösung von hk(a) — f° g(ol)9 (k selber kommt für k (m2 — m)/2 als Lösung vor). Zusammen

mit den Lösungen z exp(— ia) hat man (mindestens)m2 — m+1 Nullstellen von
<$>„ auf Si. Wir zeigen nun, dass hk — f°a auf (0, tc) eine negative Ableitung besitzt. Daraus
folgt, dass die angegebene Anzahl Nullstellen nicht überschritten wird:
insbesondere gibt es für k $ [0, (m2 — m)/2] keine Lösung, da entweder hk (0) < / ° a (0) oder

K (n) > f ° 0" 00* Es ist

a\
da

\k df da _da/l 1+mcos<t \ 1

t da da da\2 1 +2ucosa + u2J 2m' (3.17)

Ist & < 0, so ist der ganze Ausdruck negativ, da die Klammer positiv bleibt. Wegen
a" — 2 mf < 0 gilt a' > 0 auf einem Intervall [0, a0), wobei das Maximum in a 0 erreicht
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wird und 2 m/(l +u)-(m-l) beträgt. Weiter ist & (a0) 2 mf (a0) - (m - 1) 0, d. h.

/'(ao) - (m — l)/2m. Auf [0,a0) ist a > 0 (weil & > 0) und a < a (weil /' < \9 somit
g' < m — (m — 1) — 1). Da die Klammer von (3.17) monoton mit g und g monoton mir a

wächst, wird ihr Maximum in a0 erreicht. Es beträgt, wegen G(a0)<a0, höchstens

\ — f'(a0) 1/2 m. Insgesamt bleibt also der Ausdruck in (3.17) kleiner als

l 2m
|_l+u

-.1 1 1 1~u
(m-1) —- — ——— <0.

J 2m 2m 2(1 + u)

Damit ist der Beweis beendet. Dieses letzte Beispiel lehrt, dass man starke
Symmetrieeigenschaften des Graphen postulieren muss, um die Nullstellen an 1R_ oder mindestens
JR_ u Sx zu binden. Für weitere Diskussionen vgl. [2] und [3].

Irene Hueter und Henri Carnal
Institut für mathematische Statistik, Universität Bern
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Kleine Mitteilung

On a problem by Shapiro

In 1954, H. S. Shapiro proposed the following problem: determine the minimum ofthe
cyclic sum

Sn(a)= iaJ(ax + x+ax + 2)9 (1)
i=i

with ax > 0 and ax + al+ x > 0 (an+ x ai9 an+2 a2). He conjectured that this minimum
is n/2. This is known to be true for n < 13, but false for n > 14 (see [1] for reference, and
the ränge 15 < n < 23, n odd).
In the present work we propose a method which enables us to solve the problem for n < 1.

The method is based on an application of Fourier transformation to functions of discrete

argument.
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