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ELEMENTE DER MATHEMATIK

Revue de mathématiques élémentaires — Rivista di matematica elementare

Zeitschrift zur Pflege der Mathematik
und zur Forderung des mathematisch-physikalischen Unterrichts

El. Math. Vol. 45 Nr. § Seiten 117-144 Basel, September 1990

Friedrich Riesz als Wegbereiter der Funktionalanalysis *

Herrn Prof. Dr. Leopold Vietoris zum 99. Geburtstag am 4. Juni 1990 in Ergebenheit und Freund-
schaft gewidmet

1. Einleitung

Ohne Zweifel gehort Friedrich Riesz (Riesz Frigyes, 1880—-1956) zusammen mit Fréchet,
Hilbert und Banach zu den Hauptbegriindern und Fiihrern wihrend der ersten Jahrzehn-
te der Entwicklung der Funktionalanalysis. Wir stellen uns hier die Aufgabe, aus zum Teil
wenig bekannten charakteristischen Einzelheiten des Rieszschen funktionalanalytischen
Schaffens ein Gesamtbild zu entwerfen, das es wegen der grossen Bedeutung der Riesz-
schen Arbeiten verdient, in weiteren Kreisen bekannt zu werden [1*]. Im Auge behalten
wollen wir dabei die vier folgenden, in der Reihenfolge steigender Wichtigkeit angegebe-
nen Gesichtspunkte:

1. Die lange Zeitspanne, 19061942, der funktionalanalytischen Aktivitit, lang sowohl
im Vergleich zur Arbeit anderer wie auch im Rieszschen Gesamtwerk (s. Fig. 1). Auf
diese folgt 10 Jahre spater noch das beriihmte, mit B. Szokefalvi-Nagy verfasste Buch
[12].
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Fig 1. Zeitliche Gliederung der Arbeiten von Friedrich Riesz nach Gebieten [2*].

* Nach einem Vortrag, gehalten auf dem XII. Osterreichischen Mathematikerkongress in Wien 1989. Anregun-
gen dazu verdankt der Verfasser den Herren M. Riesz und T. Rado, mit denen er in Stanford bzw. Columbus linger
Zusammen war.
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2. Die klare, abgerundete Darstellung — Rieszs Beweise sind kaum jemals wesentlich
verbessert worden —, die das Lesen der Originalarbeiten auch heute noch zum empfeh-
lenswerten Genuss macht. Um dies wenigstens anzudeuten, werden wir Rieszim Rahmen
des verfiigbaren Platzes moglichst oft selbst zu Worte kommen lassen.

3. Der lebendige Kontakt mit Gottingen und Paris, den beiden damaligen Zentren der
Funktionalanalysis unter Hilbert und seiner Schule bzw. unter Hadamards, Fréchets und
Lebesgues Fiihrung, die Riesz vor anderen auszeichnet und erheblich zur Vereinheitli-
chung der aus heterogenen Quellen entsprungenen Funktionalanalysis beigetragen hat
und ebenso zu einer rascheren Verbreitung der Lebesgueschen Theorie, die ja selbst in
Frankreich zunéchst auf erheblichen Widerstand gestossen ist — Hermite verweigerte die
Annahme von Lebesgues C.R. Paris-Noten [3*].

4. Die Tiefe und Vielseitigkeit seiner grundlegenden, zum grossen Teil bahnbrechenden
Arbeiten, die auf die moderne Analysis den grossten Einfluss ausgeiibt haben.

2. Zum Lebenslauf

Unter Benutzung personlicher Mitteilungen und [5, 7, 11, 13] erwdhnen wir hier nur
Tatsachen und Umsténde, die fiir Rieszs mathematisches Schaffen besondere Bedeutung
hatten. Geboren am 22. 1. 1880 in Gyoér (Raab) als Sohn eines Arztes, wuchs Riesz
zusammen mit seinem 6 Jahre jiingeren Bruder Marcel in der kulturellen Atmosphire
dieser «Koniglichen Freistadt» von damals etwa 35000 Einwohnern in der Ndhe Buda-
pests auf. Er begann sein Ingenieurstudium am Eidgendssischen Polytechnikum (der
heutigen ETH) Ziirich im Jahre des Ziiricher Ersten Internationalen Mathematikerkon-
gresses 1897, wechselte aber bald zum Mathematikstudium iiber, das er an der Universi-
tit Budapest fortsetzte und 1902 mit dem Doktorat abschloss. Im gleichen Jahr promo-
vierte Lebesgue in Paris mit seiner beriihmten Thése de Doctorat, mit der er die liberaus
folgenreiche Entwicklung des Lebesgue-Integrals einleitete. Dagegen fand Rieszs Disser-
tation [4*] aus der projektiven Geometrie (s. [11], 1349-94, 1529-57) kaum Widerhall.
Umso bemerkenswerter ist es, wie bald und konsequent sich Riesz in eine ganz andere,
«moderne topologisch-funktionalanalytische» Arbeitsrichtung wandte und binnen eines
Jahrzehnts, von 1907 bis 1916, einen grossen Erfolg nach dem anderen erzielte. Entschei-
dend fiir diese Wendung war ein einjdhriger Aufenthalt vor der Promotion in dem damals
gerade aufblithenden Géttingen, wo es ihm gelang, mit Hilbert (der 1895 dorthin berufen
worden war) engen Kontakt zu schliessen und spéter auch Freundschaft mit E. Schmidt
und H. Weyl.

