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ELEMENTE DER MATHEMATIK
Revue de mathematiques elementaires - Rivista di matematica elementare

Zeitschrift zur Pflege der Mathematik
und zur Forderung des mathematisch-physikalischen Unterrichts

El Math Vol 45 Nr 5 Seiten 117-144 Basel, September 1990

Friedrich Riesz als Wegbereiter der Funktionalanalysis *

Herrn Prof Dr Leopold Vietons zum 99 Geburtstag am 4 Juni 1990 in Ergebenheit und Freundschaft

gewidmet

1. Einleitung

Ohne Zweifel gehört Friedrich Riesz (Riesz Fngyes, 1880-1956) zusammen mit Frechet,
Hubert und Banach zu den Hauptbegrundern und Fuhrern wahrend der ersten Jahrzehnte

der Entwicklung der Funktionalanalysis Wir stellen uns hier die Aufgabe, aus zum Teil

wenig bekannten charakteristischen Einzelheiten des Rieszschen funktionalanalytischen
Schaffens ein Gesamtbild zu entwerfen, das es wegen der grossen Bedeutung der Rieszschen

Arbeiten verdient, in weiteren Kreisen bekannt zu werden [1*] Im Auge behalten
wollen wir dabei die vier folgenden, in der Reihenfolge steigender Wichtigkeit angegebenen

Gesichtspunkte
1 Die lange Zeitspanne, 1906-1942, der funktionalanalytischen Aktivität, lang sowohl

im Vergleich zur Arbeit anderer wie auch im Rieszschen Gesamtwerk (s Fig 1) Auf
diese folgt 10 Jahre spater noch das berühmte, mit B Szokefalvi-Nagy verfasste Buch

[12]

Topologie

Funktionalanalysis
Mass und Integration
Funktionentheorie

Subharmonische Funktionen

o o o o o o
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Ergodentheorie
Fig 1 Zeitliche Gliederung der Arbeiten von Fnednch Riesz nach Gebieten [2*]

' Nach einem Vortrag, gehalten auf dem XII österreichischen Mathematikerkongress in Wien 1989 Anregun
dazu verdankt der Verfasser den Herren M Riesz und T Rado, mit denen er in Stanford bzw Columbus langergen

zusammen war
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2. Die klare, abgerundete Darstellung - Rieszs Beweise sind kaum jemals wesentlich
verbessert worden -, die das Lesen der Originalarbeiten auch heute noch zum
empfehlenswerten Genuss macht. Um dies wenigstens anzudeuten, werden wir Riesz im Rahmen
des verfügbaren Platzes möglichst oft selbst zu Worte kommen lassen.
3. Der lebendige Kontakt mit Göttingen und Paris, den beiden damaligen Zentren der
Funktionalanalysis unter Hilbert und seiner Schule bzw. unter Hadamards, Frechets und
Lebesgues Führung, die Riesz vor anderen auszeichnet und erheblich zur Vereinheitlichung

der aus heterogenen Quellen entsprungenen Funktionalanalysis beigetragen hat
und ebenso zu einer rascheren Verbreitung der Lebesgueschen Theorie, die ja selbst in
Frankreich zunächst auf erheblichen Widerstand gestossen ist - Hermite verweigerte die
Annahme von Lebesgues CR. Paris-Noten [3*].
4. Die Tiefe und Vielseitigkeit seiner grundlegenden, zum grossen Teil bahnbrechenden
Arbeiten, die auf die moderne Analysis den grossten Einfluss ausgeübt haben.

2. Zum Lebenslauf

Unter Benutzung persönlicher Mitteilungen und [5, 7, 11, 13] erwähnen wir hier nur
Tatsachen und Umstände, die für Rieszs mathematisches Schaffen besondere Bedeutung
hatten. Geboren am 22.1.1880 in Györ (Raab) als Sohn eines Arztes, wuchs Riesz

zusammen mit seinem 6 Jahre jüngeren Bruder Marcel in der kulturellen Atmosphäre
dieser «Königlichen Freistadt» von damals etwa 35 000 Einwohnern in der Nähe Budapests

auf. Er begann sein Ingenieurstudium am Eidgenössischen Polytechnikum (der
heutigen ETH) Zürich im Jahre des Züricher Ersten Internationalen Mathematikerkongresses

1897, wechselte aber bald zum Mathematikstudium über, das er an der Universität

Budapest fortsetzte und 1902 mit dem Doktorat abschloss. Im gleichen Jahr promovierte

Lebesgue in Paris mit seiner berühmten Thöse de Doctorat, mit der er die überaus
folgenreiche Entwicklung des Lebesgue-Integrals einleitete. Dagegen fand Rieszs Dissertation

[4*] aus der projektiven Geometrie (s. [11], 1349-94, 1529-57) kaum Widerhall.
Umso bemerkenswerter ist es, wie bald und konsequent sich Riesz in eine ganz andere,
«moderne topologisch-funktionalanalytische» Arbeitsrichtung wandte und binnen eines