Ahnlich wie seinerzeit Weierstrass begann Riesz nach Erlangung des Lehrerdiploms ab
1904 seine Berufslaufbahn an einer Oberschule, und zwar in der «Ko6niglichen Freistadt»
Leutschau (Locse), und war 190812 in gleicher Stellung in Budapest, bis er im Alter von
32 Jahren seinen ersten Ruf erhielt. Ganz erstaunlich ist es, dass Riesz unter diesen sicher
nicht leichten Bedingungen iiber die Haélfte seiner epochemachenden funktional-
analytischen Entdeckungen wihrend dieser ersten 10 Jahre nach seiner Promotion publi-
zierte, wie wir noch im einzelnen sehen werden. Denn wenn auch Leutschau als Haupt-
stadt des Zipser Komitats und «Vorort» der 24 deutschen Zipser Stddte mit seiner
665-jahrigen Vergangenheit lange Zeit die blithendste Stadt Nordungarns war, so war es
doch mit damals etwa 7000 (meist deutschen) Einwohnern und seiner abseitigen Lage

\
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wohl keine ideale Stitte fiir wissenschaftliche Arbeit mit internationalem Gedankenaus-
tausch, und auch in Budapest diirften Rieszs Arbeitsmoglichkeiten zwar besser, aber
immer noch recht bescheiden gewesen sein.

Die weiteren Stationen seines Lebens konnen wir kurz kennzeichnen durch einige wenige
Hauptereignisse, ndmlich seinen schon erwihnten ersten Ruf von 1912 als a.o. Professor
nach Klausenburg (Cluj), wo er 1914 zum Ordinarius ernannt wurde und titig war, bis
Klausenburg 1918 zu Rumiinien geschlagen wurde, durch zwei Ubergangsjahre in Buda-
pest, dann durch seine wohl schonste Pericde 1920-46 an der neuen Universitit Szeged,
wo er zusammen mit dem Hilbert-Schiiler und Klausenburger Kollegen A. Haar (1885-
1933) das spiter nach Bolyai benannte Mathematische Institut aufbaute, bis ihn ein Ruf
an die Universitdt Budapest erreichte, wo er die letzten 10 Jahre seines Lebens verbrachte
und am 28. 2. 1956 verstarb.

Damit sind wir so weit, dass wir uns den einzelnen fundamentalen funktionalanalytischen
Rieszschen Arbeiten zuwenden kénnen.

3. Der Riesz-Fischer-Satz (1907)

«Hauptsatz: Es sei {¢,;(x)} ein normiertes Orthogonalsystem integrierbarer Funktionen von
integrierbarem Quadrate, die fiir ein Intervall a b definiert sind; d. h. ein System, fiir welches

b b
Joi(x)@;(x)dx=0(+j) und [(¢;(x)*dx=c?

und zwar fiir jede Funktion des Systems. Ordnen wir jeder Funktion des Systems eine Zahl
a; zu. Dann ist die Konvergenz von Y. a? eine notwendige und zugleich hinreichende Bedin-
gung dafiir, damit es eine integrierbare Funktion f(x) von integrierbarem Quadrate gebe,
so dass

b
/() @i (x)dx = a;

sei fiir jede Funktion ¢;(x) und jede Zahl a;.»

Dies ist die Rieszsche Formulierung aus den Gottinger Nachrichten von 1907, 116-22.
Wir sagen heute, der H ilbertsche Folgenraum ¢?, dessen «Punkte» Zahlenfolgen a = (a;)
mit konvergenter Reihe 3" a? sind, ist isometrisch isomorph zu dem Lebesgueschen Funktio-
nenraum I[2[a,b], dessen «Punkte» Aquwalenzklassen von auf [a, b} messbaren Funk-

tionen f mit endlichem Lebesgue-Integral j f?dx [und f ~ g@j( f - g)2 dx = 0] sind,

und man erhilt die Isomorphie durch die «Founerkoeﬁ’menten» a,= f f @;dx von f
beziiglich eines vollstindigen Orthonormalsystems {¢;}.

Die iiberragende Bedeutung dieses Satzes besteht darin, dass er eine unerwartete Briicke
zwischen zwei ganz verschiedenen Gebieten schlédgt, Hilberts Integralgleichungen und
Lebesgues Integrationstheorie, die damals noch immer um ihre Anerkennung ringt und
sich Riesz als den nichst Lebesgue eifrigsten Vorkdmpfer erwirbt. Weiterhin — dies nennt
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Dieudonneé [2], 120, die wichtigste Folge — bahnt der Satz den Weg zu den I”-Riumen
(s. Abschn. 6) und damit zur allgemeinen Theorie der normierten Riume.

Die hochinteressante Entdeckungsgeschichte des Satzes fiihrt uns in den Schnittpunkt der
Ideen fast aller Schopfer der Funktionalanalysis in statu nascendi. Dariiber lassen wir
Riesz durch seine Arbeiten und seine Erinnerungen (s. [11], 327) selbst berichten: Riesz
kannte die Idee des #? (intuitiv die Ausdehnung der Euklidischen Metrik auf abzihl-
bar unendlich viele Dimensionen) aus Hilberts Mitteilungen iiber Integralgleichungen
(1904-10; s. [6]), von denen die 4. Mitteilung (1906) hier am wichtigsten ist, indem sie den
Beginn der Spektraltheorie im funktionalanalytischen Sinn bezeichnet, die erste abstrakte
Arbeit iiber Integralgleichungen und die Grundlage der (spiter von Riesz formulierten)
Theorie der stetigen linearen Operatoren (s. Abschn. 7). Auf Lebesgue war Riesz zuerst
durch dessen Buch iiber trigonometrische Reihen von 1906 aufmerksam geworden und
hatte dann auch dessen Buch iiber Integration (1904) und die Thése von 1902 durchgear-
beitet. Ebenso kannte er Fréchets axiomatische Definition des metrischen Raumes aus
dessen These [3] von 1906. Angeregt durch E. Schmidts Satz von 1905, dass jedes vollstéin-
dige Orthonormalsystem auf [0, 1] stetiger Funktionen abzidhlbar unendlich ist, verbindet
Riesz schon 1906 Fréchets und Lebesgues Ideen, indem er [C. R. Paris 143, 738—41] den
I?[a, b] definiert und dessen Separabilitiit [5*] beweist, also die erweiterte Giiltigkeit des
Schmidtschen Satzes. Fiir die Distanz schreibt er dabei

d(flafZ) = \/I(f1 “fz)z'

«[Aber] die Idee und der Mut zu versuchen, den Integralbegriff auf Probleme anzuwen-
den, mit denen ich mich gerade beschiftigte, kamen mir erst 1906 beim Lesen der
ausgezeichneten Arbeit [Pexcellent Mémoire] von Fatou [dessen These; Acta Math. 30,
335-400], insbesondere des Fatouschen Lemmas ..., das die Unterhalb-Stetigkeit der ...
Integration besagt und das mir im Februar 1907 ... half, den [Riesz-Fischer-] Satz zu
beweisen.»

Aus den Goéttinger Nachrichten wissen wir weiter, dass Hilbert am 9. Mirz im Seminar
iiber den Satz vortrug. Aber 4 Tage eher (!) hatte schon Fischer in Briinn iiber praktisch
dasselbe, von ihm unabhingig gefundene Ergebnis berichtet. Beider Noten stehen in
Band 744 der C. R. Paris [615—19 bzw. 1022—24], Rieszs Satz in wortlicher Ubersetzung
des obigen und Fischers Satz in der Form:

«THEOREME. — Si une suite de fonctions appartenant a 2 converge en moyenne, il existe
dans Q une fonction f vers laquelle elle converge en moyenne».

Hierbei ist Q die Menge der obigen Funktionen f, und «Konvergenz im Mittel» bedeutet
Konvergenz in der L2-Norm, wie iiblich. Unter Benutzung einer orthonormalen Folge
erhélt Fischer dann ohne Miihe die Rieszsche Form des Satzes.

Riickblickend sehen wir, dass wir hier tatsdchlich mit zentralen Ideen der Exponenten der
ganzen Entwicklung, Lebesgue, Hilbert, Fréchet, Schmidt, Fatou und natiirlich Riesz
und Fischer, in Berithrung gekommen sind.

4. Funktionale auf Hilbertriumen (1907, 1934-35)

Die nichsten 3 Abschnitte 4—6 hidngen innerlich zusammen, indem sie Marksteine der
Dualitditstheorie betreffen, also der Idee, die auf einem Raum definierten stetigen linearen

\
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Funktionale zu untersuchen und damit zugleich Aufschluss iiber den betreffenden Raum
selbst zu erhalten. Dazu braucht man zuerst einmal eine allgemeine Darstellung solcher
Funktionale, und darum handelt es sich hier. Fiir den L*[a, b] gibt Riesz 1907 die folgende
Definition und Darstellung dieser Funktionale [C. R. Paris 144, 1409-11]:

«Pour I’ensemble des fonctions sommables, de carré sommable, j’appelle opération conti-
nue chaque opération faisant correspondre a toute fonction f de I’ensemble un nombre
U(f) et telle que, quand f, converge en moyenne vers f, U(f,) converge vers U(f).
L’opeération est dite linéaire si U(f, +/f,)=U(f,)+U(f,) et U(cf)=cU(f). Alors pour
chaque opération linéaire continue il existe une fonction k telle que la valeur de ’opéra-

tion pour une fonction quelconque f est donnée par I'intégrale du produit des fonctions
fetk»

Also in Formeln:

U )= [ fo k(x)dx, ke I2[abl

Dasselbe Ergebnis findet gleichzeitig Fréchet (l.c., 1414—16], der die L2-Metrik von Riesz
(s. Abschn. 3) iibernimmt, aber sonst unabhéngig vorgeht.

Motiviert durch den Riesz-Fischer-Satz, hatte Riesz, wie der Titel der Note, «Sur une
espéce de Géomeétrie analytique des systémes de fonctions sommables», zeigt, das Pro-
gramm, die «Methode der Koordinaten», die man in ¢ (in Gestalt der Glieder der
einzelnen Folge) hat, auf den I?[a,b] zu iibertragen. Den #2 nennt er «Raum» (espace);
bei I? [a, b] wagt er sich das noch nicht, er spricht nur von einem «Funktionensystemy.
Die uns heute geldufige «geometrische» Sprechweise in der Hilbertraumtheorie stammt
allerdings nicht von Riesz, sondern von E. Schmidt, der sie 1908 [Rend. Mat. Palermo 25,
53-77] (fiir den komplexen ¢2) einfiihrte.

Fir das Folgende benutzen wir nun die willkommene Gelegenheit, ein paar Worte iiber
die recht merkwiirdige weitere Entwicklung der genannten Theorie zu sagen. Volle
20 Jahre dauerte es, bis der Hilbertraum 1927 erstmals axiomatisch definiert wurde, und
zwar durch J. von Neumann [Goéttinger Nachr., 15] in seiner Theorie unbeschrinkter
linearer Operatoren, die er fiir eine von Hilbert angeregte mathematische Grundlegung
der Dirac-Heisenberg-Schrodingerschen Quantenmechanik von 1925-26 brauchte.
Diese Definition enthielt die Bedingung der Separabilitit [5*]— /2 und L? sind separabel-,
aber bald bemerkten Lowig [Acta Szeged 7 (1934-35), 1-33], Riesz [l.c., 34—-38] und
Rellich [Math. Ann. 110 (1935), 342—-56] unabhingig voneinander, dass diese Bedingung
eigentlich entbehrlich ist. So ergab sich — iibrigens recht spit — die heute iibliche Defini-
tion des Hilbertraums, und Riesz [l.c] teilte dazu, von Lowig angeregt, seine bekannte
Darstellung samt dem tiblichen Beweis (s. z.B. auch [10], 189—-90) mit:

«Fiir jede [stetige] lineare Funktion I(f) gibt es ein eindeutig bestimmtes «erzeugendes»
Element g, so dass

I(f)=(f,g»

(.,.) ist dabei das innere Produkt des Hilbertraums.
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5. Funktionale auf C[a, b] (1909, 1914)