Jahrzehnts, von 1907 bis 1916, einen grossen Erfolg nach dem anderen erzielte. Entscheidend

für diese Wendung war ein einjähriger Aufenthalt vor der Promotion in dem damals
gerade aufblühenden Göttingen, wo es ihm gelang, mit Hilbert (der 1895 dorthin berufen
worden war) engen Kontakt zu schhessen und später auch Freundschaft mit E. Schmidt
und H. Weyl
Ähnlich wie seinerzeit Weierstrass begann Riesz nach Erlangung des Lehrerdiploms ab
1904 seine Berufslaufbahn an einer Oberschule, und zwar in der «Königlichen Freistadt»
Leutschau (Löcse), und war 1908-12 in gleicher Stellung in Budapest, bis er im Alter von
32 Jahren seinen ersten Ruf erhielt. Ganz erstaunlich ist es, dass Riesz unter diesen sicher
nicht leichten Bedingungen über die Hälfte seiner epochemachenden
funktionalanalytischen Entdeckungen während dieser ersten 10 Jahre nach seiner Promotion
publizierte, wie wir noch im einzelnen sehen werden. Denn wenn auch Leutschau als Hauptstadt

des Zipser Komitats und «Vorort» der 24 deutschen Zipser Städte mit seiner

665-jährigen Vergangenheit lange Zeit die blühendste Stadt Nordungarns war, so war es

doch mit damals etwa 7000 (meist deutschen) Einwohnern und seiner abseitigen Lage
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wohl keine ideale Stätte für wissenschaftliche Arbeit mit internationalem Gedankenaustausch,

und auch in Budapest dürften Rieszs Arbeitsmöglichkeiten zwar besser, aber
immer noch recht bescheiden gewesen sein.

Die weiteren Stationen seines Lebens können wir kurz kennzeichnen durch einige wenige
Hauptereignisse, nämlich seinen schon erwähnten ersten Ruf von 1912 als a.o. Professor
nach Klausenburg (Cluj), wo er 1914 zum Ordinarius ernannt wurde und tätig war, bis

Klausenburg 1918 zu Rumänien geschlagen wurde, durch zwei Übergangsjahre in Budapest,

dann durch seine wohl schönste Periode 1920-46 an der neuen Universität Szeged,

wo er zusammen mit dem Hilbert-Schüler und Klausenburger Kollegen A. Haar (1885-
1933) das später nach Bolyai benannte Mathematische Institut aufbaute, bis ihn ein Ruf
an die Universität Budapest erreichte, wo er die letzten 10 Jahre seines Lebens verbrachte
und am 28. 2. 1956 verstarb.
Damit sind wir so weit, dass wir uns den einzelnen fundamentalen funktionalanalytischen
Rieszschen Arbeiten zuwenden können.

3. Der Riesz-Fischer-Satz (1907)

«Hauptsatz: Es sei {(pt (x)} ein normiertes Orthogonalsystem integrierbarer Funktionen von

integrierbarem Quadrate, diefür ein Intervall a b definiert sind; d. h. ein System, für welches

b b

$(pi(x)<Pj(x)dx 0(i+j) und J (<pt (x))2 dx c2
a a

und zwar für jede Funktion des Systems. Ordnen wir jeder Funktion des Systems eine Zahl
at zu. Dann ist die Konvergenz von _£ af eine notwendige und zugleich hinreichende Bedingung

dafür, damit es eine integrierbare Funktion f(x) von integrierbarem Quadrate gebe,

so dass

b

\f(x)(Pi(x)dx ai
a

sei für jede Funktion (pt(x) und jede Zahl at.»

Dies ist die Rieszsche Formulierung aus den Göttinger Nachrichten von 1907, 116-22.
Wir sagen heute, der Hilbertsche Folgenraum t29 dessen «Punkte» Zahlenfolgen a (at)
mit konvergenter Reihe _£ af sind, ist isometrisch isomorph zu dem Lebesgueschen Funktionenraum

Ü[a9 b]9 dessen «Punkte» Äquivalenzklassen von auf [a, b] messbaren Funk-
b b

tionen / mit endlichem Lebesgue-Integral \f2dx [und / ~ Q<>\(f - gfdx 0] sind,
a abund man erhält die Isomorphie durch die «Fourierkoeffizienten» a{~\f<p{dx von /

bezüglich eines vollständigen Orthonormalsystems {(pt}. a

Die überragende Bedeutung dieses Satzes besteht darin, dass er eine unerwartete Brücke
zwischen zwei ganz verschiedenen Gebieten schlägt, Hilberts Integralgleichungen und
Lebesgues Integrationstheorie, die damals noch immer um ihre Anerkennung ringt und
sich Riesz als den nächst Lebesgue eifrigsten Vorkämpfer erwirbt. Weiterhin - dies nennt
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Dieudonne [2], 120, die wichtigste Folge - bahnt der Satz den Weg zu den Lp-Räumen
(s. Abschn. 6) und damit zur allgemeinen Theorie der normierten Räume.
Die hochinteressante Entdeckungsgeschichte des Satzes führt uns in den Schnittpunkt der
Ideen fast aller Schöpfer der Funktionalanalysis in statu nascendi. Darüber lassen wir
Riesz durch seine Arbeiten und seine Erinnerungen (s. [11], 327) selbst berichten: Riesz
kannte die Idee des t2 (intuitiv die Ausdehnung der Euklidischen Metrik auf abzählbar

unendlich viele Dimensionen) aus Hilberts Mitteilungen über Integralgleichungen
(1904-10; s. [6]), von denen die 4. Mitteilung (1906) hier am wichtigsten ist, indem sie den
Beginn der Spektraltheorie im funktionalanalytischen Sinn bezeichnet, die erste abstrakte
Arbeit über Integralgleichungen und die Grundlage der (später von Riesz formulierten)
Theorie der stetigen linearen Operatoren (s. Abschn. 7). Auf Lebesgue war Riesz zuerst
durch dessen Buch über trigonometrische Reihen von 1906 aufmerksam geworden und
hatte dann auch dessen Buch über Integration (1904) und die These von 1902 durchgearbeitet.