Eine ungleich viel schwierigere Aufgabe als die Darstellung der Funktionale auf Hilbert-
rdaumen, namlich, dasselbe fiir C[a, b], erledigte Riesz 1909, und zwar in so glanzvoller und
endgiiltiger Weise, dass man leider oft vergisst, wer den ersten Schritt in das Neuland der
allgemeinen Darstellung von Funktionalen auf wichtigen speziellen Rdumen getan hat.
Es war dies Hadamard [C. R. Paris 136, 351—-54], der schon friihzeitig (1903) fiir die
stetigen linearen Funktionale A auf Cla, b] die Darstellung

b
Alf(x)] = lim [ f(x)h,(x) dx h, € [?[a, b]
gab. Diese hat aber den Mangel, dass wir es nur mit dem Grenzwert eines Integrals
anstatt mit dem Integral selbst zu tun haben und dass die h, durch A nicht eindeutig
bestimmt sind.
Dem half Riesz 1909 durch ein Stieltjesintegral ab, in dem eine Funktion o von be-
schriankter Schwankung vorkommt; sein Satz lautet [C. R. Paris 749, 974—77]:

Etant donnée Popération linéaire A[ f (x)], on peut déterminer la fonction a variation bornée
a(x), telle que, quelle que soit la fonction continue f(x), on ait

1
Alf ()] = g S (x)do(x).

[0, 1] statt [a, b] ist unwesentlich. « ist fiir gegebenes A im wesentlichen eindeutig bestimmt
(s. [12], 110-12). Merkwiirdig ist, dass das schon 1894 eingefiihrte Stieltjesintegral erst
1906 erstmals (durch Hilbert, s. [6], 109, 124) und nun hier erst 15 Jahre spdter zum
zweiten Male Anwendung findet. Angeregt durch Lebesgue gab Riesz 1914 einen neuen,
einfacheren Beweis [Ann. Ec. Norm. Sup. 31, 9-14].

Inzwischen hatte der sehr starke Widerhall der eleganten Rieszschen Darstellung zum
Beginn einer reichen Entwicklung von Integrationstheorien gefiihrt, zuerst mit dem Ziel
der Vereinigung des Lebesgue-, Stieltjes- und Hellingerintegrals (durch Radon, Sitz.-Ber.
Akad. Wiss. Wien, Math.-Nat. K1., 122 (1913), 1295-1438) und spéter bis zur Gegenwart
fiir stetige Funktionen mit Definitions- und Wertebereich in immer allgemeineren topolo-
gischen Rdumen, worauf wir hier nicht eingehen konnen [6*].

6. L"-Riiume und ihre Funktionale (1910)

Nachdem nun die Hilbertriume L? = I*[a, b] eingefiihrt und besonders durch den Riesz-

Fischer-Satz in ihrer Bedeutung erkannt worden waren, lag es «nahe», Rdume

L? = IP[a, b] der (Aquivalenzklassen von) auf [a, b] messbaren Funktionen f mit endli-
b

chem Lebesgue-Integral f | fIP dx in dhnlicher Weise zu definieren. Dies hat Riesz 1910 in

seiner grossartigen Arbeit «Untersuchungen iiber Systeme integrierbarer Funktionen»
[Math. Ann. 69, 449-97] getan, in der er mit einem Schlage eine voll entwickelte Theorie
der Rdume («Funktionsklassen» sagt er) L” (1 <p < oo0) und ihrer dualen L%, g=p/(p—1),

\
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bietet, so reich, dass wir hier nur die wesentlichen tragenden Ideen beleuchten kdnnen.
Wir schliessen uns Dieudonnés Meinung in [2], 124, an, der die Arbeit als die nach
Hilberts 4. Mitteilung bedeutungsvollste fiir die Entwicklung der Funktionalanalysis
bezeichnet. Den Anstoss dazu gab Riesz das Problem der Losbarkeit eines abzihlbaren
(oder tliberabzidhlbaren) Gleichungssystems

b
Jfix)Ex)dx=c (ieJ)

mit gegebenem f; und Konstanten c; nach der unbekannten Funktion &(x). Gleich zu
Beginn (S. 450) weist er auf die hier grundlegende Rolle des Lebesgue-Integrals hin:
«[Die] Moglichkeit, in sehr allgemeinen Fillen entscheidende [Losbarkeits-] Kriterien zu
entwickeln, ist erst seit kurzem gegeben, seitdem nidmlich der Begriff des Integrals durch
Lebesgue jene geistreiche und gliickliche Erweiterung erfahren hat.»

Nach Erinnerung an Schmidts Losung des Problems fiir den #2 in der Arbeit von 1908
(s. Abschn. 4), also wegen des Riesz-Fischer-Satzes fiir den L2, spricht Riesz sofort von der
prinzipiellen Anderung der Lage beim Ubergang vom selbstdualen I? (nicht sein Aus-
druck; auch «dual» sagt er nicht) zu I mit p#2 (und >1) und von der grundsitzlichen
Tragweite dieses kiithnen Schrittes (S. 452):

«Jede Zahl p bestimmt eine Funktionenklasse [L*]. Die Rolle der Klasse [L?] iibernehmen
hier je zwei Klassen [L*] und [[P?~ V)] ... Die Untersuchung dieser Funktionenklassen
wird auf die wirklichen und scheinbaren Vorteile des Exponenten p=2 ein ganz besonde-
res Licht werfen; und man kann auch behaupten, dass sie fiir eine axiomatische Untersu-
chung der Funktionenrdume brauchbares Material liefert.»

«Funktionenraum» sagt Riesz hier zum ersten Male! Hier stehen wir also erneut (vgl.
Abschn. 5) am Ubergang von Hilbertriumen zu (speziellen) Banachriumen, und Riesz
betont (S. 453), dass nun «die synthetische Behandlungsweise in ihre vollen Rechte tritt»,
weil man eben nicht mehr £? (den Raum der Folgen a=(a;) mit konvergenter Reihe }|a,|?)
heranziehen kann wie #2 bei I? vermoge Riesz-Fischer, sondern unabhéingig vorgehen
muss.

Ausserst instruktiv ist es nun zu verfolgen, wie Riesz in diesem Meisterwerk in genialer
Weise seine Theorie zielsicher schrittweise entfaltet, beginnend mit dem Beweis des
«Handwerkszeuges» der sog. Holder- und Minkowski-Ungleichungen fiir Integrale, ge-
folgt von der Definition der starken Konvergenz einer Folge { f;} = L? gegen f durch

lim If Lf(X)—f; (x)|? dx = O | (S. 464)

i-wa

und der schwachen Konvergenz in einer Weise, die er als gleichwertig mit dem heute
iblichen

lim_l‘,'(f(x)-—fi(x))g(x)dxzo fiir alle ge I7

i @ o0a

nachweist, und gekront durch seinen fiir alles Weitere entscheidend wichtigen «Hauptsatz
iiber schwache Konvergenz» (S. 466), der besagt, dass jede unendliche Menge von Funk-
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b
tionen f im L, fiir die alle Integralwerte | f|? dx unterhalb einer nur von p abhingigen

Schranke liegen, schwach konvergente Teilfolgen enthilt.

Gestiitzt auf diesen Satz, beweist Riesz nun nacheinander die Vollstindigkeit des L?, ein
Kriterium fiir die Existenz einer Losung £eL? des obigen Systems mit f;eL? und die
Dualitdt von L? und L? mit der Darstellung stetiger linearer Funktionale auf L? durch
(S. 475)

b

A(f)=[a(x)f(x)dx, ael”.

a

Uberraschend entwickelt Riesz hieraus sofort die Definition stetiger linearer Operatoren
(«Funktionaltransformationen») T|[f(x)] auf L*, deren Adjungierter («Transponierter»)
T [g(x)] auf L4, definiert durch (S. 478)

b b
JTLf (g (x)dx=] f(x) T [g(x)] dx,
und beweist die bekannte Bedingung fiir die Existenz der Inversen,

[17 (P dx < MP§ ITLS )P dx fir alle f e L2,

a

und entsprechend fiir die Inverse von 7.
Nach diesem Hohepunkt gibt Riesz eine Anwendung der Ergebnisse auf die Spektral-
theorie kompakter Operatoren («vollstetiger Funktionaltransformationen») vermdoge

§(x)—AK[E(X)] = f(x)

mit £ e L? und symmetrischem K = ¢, also fiir lineare Operatoren, bei denen definitions-
gemidss (S. 487) «jede schwach konvergente Folge in eine stark konvergente iibergeht»;
dies stimmt mit Hilberts Definition iiberein [7*]. Hier haben wir also einen Vorldufer einer
«abstrakten Fredholmtheorie», die Rieszs nichstes grosses Ziel gewesen ist, wie wir in
Abschn. 8 sehen werden.

7. Rieszsche Form der Hilbertschen Spektraltheorie (1913)

Vage Ansitze zur Spektraltheorie fiir Differentialgleichungen reichen weit zuriick. Spek-
traltheorie im funktionalanalytischen Sinne entwickelte Hilbert, fussend auf H. A.
Schwarz, Poincaré und anderen klassischen Meistern und unmittelbar angeregt durch
Fredholms Theorie, in seinen Mitteilungen iiber Integralgleichungen; vgl. [9], 50—52. Mit
genialem Blick erkannte Riesz, dass sich Hilberts Methode der quadratischen Formen

0X)= 5 5 KonXu%n K = )

m=1n=1

\
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von unendlich vielenVariablen durch eine begrifflich und technisch wesentlich einfachere
ersetzen ldsst. Zusammen mit der im vorigen Abschnitt besprochenen Arbeit und dem
Waunsch, eine entsprechende Theorie der Folgenrdume £7 zu entwickeln, gab dies Riesz
auf Borels Einladung hin den Anstoss zur Abfassung des Buches «Les systémes d’équa-
tions linéaires a une infinité d’inconnues» (Sammlung Borel, 1913) iiber eine Losungstheo-
rie unendlicher Gleichungssysteme

e o]

Zai,‘x,‘=ci, a=(aik)€{q; i=1,2,...
k=1

(s. auch [11], 831 -1016), die Riesz analog der in Abschn. 6 entwickelte. Wir miissen dieses
Buch, dessen Inhalt Riesz bescheiden eine bekannte Theorie, dargestellt «sous des aspects
nouveaux» nennt, unter Rieszs funktionalanalytische Grosstaten rechnen, weil er darin
anstatt der Hilbertschen quadratischen Formen Q die stetigen linearen Operatoren
(«substitutions linéaires») zum zentralen Begriff erhob und damit der Spektraltheorie die
uns heute geldufige Form gab. Einleitend sagt er noch, dies miisse als eine erste Etappe
der sich entwickelnden Funktionalanalysis («la Théorie des fonctions d’une infinité de
variables») angesehen werden, «qui fournira peut-étre bientot les méthodes les plus
puissantes de toute I’Analyse», sicherlich ein Urteil liber die Gesamtentwicklung, das
Rieszs ungewohnlichem Scharfblick zu aller Ehre gereicht!

Kapitel I des Buches bringt einen interessanten historischen Uberblick iiber unendliche
Gleichungssysteme, Kap. II eine Einfiihrung in die unendlichen Determinanten («on
attribue leur introduction 4 M. G. W. Hill») und Kap. III eine Verallgemeinerung der
Schmidtschen #2-Gleichungstheorie auf den Folgenraum /7 mit p>1 (vgl. Abschn. 6) —
aber nirgends nennt er den ¢” einen «Raum»: So sehr fiihlt man sich damals noch der
Euklidischen Geometrie verpflichtet, aus der £> erwachsen ist (s. Abschn. 3), dass man
jene allgemeinere Sprechweise noch nicht wagt.