Ebenso kannte er Frechets axiomatische Definition des metrischen Raumes aus
dessen These [3] von 1906. Angeregt durch E. Schmidts Satz von 1905, dass jedes vollständige

Orthonormalsystem auf [0,1] stetiger Funktionen abzählbar unendlich ist, verbindet
Riesz schon 1906 Frechets und Lebesgues Ideen, indem er [C. R. Paris 143, 738-41] den
L2 [a, b] definiert und dessen Separabilität [5*] beweist, also die erweiterte Gültigkeit des

Schmidtschen Satzes. Für die Distanz schreibt er dabei

d{fufi) J\(h-fz?.
«[Aber] die Idee und der Mut zu versuchen, den Integralbegriff auf Probleme anzuwenden,

mit denen ich mich gerade beschäftigte, kamen mir erst 1906 beim Lesen der
ausgezeichneten Arbeit \fexcellent Memoire] von Fatou [dessen These; Acta Math. 30,

335-400], insbesondere des Fatouschen Lemmas das die Unterhalb-Stetigkeit der...
Integration besagt und das mir im Februar 1907 half, den [Riesz-Fischer-] Satz zu
beweisen.»
Aus den Göttinger Nachrichten wissen wir weiter, dass Hilbert am 9. März im Seminar
über den Satz vortrug. Aber 4 Tage eher hatte schon Fischer in Brunn über praktisch
dasselbe, von ihm unabhängig gefundene Ergebnis berichtet. Beider Noten stehen in
Band 144 der C. R. Paris [615-19 bzw. 1022-24], Rieszs Satz in wörtlicher Übersetzung
des obigen und Fischers Satz in der Form:

<?TH_EOR£ME. — Si une suite defonctions appartenant ä Q converge en moyenne, il existe
dans Q une fonction f vers laquelle eile converge en moyenne».

Hierbei ist Q die Menge der obigen Funktionen/, und «Konvergenz im Mittel» bedeutet

Konvergenz in der £2-Norm, wie üblich. Unter Benutzung einer orthonormalen Folge
erhält Fischer dann ohne Mühe die Rieszsche Form des Satzes.

Rückblickend sehen wir, dass wir hier tatsächlich mit zentralen Ideen der Exponenten der

ganzen Entwicklung, Lebesgue, Hilbert, Frechet, Schmidt, Fatou und natürlich Riesz
und Fischer, in Berührung gekommen sind.

4. Funktionale auf Hilberträumen (1907,1934-35)

Die nächsten 3 Abschnitte 4-6 hängen innerlich zusammen, indem sie Marksteine der
Dualitätstheorie betreffen, also der Idee, die auf einem Raum definierten stetigen linearen
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Funktionale zu untersuchen und damit zugleich Aufschluss über den betreffenden Raum
selbst zu erhalten. Dazu braucht man zuerst einmal eine allgemeine Darstellung solcher
Funktionale, und darum handelt es sich hier. Für den L2 [a, b] gibt Riesz 1907 die folgende
Definition und Darstellung dieser Funktionale [C. R. Paris 144, 1409-11]:

«Pour l'ensemble des fonctions sommables, de carre sommable, j'appelle Operation continue

chaque Operation faisant correspondre ä toute fonction/de l'ensemble un nombre
U(/) et teile que, quand /„ converge en moyenne vers /, U(fn) converge vers U(/).
L'operation est dite lineaire si U(fx +f2) \J(fx) + U(/2) et U(c/) cU(/). Alors pour
chaque Operation lineaire continue il existe une fonction k teile que la valeur de l'operation

pour une fonction quelconque fest donnee par l'integrale du produit des fonctions
/et k.»
Also in Formeln:

U( /) J/(x) k (x) dx, keL2 [a, b].
a

Dasselbe Ergebnis findet gleichzeitig Frechet (I.e., 1414-16], der die L2-Metrik von Riesz
(s. Abschn. 3) übernimmt, aber sonst unabhängig vorgeht.
Motiviert durch den Riesz-Fischer-Satz, hatte Riesz, wie der Titel der Note, «Sur une
espece de Geometrie analytique des systemes de fonctions sommables», zeigt, das

Programm, die «Methode der Koordinaten», die man in *f2 (in Gestalt der Glieder der
einzelnen Folge) hat, auf den L2 [a, b] zu übertragen. Den {2 nennt er «Raum» (espace);
bei L2 [a9 b] wagt er sich das noch nicht, er spricht nur von einem «Funktionensystem».
Die uns heute geläufige «geometrische» Sprechweise in der Hilbertraumtheorie stammt
allerdings nicht von Riesz, sondern von E. Schmidt, der sie 1908 [Rend. Mat. Palermo 25,

53-77] (für den komplexen t2) einführte.
Für das Folgende benutzen wir nun die willkommene Gelegenheit, ein paar Worte über
die recht merkwürdige weitere Entwicklung der genannten Theorie zu sagen. Volle
20 Jahre dauerte es, bis der Hilbertraum 1927 erstmals axiomatisch definiert wurde, und
zwar durch J. von Neumann [Göttinger Nachr., 15] in seiner Theorie unbeschränkter
linearer Operatoren, die er für eine von Hilbert angeregte mathematische Grundlegung
der Dirac-Heisenberg-Schrödingerschen Quantenmechanik von 1925-26 brauchte.
Diese Definition enthielt die Bedingung der Separabilität [5*]—<f2 und L2 sind separabel-,
aber bald bemerkten Löwig [Acta Szeged 7 (1934-35), 1-33], Riesz [I.e., 34-38] und
Rellich [Math. Ann. 110 (1935), 342-56] unabhängig voneinander, dass diese Bedingung
eigentlich entbehrlich ist. So ergab sich - übrigens recht spät - die heute übliche Definition

des Hilbertraums, und Riesz [I.e.] teilte dazu, von Löwig angeregt, seine bekannte
Darstellung samt dem üblichen Beweis (s. z.B. auch [10], 189-90) mit:

«Für jede [stetige] lineare Funktion /(/) gibt es ein eindeutig bestimmtes erzeugendes)
Element g9 so dass

ist dabei das innere Produkt des Hilbertraums.
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5. Funktionale auf C[a9 b] (1909, 1914)

Eine ungleich viel schwierigere Aufgabe als die Darstellung der Funktionale auf Hilbert-
räumen, nämlich, dasselbe für C[a9 b]9 erledigte Riesz 1909, und zwar in so glanzvoller und
endgültiger Weise, dass man leider oft vergisst, wer den ersten Schritt in das Neuland der

allgemeinen Darstellung von Funktionalen auf wichtigen speziellen Räumen getan hat.
Es war dies Hadamard [C. R. Paris 136, 351-54], der schon frühzeitig (1903) für die

stetigen linearen Funktionale A auf C[a9 b] die Darstellung

A[f(x)] lim )f(x) hn (x) dx hn e L2[a9 b]
n-+oo a

gab. Diese hat aber den Mangel, dass wir es nur mit dem Grenzwert eines Integrals
anstatt mit dem Integral selbst zu tun haben und dass die hn durch A nicht eindeutig
bestimmt sind.
Dem half Riesz 1909 durch ein Stieltjesintegral ab, in dem eine Funktion a von
beschränkter Schwankung vorkommt; sein Satz lautet [C. R. Paris 149, 974-77]:

Etant donnee TOperation lineaire A[/(x)], on peut determiner la fonction ä Variation bornee

a(x), teile que, quelle que soit la fonction continue f(x)9 on ait

A[/(x)] j/(x)„a(x).
0

[0,1] statt [a9 b] ist unwesentlich, a ist für gegebenes A im wesentlichen eindeutig bestimmt
(s. [12], 110-12). Merkwürdig ist, dass das schon 1894 eingeführte Stieltjesintegral erst
1906 erstmals (durch Hilbert, s. [6], 109, 124) und nun hier erst 15 Jahre später zum
zweiten Male Anwendung findet. Angeregt durch Lebesgue gab Riesz 1914 einen neuen,
einfacheren Beweis [Ann. 6c. Norm. Sup. 31, 9-14].
Inzwischen hatte der sehr starke Widerhall der eleganten Rieszschen Darstellung zum
Beginn einer reichen Entwicklung von Integrationstheorien geführt, zuerst mit dem Ziel
der Vereinigung des Lebesgue-, Stieltjes- und Hellingerintegrals (durch Radon, Sitz.-Ber.
Akad. Wiss. Wien, Math.-Nat. KL, 122 (1913), 1295-1438) und später bis zur Gegenwart
für stetige Funktionen mit Definitions- und Wertebereich in immer allgemeineren
topologischen Räumen, worauf wir hier nicht eingehen können [6*].

6. Lp-Räume und ihre Funktionale (1910)

Nachdem nun die Hilbertraume L2 L2[a9 b] eingeführt und besonders durch den Riesz-
Fischer-Satz in ihrer Bedeutung erkannt worden waren, lag es «nahe», Räume
LP LP[a9 b] der (Äquivalenzklassen von) auf [a9 b] messbaren Funktionen / mit endli-

b

chem Lebesgue-Integral J \f\p dx in ähnlicher Weise zu definieren. Dies hat Riesz 1910 in
a

seiner grossartigen Arbeit «Untersuchungen über Systeme integrierbarer Funktionen»
[Math. Ann. 69,449-97] getan, in der er mit einem Schlage eine voll entwickelte Theorie
der Räume («Funktionsklassen» sagt er) LP (1 <p< oo) und ihrer dualen U9 q=p/(p—l),
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bietet, so reich, dass wir hier nur die wesentlichen tragenden Ideen beleuchten können.
Wir schhessen uns Dieudonnes Meinung in [2], 124, an, der die Arbeit als die nach
Hilberts 4. Mitteilung bedeutungsvollste für die Entwicklung der Funktionalanalysis
bezeichnet. Den Anstoss dazu gab Riesz das Problem der Lösbarkeit eines abzählbaren
(oder überabzählbaren) Gleichungssystems

)fl(x)Z(x)dx cl (ieJ)
a

mit gegebenem /. und Konstanten cx nach der unbekannten Funktion £(x). Gleich zu
Beginn (S. 450) weist er auf die hier grundlegende Rolle des Lebesgue-Integrals hin:
«[Die] Möglichkeit, in sehr allgemeinen Fällen entscheidende [Lösbarkeits-] Kriterien zu
entwickeln, ist erst seit kurzem gegeben, seitdem nämlich der Begriff des Integrals durch
Lebesgue jene geistreiche und glückliche Erweiterung erfahren hat.»
Nach Erinnerung an Schmidts Lösung des Problems für den <f2 in der Arbeit von 1908