Uns interessieren vor allem Kap.IV und V, die der Spektraltheorie stetiger linearer
Operatoren («substitutions linéaires») und der Umformung der Hilbertschen Spektral-
theorie gewidmet sind. Riesz definiert einen solchen Operator auf dem Raum («espace
hilbertien») £2 als einen, der konvergente Folgen in ebensolche transformiert. Weiter fiihrt
er die Norm («borne») M, eines solchen Operators A4 ein und zeigt, dass A die starke
Konvergenz einer Folge {x™} mit x =(x{") im ¢ erhilt, die durch

3 1x,—x{"2 -0 (S.79)
k=1
definiert ist. Vollstetige lineare Operatoren definiert Riesz (dhnlich wie im vorigen Ab-
schnitt) als diejenigen, die alle konvergenten Folgen im #2 in stark konvergente transfor-
mieren. Er wendet sich dann Folgen von Operatoren zu und fiihrt (S. 107) die starke und
die gleichmissige Operatorkonvergenz ein, in moderner Bezeichnung

|4, x—Ax|| -0 fiiralle xef* bzw. |A4,—A|—0.
Spektrum und Resolvente folgen als nédchste Begriffe, und Riesz zeigt (S. 117) die Holo-

morphie der letzteren mittels eines Funktionalkalkiils, den er als «le calcul des résidus»
bezeichnet.



126 El Math., Vol. 45, 1990

In Kap. V stellt Riesz die Verbindung mit Hilberts Formen her, indem er jedem Operator
A vermoge (x, y)+— (Ax, y) eine bilineare Form und umgekehrt zuordnet. Gegen Ende des
Kapitels beweist er als Hohepunkt und Abschluss der Theorie die Spektraldarstellung

=]

f(A)= | f(§dA, (S.137)

- o0

fiir stetiges f und einen selbstadjungierten stetigen linearen Operator A auf £ (unter
Hinweis, dass man tatsdchlich nur iiber ein endliches Intervall zu integrieren braucht).
Das letzte Kapitel bringt dann noch einige Anwendungen auf Differentialgleichungen
und Fourierreihen.

Wie wir damit gesehen haben, bietet diese noch heute lesenswerte Darstellung, wie schon
die Arbeit in Abschn. 6, wiederum eine voll ausgereifte, in sich geschlossene Theorie, die
sich ebenfalls als von hochster Bedeutung fiir die Gesamtentwicklung der Funk-
tionalanalysis erweisen sollte.

8. Kompakte lineare Operatoren (1916-18)

Im vorliegenden Abschnitt treten uns zum dritten Male — aber diesmal ganz zentral —
kompakte Operatoren («vollstetige Transformationen») [7*] entgegen, in Rieszs beriihm-
ter Arbeit «Uber lineare Funktionalgleichungen» [Acta Math. 41 (1918), 71-98], einer
«abstrakten Fredholmtheorie», die Hilberts Theorie der vollstetigen quadratischen For-
men (1906, 4. Mitteilung) mit umfasst. Dass in Fredholms Theorie nicht die Integraldar-
stellung, sondern die Kompaktheit des vorkommenden linearen Operators entscheidend
ist, hatte schon Hilbert erkannt. Riesz hat sich nicht gedussert, wie weit seine Ideen zu der
1916 eingereichten, aber, durch den Krieg verzigert, erst 1918 erschienenen Arbeit zu-
rickgehen.

Riesz legt wieder die Menge der auf einem Intervall [a, b] stetigen Funktionen zugrunde,
aber im Gegensatz zu fritheren Arbeiten nennt er diese erstmals «Funktionalraum» und
fiihrt dazu eine axiomatisch definierte und mit dem Schmidtschen Symbol | - | (1908)
bezeichnete Norm (die Maximumsnorm) ein (S. 72):

«Ferner nennen wir Norm von f(x) und bezeichnen mit || f || den Maximalwert von | f(x)|;
die Grosse | f || ist danach im Allgemeinen positiv und verschwindet nur dann, wenn f(x)
identisch verschwindet. Ferner bestehen fiir sie die Bezichungen

lefGN =lellf;  Nfi+ Ll <AL+ 1L

Unter Distanz der Funktionen f,, f, verstehen wir die Norm || f; — f5|| = || f,— f1 || ihrer
Differenz.»

Riesz benutzt im weiteren nur diese Axiome des normierten Raumes, volle 6 Jahre vor
dem Erscheinen der Banachschen Dissertation, sieht also von der speziellen Gestalt der
Norm (ausser im Zusammenhang mit Integralgleichungen) ab. Im Vollbewusstsein der
Tragweite dieses Vorgehens sagt er dazu, die Beschriankung auf stetige Funktionen sei
nicht wesentlich:
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«[Der] in den neueren Untersuchungen iiber . . . Funktionalrdume bewanderte Leser wird
die allgemeinere Verwendbarkeit der Methode sofort erkennen [und] auch bemerken,
dass [u. a. L? und #? dabei] noch Vereinfachungen gestatten, wihrend der hier behandelte
scheinbar einfachere Fall als Priifstein fiir die allgemeine Verwendbarkeit [der Methode]
betrachtet werden darf.»

Hinsichtlich der «Vollstetigkeit» bezieht sich Riesz ausdriicklich auf Hilbert und auf
Fréechets Begriff der Folgenkompaktheit (1906), der eine «besonders einfache und gliick-
liche . .. Definition der vollstetigen Transformation» erlaubt (S. 73, 74).

«Eine Folge {f,} heisse nach Fréchet kompakt, wenn jede Teilfolge derselben eine
gleichmaissig konvergente [also im Sinne der Norm konvergente] Teilfolge enthilt . . . .
[Eine] lineare Transformation heisse vollstetig, wenn sie jede beschrdnkte Folge in eine
kompakte uiberfiihrt.» [7*]

Riesz entwickelt nun in seiner Arbeit im wesentlichen eine allgemeine Spektraltheorie
kompakter linearer Operatoren auf Banachriumen, die Fredholms klassische Sitze als
Sonderfille enthélt. So zeigt er, dass ein kompakter linearer Operator ein hochstens
abzdhlbares Spektrum hat, dass jedes 4 # 0 des Spektrums ein Eigenwert mit endlichdi-
mensionalem Eigenraum ist, dass 0 der einzig mogliche Haufungspunkt ist, dass die
«Fredholmsche Alternative» (S. 86) gilt, und so fort. Diese ganze Theorie hat im Laufe der
Entwicklung der stetigen linearen Operatoren keine wesentliche Anderung erfahren;
lediglich haben ihr T. H. Hildebrandt [Acta Math. 51 (1928), 311-18] und J. Schauder
[Studia Math. 2 (1930), 183—-96] einige weitere Resultate iiber adjungierte Operatoren
zugefiigt, weshalb man auch von der «Riesz-Schauder-Theorie» spricht.

Bleibende Folgen der Rieszschen Arbeit sind vor allem:

1. Das allgemeine weltweite Interesse an der Theorie der Integralgleichungen, um 1900
plotzlich erwacht durch Fredholms sensationelle Erfolge, klang durch Rieszs Absorption
der Fredholmtheorie in die Theorie der kompakten Operatoren rasch ab.

2. Riesz hat damit einer der allerwichtigsten Klassen von Operatoren einen festen Platz
in der Funktionalanalysis gesichert.

3. Rieszs Arbeit bedeutet den Beginn der Theorie der Banachrdume, die sich trotz der
Ungunst der Zeit unglaublich rasch entwickelte.

In der Tat werden axiomatisch definierte Normen fiir Folgenrdume schon bald durch
Helly [Monatshefte Math. Phys. 37 (1921), 60—91], der u.a. Rieszs Buch erwihnt, und
durch Hahn [l.c., 32 (1922), 3—88] verwendet, der den Begriff «linearer Raum» prigt, dann
fiur abstrakte Mengen durch Banach [Fund. Math. 3 (1922), 133-81], der von einer
«Klasse von Elementen» spricht, und durch N. Wiener [Bull. Soc. Math. France 50
(1921-22), 119-34), der den Ausdruck «vector family» benutzt.

9. Rieszriume (1928, 1930-32, 1940)

Mit Kriegsende beginnt 1918 fiir Riesz eine schwierige Zeit, bis endlich die Aufbauphase
in Szeged (s. Abschn. 2) angelaufen ist. Rieszs bedeutendste spétere funktionalanalytische
Arbeiten betreffen Vektorverbinde oder Rieszraume. Ein Rieszraum ist ein teilgeordneter
Vektorraum, der zugleich ein Verband ist, so dass also fiir je zwei Elemente A4, B eine
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kleinste obere Schranke und eine grosste unter Schranke existiert. [8*]. Wie wir abschlies-
send skizzieren wollen, hat Riesz, beginnend mit einem Vortrag «Sur la décomposition
des opérations fonctionnelles linéaires» auf dem Internationalen Mathematikerkongress
von 1928 in Bologna [Atti III, 143-48], in dem er Rieszraume einfiihrte, eine Entwicklung
eingeleitet, die die Funktionalanalysis mit der Verbandstheorie in Beriihrung gebracht
hat. Den Ausgangspunkt bildet Rieszs Beobachtung, dass Jordans Satz von der Zerle-
gung einer Funktion beschrinkter Schwankung in eine Differenz zweier monotonen
Funktionen wegen der Darstellung in Abschn. 5 automatisch eine Zerlegung der Funk-
tionale auf C|a, b] ergibt. Um solche Zerlegungen nun aber abstrakt, d. h. unabhingig von
irgendwelchen formelméssigen Darstellungen zu erhalten, fiihrt Riesz auf Mengen von
Funktionalen A4, B, ... vermoge

A < B:< A(f) < B(f) fiir alle nichtnegativen f

eine Teilordnung ein. Er nennt dann B Majorante von 4 (und 4 Minorante von B) und
erhélt einen Rieszraum vermoge seines Hauptsatzes [l.c., 144], dass fiir eine majorisierbare
bzw. minorisierbare Menge von Funktionalen stets eine kleinste obere bzw. grosste
untere Schranke existiert.

Dass Riesz wohl von Anfang an eine neue Methode fiir Spektraldarstellungen linearer
Operatoren im Sinn hatte, bestiitigt er sofort in seiner Arbeit «Uber die linearen Transfor-
mationen des komplexen Hilbertschen Raumes» [Acta Szeged 5 (1930-32), 23-54].
Damals entwickelt man «in aller Eile» [l.c., 23] die in der Quantenmechanik benéGtigten
unbeschrdnkten linearen Operatoren im (separablen) Hilbertraum, von Neumann unter
Benutzung der «Cayleytransformation» (s. [1], 308), M. H. Stone vermdge Carlemanscher
Ideen [l.c., 310] und Riesz nun unter Benutzung eines lokalen Zerlegungssatzes [Acta
Szeged 5, 37] fiir beschrinkte lineare Operatoren, ein Analogon des Satzes, dass [l.c., 25,
26]

«...[jede] beschriankte quadratische Form, . . . wenn sie nicht schon . . . definit ist, immer
als Differenz zweier positiv definiten und zueinander orthogonalen Formen dargestellt
werden kann .. .. [Von] diesem Satz aus . .. [bietet sich] der klarste Einblick in das enge
Verhiltnis zwischen den alten und den neuen Resultaten ... .»

Riesz iibertrdgt dann [l.c., 44] den Zerlegungssatz auf selbstadjungierte unbeschrinkte
lineare Operatoren und gibt am Schluss die Spektralzerlegung und entsprechende Inte-
graldarstellungen fiir den unbeschrinkten Fall.