(s. Abschn. 4), also wegen des Riesz-Fischer-Satzes für den L2, spricht Riesz sofort von der
prinzipiellen Änderung der Lage beim Übergang vom selbstdualen L2 (nicht sein
Ausdruck; auch «dual» sagt er nicht) zu IP mit p#2 (und > 1) und von der grundsätzlichen
Tragweite dieses kühnen Schrittes (S. 452):
«Jede Zahl p bestimmt eine Funktionenklasse [LF]. Die Rolle der Klasse [L2] übernehmen
hier je zwei Klassen [LP] und [Lp,{p~1}] Die Untersuchung dieser Funktionenklassen
wird auf die wirklichen und scheinbaren Vorteile des Exponenten p 2 ein ganz besonderes

Licht werfen; und man kann auch behaupten, dass sie für eine axiomatische Untersuchung

der Funktionenräume brauchbares Material liefert.»
«Funktionenraum» sagt Riesz hier zum ersten Male! Hier stehen wir also erneut (vgl.
Abschn. 5) am Übergang von Hilberträumen zu (speziellen) Banachraumen, und Riesz
betont (S. 453), dass nun «die synthetische Behandlungsweise in ihre vollen Rechte tritt»,
weil man eben nicht mehr £p (den Raum der Folgen a (at) mit konvergenter Reihe Y\ai\p)
heranziehen kann wie /2 bei L2 vermöge Riesz-Fischer, sondern unabhängig vorgehen
muss.
Äusserst instruktiv ist es nun zu verfolgen, wie Riesz in diesem Meisterwerk in genialer
Weise seine Theorie zielsicher schrittweise entfaltet, beginnend mit dem Beweis des

«Handwerkszeuges» der sog. Holder- und Minkowski-Ungleichungen für Integrale,
gefolgt von der Definition der starken Konvergenz einer Folge {f}c:Lp gegen / durch

lim]\f(x)-fl(x)\pdx 0 (S.464)

und der schwachen Konvergenz in einer Weise, die er als gleichwertig mit dem heute
üblichen

lim](f(x)-fi(x))g(x)dx=0 für alle geU
i -*aoa

nachweist, und gekrönt durch seinen für alles Weitere entscheidend wichtigen «Hauptsatz
über schwache Konvergenz» (S. 466), der besagt, dass jede unendliche Menge von Funk-
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tionen / im LP, für die alle Integralwerte J|/|p dx unterhalb einer nur von p abhängigen
a

Schranke liegen, schwach konvergente Teilfolgen enthält.
Gestützt auf diesen Satz, beweist Riesz nun nacheinander die Vollständigkeit des LP, ein
Kriterium für die Existenz einer Lösung ^elP des obigen Systems mit feL9 und die
Dualität von LP und U mit der Darstellung stetiger linearer Funktionale auf Lq durch
(S. 475)

b

k(f) \a(x)f(x)dx9 aeU.
a

Überraschend entwickelt Riesz hieraus sofort die Definition stetiger linearer Operatoren
(«Funktionaltransformationen») T[f(x)] auf LP9 deren Adjungierter («Transponierter»)
F[g(x)] auf U9 definiert durch (S. 478)

J T[f(x)]g(x) dx ]f{x)r\g(x)] dx9
a a

und beweist die bekannte Bedingung für die Existenz der Inversen,

\\f (x)\pdx <MPl\T[f(x)]\pdx für alle f eLP,
a a

und entsprechend für die Inverse von &~.

Nach diesem Höhepunkt gibt Riesz eine Anwendung der Ergebnisse auf die Spektraltheorie

kompakter Operatoren («vollstetiger Funktionaltransformationen») vermöge

C(x)-AK[«x)] /(x)

mit £eL2 und symmetrischem K Jf\ also für lineare Operatoren, bei denen definitions-
gemäss (S. 487) «jede schwach konvergente Folge in eine stark konvergente übergeht»;
dies stimmt mit Hilberts Definition überein [7*]. Hier haben wir also einen Vorläufer einer
«abstrakten Fredholmtheorie», die Rieszs nächstes grosses Ziel gewesen ist, wie wir in
Abschn. 8 sehen werden.

7. Rieszsche Form der Hilbertschen Spektraltheorie (1913)

Vage Ansätze zur Spektraltheorie für Differentialgleichungen reichen weit zurück.
Spektraltheorie im funktionalanalytischen Sinne entwickelte Hilbert, fussend auf H. A.
Schwarz, Poincare und anderen klassischen Meistern und unmittelbar angeregt durch
Fredholms Theorie, in seinen Mitteilungen über Integralgleichungen; vgl. [9], 50-52. Mit
genialem Blick erkannte Riesz, dass sich Hilberts Methode der quadratischen Formen
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von unendlich vielenVariablen durch eine begrifflich und technisch wesentlich einfachere
ersetzen lässt. Zusammen mit der im vorigen Abschnitt besprochenen Arbeit und dem
Wunsch, eine entsprechende Theorie der Folgenräume £p zu entwickeln, gab dies Riesz
auf Boreis Einladung hin den Anstoss zur Abfassung des Buches «Les systemes d'equations

lineaires ä une infinite tfinconnues» (Sammlung Borel, 1913) über eine Lösungstheorie
unendlicher Gleichungssysteme

QO

Y.aikxk ci9 a (aik)eSq; i l929...
k=l

(s. auch [11], 831-1016), die Riesz analog der in Abschn. 6 entwickelte. Wir müssen dieses

Buch, dessen Inhalt Riesz bescheiden eine bekannte Theorie, dargestellt «sous des aspects
nouveaux» nennt, unter Rieszs funktionalanalytische Grosstaten rechnen, weil er darin
anstatt der Hilbertschen quadratischen Formen Q die stetigen linearen Operatoren
(«substitutions lineaires») zum zentralen Begriff erhob und damit der Spektraltheorie die

uns heute geläufige Form gab. Einleitend sagt er noch, dies müsse als eine erste Etappe
der sich entwickelnden Funktionalanalysis («la Theorie des fonctions d'une infinite de

variables») angesehen werden, «qui fournira peut-etre bientot les methodes les plus
puissantes de toute l'Analyse», sicherlich ein Urteil über die Gesamtentwicklung, das
Rieszs ungewöhnlichem Scharfblick zu aller Ehre gereicht!
Kapitel I des Buches bringt einen interessanten historischen Überblick über unendliche
Gleichungssysteme, Kap. II eine Einführung in die unendlichen Determinanten («on
attribue leur introduction ä M. G. W. Hill») und Kap. III eine Verallgemeinerung der
Schmidtschen _*2-Gleichungstheorie auf den Folgenraum P mit p > 1 (vgl. Abschn. 6) -
aber nirgends nennt er den tp einen «Raum»: So sehr fühlt man sich damals noch der
Euklidischen Geometrie verpflichtet, aus der *f2 erwachsen ist (s. Abschn. 3), dass man
jene allgemeinere Sprechweise noch nicht wagt.
Uns interessieren vor allem Kap. IV und V, die der Spektraltheorie stetiger linearer
Operatoren («substitutions lineaires») und der Umformung der Hilbertschen Spektraltheorie

gewidmet sind. Riesz definiert einen solchen Operator auf dem Raum («espace

hilbertien») <f2 als einen, der konvergente Folgen in ebensolche transformiert. Weiter führt
er die Norm («borne») MA eines solchen Operators A ein und zeigt, dass A die starke
Konvergenz einer Folge {x(n)} mit x{n) (x{kn)) im <f2 erhält, die durch

£|xfc-xj>>|2->0 (S.79)
k=l

definiert ist. Vollstetige lineare Operatoren definiert Riesz (ähnlich wie im vorigen
Abschnitt) als diejenigen, die alle konvergenten Folgen im /2 in stark konvergente transformieren.

Er wendet sich dann Folgen von Operatoren zu und führt (S. 107) die starke und
die gleichmassige Operatorkonvergenz ein, in moderner Bezeichnung

\\Anx-Ax\\-+0 für alle xef2 bzw. \\An-A\\ ->0.

Spektrum und Resolvente folgen als nächste Begriffe, und Riesz zeigt (S. 117) die Holo-
morphie der letzteren mittels eines Funktionalkalküls, den er als «le calcul des risidus»
bezeichnet.
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In Kap. V stellt Riesz die Verbindung mit Hilberts Formen her, indem er jedem Operator
A vermöge (x, y) h* (_4x, j;) eine bilineare Form und umgekehrt zuordnet. Gegen Ende des

Kapitels beweist er als Höhepunkt und Abschluss der Theorie die Spektraldarstellung

f(A)= J f(QdAt (S.137)
— OO

für stetiges / und einen selbstadjungierten stetigen linearen Operator A auf £2 (unter
Hinweis, dass man tatsächlich nur über ein endliches Intervall zu integrieren braucht).
Das letzte Kapitel bringt dann noch einige Anwendungen auf Differentialgleichungen
und Fourierreihen.
Wie wir damit gesehen haben, bietet diese noch heute lesenswerte Darstellung, wie schon
die Arbeit in Abschn. 6, wiederum eine voll ausgereifte, in sich geschlossene Theorie, die
sich ebenfalls als von höchster Bedeutung für die Gesamtentwicklung der
Funktionalanalysis erweisen sollte.

8. Kompakte lineare Operatoren (1916-18)

Im vorliegenden Abschnitt treten uns zum dritten Male - aber diesmal ganz zentral -
kompakte Operatoren («vollstetige Transformationen») [7*] entgegen, in Rieszs berühmter

Arbeit «Über lineare Funktionalgleichungen» [Acta Math. 41 (1918), 71-98], einer
«abstrakten Fredholmtheorie», die Hilberts Theorie der vollstetigen quadratischen Formen

(1906,4. Mitteilung) mit umfasst. Dass in Fredholms Theorie nicht die Integraldarstellung,

sondern die Kompaktheit des vorkommenden linearen Operators entscheidend
ist, hatte schon Hilbert erkannt. Riesz hat sich nicht geäussert, wie weit seine Ideen zu der
1916 eingereichten, aber, durch den Krieg verzögert, erst 1918 erschienenen Arbeit
zurückgehen.

Riesz legt wieder die Menge der auf einem Intervall [a9 b] stetigen Funktionen zugrunde,
aber im Gegensatz zu früheren Arbeiten nennt er diese erstmals «Funktionalraum» und
führt dazu eine axiomatisch definierte und mit dem Schmidtschen Symbol || • || (1908)
bezeichnete Norm (die Maximumsnorm) ein (S. 72):

«Ferner nennen wir Norm von f(x) und bezeichnen mit || /1| den Maximalwert von |/(x)|;
die Grösse || /1| ist danach im Allgemeinen positiv und verschwindet nur dann, wenn f(x)
identisch verschwindet. Ferner bestehen für sie die Beziehungen

\\cf(x)\\ \c\ ||/(x)||; 11/, + /2|| < H/,|| + ||/2||.