Unabhingig von Riesz werden Rieszraume und Banachverbinde (Rieszriume, die auch
Banachrdume sind, [8*]) durch Kantorowitsch (1935-37), Freudenthal (1936), G. Birk-
hoff (1938) und andere behandelt. Die in diesen Arbeiten entscheidende Verbandseigen-
schaft vermag nun Riesz 1940 [Annals of Math. 41, 174-206] durch eine schwichere
«Zerlegungseigenschaft» zu ersetzen, bei der aber die dualen Rdume immer noch Ver-
binde bilden, so dass er eine zugehorige Spektraltheorie mit Anwendung auf abstrakte
Integrale (Daniells Integral insbesondere) gewinnen kann. Auf diese Arbeit folgt spéter
die Entwicklung «allgemeiner Rieszdarstellungen» linearer Operatoren auf Riumen von
praktischem Interesse, durch Grothendieck [Canad. J. Math. 5 (1953), 129-73], Bartle,
Dunford and J. T. Schwartz [l.c., 7 (1955), 289 - 305] und andere, eine Entwicklung, die sich
bis fast in die Gegenwart fortgesetzt hat.
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10. Schlussbemerkung

Angesichts unserer notwendigen, wenn auch miihelosen Einteilung in Abschnitte sollten
wir nicht die innere Kontinuitét iibersehen, die Rieszs funktionalanalytisches Schaffen
auszeichnet, der Motivierung nach von den Integralgleichungen her, verbunden mit den
am Ende von Abschn. 3 genannten Ideen, und der Entwicklungstendenz nach von Hil-
bert- zu Banachrdumen, stark beeinflusst von der zentralen Rolle der kompakten Opera-
toren und durch die Methoden der Spektraltheorie, insbesondere der Spektraldarstellun-
gen linearer Operatoren. So erscheint uns riickblickend dieses grosse Werk als ein

organisches Ganzes von in der Mathematik selten erreichter Geschlossenheit und Schon-
heit.

Erwin Kreyszig, Carleton University, Ottawa, Kanada
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AN AW -

ANMERKUNGEN

[1*] Kurz angedeutet wurde dieses Thema in [9], 52— 54.

[2*] Die Gebietseinteilung in [11], die «Funktionenrdume» und «Funktionalanalysis» trennt, erschien uns nicht
besonders giinstig, und wir haben sie nicht benutzt.

[3*] Vgl. S. 121 in T. Hawkins, Lebesgue’s Theory of Integration, 2. Aufl. (Chelsea, New York 1975). C. R. Paris
bedeutet Comptes rendus hebdomadaires des séances de 'Académie des Sciences, Paris.

[4*] Nach einer freundlichen Mitteilung von Herrn Prof. B. Szokefalvi-Nagy diirfte wohl J. Valyi (Valyi Gyula) sein
Doktorvater gewesen sein. In {11] findet man hieriiber keine Angaben, und Riesz erwdhnt Valyi nur ganz
nebenbei.

Nach einer weiteren freundlichen Mitteilung von Herrn Dr. U. Hunger (Universitdtsarchiv Gottingen) hat
Riesz nach seiner Budapester Promotion im Wintersemester 1903/04 u.a. bei Hilbert gehdrt (partielle Differen-
tialgleichungen) und an 2 Seminaren (Hilbert/Minkowski und Klein/Schwarzschild) teilgenommen.

[5*] Ein Raum heisst separabel, wenn er eine in ihm dichte abzdhlbare Teilmenge besitzt.

[6*] Fiir die Entwicklung bis etwa 1970 sieche J. Batt [DMV-Bericht 74 (1973), 147-181] und die zugehorigen 150
Literaturangaben.
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[7*] Ein linearer Operator heisst kompakt, wenn er jede beschrinkte Menge in eine Menge transformiert, deren
abgeschlossene Hiille kompakt ist, &quivalent dazu, wenn er jede beschrinkte Folge in eine Folge transfor-
miert, die eine konvergente Teilfolge enthélt. Ein kompakter linearer Operator transformiert jede schwach
konvergente Folge in eine stark konvergente, und ist der betreffende Raum reflexiv (wie z.B. 7 und L* mit
1 < p < ), so gilt auch die Umkehrung.

[8*] Beispiele von Folgen- und Funktionenrdumen, die Rieszriume bilden, findet man z. B. in G. Birkhoff, Lattice
Theory, 3. Aufl. (American Mathematical Society, Providence, RI 1967), Kap. XV, wo auch Banachverbinde
ausfiihrlich behandelt werden.
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Die Polynome von Yang-Lee und ihre Nullstellen
1. Einfiithrung

Das Ising-Modell der statistischen Mechanik fithrt zur Untersuchung der Nullstellen
spezieller Polynome in einer komplexen Variablen. Je nach den Werten der beteiligten
Parameter befinden sich diese Nullstellen auf dem Einheitskreis, auf der negativen reellen
Halbachse oder auf der Vereinigung der beiden Mengen. Es gibt aber auch Fille, in denen
sie diese Vereinigungsmenge verlassen.

Das Ising-Modell beniitzt einen Graphen G, dessen Eckpunkte ie{1,2,...,n} die Lage
der Teilchen markieren und dessen Kanten {i,j} € K Teilchenpaare verbinden, welche in
Wechselwirkung stehen. Fiir jedes Teilchen ist ein Spin o;€ {+ 1, — 1} gegeben und die
Energie des Systems berechnet sich aus

E=-J Y a,-aj—H):a,-. (1.1)

{i, ek

Dabei ist H die Magnetfeldstirke und J eine Konstante, die bei ferromagnetischen
Wechselwirkungen positiv, bei antiferromagnetischen negativ ist. Summiert man iiber alle
2" Werte des Vektors ¢ = (0, ..., d,), so erhilt man die «Partitionsfunktion»

Z,=%e T =%exp(J; X "io'j'*‘HlZO'i) (1.2

ti, jek

(k ist die Boltzmann’sche Konstante, J, = J/kT die Temperatur- und H; = H/kT die
Magnetfeldvariable). Die freie Energie ist dann

f(TH) = lim -—Elogz,,. (1.3)

n— n

Singularitdten dieser Funktion entstehen dort, wo sich Nullstellen der Z, hidufen, und
erscheinen physikalisch als Phaseniiberginge. Es ist deshalb wichtig, Aussagen iiber die
Lésungen von Z, = 0 zu gewinnen.

Wir beschrdnken uns hier auf den Fall H = 0. Man kann dann Z, im Wesentlichen als
erzeugende Funktion interpretieren: man betrachtet die o; als unabhingige Zufallsvaria-

\



	Friedrich Riesz als Wegbereiter der Funktionalanalysis