Unter Distanz der Funktionenfi9 f2 verstehen wir die Norm \\fx —f2\\ II/2—/_ II ihrer
Differenz.»

Riesz benutzt im weiteren nur diese Axiome des normierten Raumes, volle 6 Jahre vor
dem Erscheinen der Banachschen Dissertation, sieht also von der speziellen Gestalt der
Norm (ausser im Zusammenhang mit Integralgleichungen) ab. Im Vollbewusstsein der

Tragweite dieses Vorgehens sagt er dazu, die Beschränkung auf stetige Funktionen sei

nicht wesentlich:
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«[Der] in den neueren Untersuchungen über... Funktionalräume bewanderte Leser wird
die allgemeinere Verwendbarkeit der Methode sofort erkennen [und] auch bemerken,
dass [u. a. L2 und t2 dabei] noch Vereinfachungen gestatten, während der hier behandelte
scheinbar einfachere Fall als Prüfstein für die allgemeine Verwendbarkeit [der Methode]
betrachtet werden darf.»

Hinsichtlich der «Vollstetigkeit» bezieht sich Riesz ausdrücklich auf Hilbert und auf
Frechets Begriff der Folgenkompaktheit (1906), der eine «besonders einfache und glückliche

Definition der vollstetigen Transformation» erlaubt (S. 73, 74):

«Eine Folge {/„} heisse nach Frechet kompakt, wenn jede Teilfolge derselben eine

gleichmässig konvergente [also im Sinne der Norm konvergente] Teilfolge enthält....
[Eine] lineare Transformation heisse vollstetig, wenn sie jede beschränkte Folge in eine
kompakte überführt.» [7*]

Riesz entwickelt nun in seiner Arbeit im wesentlichen eine allgemeine Spektraltheorie
kompakter linearer Operatoren auf Banachraumen, die Fredholms klassische Sätze als

Sonderfälle enthält. So zeigt er, dass ein kompakter linearer Operator ein höchstens
abzählbares Spektrum hat, dass jedes X ^ 0 des Spektrums ein Eigenwert mit endlichdi-
mensionalem Eigenraum ist, dass 0 der einzig mögliche Häufungspunkt ist, dass die
«Fredholmsche Alternative» (S. 86) gilt, und so fort. Diese ganze Theorie hat im Laufe der
Entwicklung der stetigen linearen Operatoren keine wesentliche Änderung erfahren;
lediglich haben ihr TH. Hildebrandt [Acta Math. 51 (1928), 311-18] und J. Schauder

[Studia Math. 2 (1930), 183-96] einige weitere Resultate über adjungierte Operatoren
zugefügt, weshalb man auch von der «Riesz-Schauder-Theorie» spricht.

Bleibende Folgen der Rieszschen Arbeit sind vor allem:
1. Das allgemeine weltweite Interesse an der Theorie der Integralgleichungen, um 1900

plötzlich erwacht durch Fredholms sensationelle Erfolge, klang durch Rieszs Absorption
der Fredholmtheorie in die Theorie der kompakten Operatoren rasch ab.
2. Riesz hat damit einer der allerwichtigsten Klassen von Operatoren einen festen Platz
in der Funktionalanalysis gesichert.
3. Rieszs Arbeit bedeutet den Beginn der Theorie der Banachraume, die sich trotz der

Ungunst der Zeit unglaublich rasch entwickelte.

In der Tat werden axiomatisch definierte Normen für Folgenräume schon bald durch
Helly [Monatshefte Math. Phys. 31 (1921), 60-91], der u.a. Rieszs Buch erwähnt, und
durch Hahn [I.e., 32 (1922), 3-88] verwendet, der den Begriff «linearer Raum» prägt, dann
für abstrakte Mengen durch Banach [Fund. Math. 3 (1922), 133-81], der von einer
«Klasse von Elementen» spricht, und durch N. Wiener [Bull. Soc. Math. France 50

(1921-22), 119-34], der den Ausdruck «vector family» benutzt.

9. Rieszräume (1928, 1930-32, 1940)

Mit Kriegsende beginnt 1918 für Riesz eine schwierige Zeit, bis endlich die Aufbauphase
in Szeged (s. Abschn. 2) angelaufen ist. Rieszs bedeutendste spätere funktionalanalytische
Arbeiten betreffen Vektorverbände oder Rieszräume. Ein Rieszraum ist ein teilgeordneter
Vektorraum, der zugleich ein Verband ist, so dass also für je zwei Elemente A9 B eine
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kleinste obere Schranke und eine grosste unter Schranke existiert. [8*]. Wie wir abschliessend

skizzieren wollen, hat Riesz, beginnend mit einem Vortrag «Sur la decomposition
des Operations fonctionnelles lineaires» auf dem Internationalen Mathematikerkongress
von 1928 in Bologna [Atti III, 143-48], in dem er Rieszräume einführte, eine Entwicklung
eingeleitet, die die Funktionalanalysis mit der Verbandstheorie in Berührung gebracht
hat. Den Ausgangspunkt bildet Rieszs Beobachtung, dass Jordans Satz von der Zerlegung

einer Funktion beschränkter Schwankung in eine Differenz zweier monotonen
Funktionen wegen der Darstellung in Abschn. 5 automatisch eine Zerlegung der
Funktionale auf C[a9 b] ergibt. Um solche Zerlegungen nun aber abstrakt, d. h. unabhängig von
irgendwelchen formelmässigen Darstellungen zu erhalten, führt Riesz auf Mengen von
Funktionalen A,B9... vermöge

A<B:oA(f)< B(f) für alle nichtnegativen /
eine Teilordnung ein. Er nennt dann B Majorante von A (und A Minorante von B) und
erhält einen Rieszraum vermöge seines Hauptsatzes [I.e., 144], dass für eine majorisierbare
bzw. minorisierbare Menge von Funktionalen stets eine kleinste obere bzw. grosste
untere Schranke existiert.
Dass Riesz wohl von Anfang an eine neue Methode für Spektraldarstellungen linearer
Operatoren im Sinn hatte, bestätigt er sofort in seiner Arbeit «Über die linearen
Transformationen des komplexen Hilbertschen Raumes» [Acta Szeged 5 (1930-32), 23-54].
Damals entwickelt man «in aller Eile» [I.e., 23] die in der Quantenmechanik benötigten
unbeschränkten linearen Operatoren im (separablen) Hilbertraum, von Neumann unter
Benutzung der «Cayleytransformation» (s. [1], 308), M. H. Stone vermöge Carlemanscher
Ideen [I.e., 310] und Riesz nun unter Benutzung eines lokalen Zerlegungssatzes [Acta
Szeged 5, 37] für beschränkte lineare Operatoren, ein Analogon des Satzes, dass [I.e., 25,

26]

«... [jede] beschränkte quadratische Form,... wenn sie nicht schon... definit ist, immer
als Differenz zweier positiv definiten und zueinander orthogonalen Formen dargestellt
werden kann [Von] diesem Satz aus [bietet sich] der klarste Einblick in das enge
Verhältnis zwischen den alten und den neuen Resultaten .»

Riesz überträgt dann [I.e., 44] den Zerlegungssatz auf selbstadjungierte unbeschränkte
lineare Operatoren und gibt am Schluss die Spektralzerlegung und entsprechende
Integraldarstellungen für den unbeschränkten Fall.
Unabhängig von Riesz werden Rieszräume und Banachverbände (Rieszräume, die auch
Banachraume sind, [8*]) durch Kantorowitsch (1935-37), Freudenthal (1936), G. Birkhoff

(1938) und andere behandelt. Die in diesen Arbeiten entscheidende Verbandseigenschaft

vermag nun Riesz 1940 [Annais of Math. 41, 174-206] durch eine schwächere

«Zerlegungseigenschaft» zu ersetzen, bei der aber die dualen Räume immer noch
Verbände bilden, so dass er eine zugehörige Spektraltheorie mit Anwendung auf abstrakte
Integrale (Daniells Integral insbesondere) gewinnen kann. Auf diese Arbeit folgt später
die Entwicklung «allgemeiner Rieszdarstellungen» linearer Operatoren auf Räumen von
praktischem Interesse, durch Grothendieck [Canad. J. Math. 5 (1953), 129-73], Bartle,
Dunford and J. T. Schwartz p.c., 7(1955), 289-305] und andere, eine Entwicklung, die sich
bis fast in die Gegenwart fortgesetzt hat.
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10. Schlussbemerkung

Angesichts unserer notwendigen, wenn auch muhelosen Einteilung in Abschnitte sollten
wir nicht die innere Kontinuität übersehen, die Rieszs funktionalanalytisches Schaffen
auszeichnet, der Motivierung nach von den Integralgleichungen her, verbunden mit den
am Ende von Abschn 3 genannten Ideen, und der Entwicklungstendenz nach von
Hilbert- zu Banachraumen, stark beeinflusst von der zentralen Rolle der kompakten Operatoren

und durch die Methoden der Spektraltheone, insbesondere der Spektraldarstellungen
linearer Operatoren So erscheint uns ruckblickend dieses grosse Werk als ein

organisches Ganzes von in der Mathematik selten erreichter Geschlossenheit und Schönheit

Erwin Kreyszig, Carleton University, Ottawa, Kanada
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ANMERKUNGEN

[1*] Kurz angedeutet wurde dieses Thema in [9], 52-54
[2*] Die Gebietseinteilung in [11], die «Funktionenraume» und «Funktionalanalysis» trennt, erschien uns nicht

besonders gunstig, und wir haben sie nicht benutzt

[3*] Vgl S 121 in T Hawkins, Lebesgue's Theory of Integration, 2 Aufl (Chelsea, New York 1975) C R Paris
bedeutet Comptes rendus hebdomadaires des seances de l'Academie des Sciences, Paris

[4*] Nach einer freundlichen Mitteilung von Herrn Prof B Szokefalvi-Nagy durfte wohl J Välyi (Valyi Gyula) sein

Doktorvater gewesen sein In [11] findet man hierüber keine Angaben, und Riesz erwähnt Valyi nur ganz
nebenbei

Nach einer weiteren freundlichen Mitteilung von Herrn Dr U Hunger (Umversitatsarchiv Gottingen) hat

Riesz nach semer Budapester Promotion im Wintersemester 1903/04 u a bei Hilbert gehört (partielle
Differentialgleichungen) und an 2 Seminaren (Hilbert/Mmkowski und Klem/Schwarzschild) teilgenommen

[5*] Em Raum heisst separabel, wenn er eme in ihm dichte abzahlbare Teilmenge besitzt

[6*] Für die Entwicklung bis etwa 1970 siehe J Batt [DMV-Bencht 74 (1973), 147-181] und die zugehörigen 150

Literaturangaben
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[7*] Em linearer Operator heisst kompakt, wenn er jede beschrankte Menge in eine Menge transformiert, deren

abgeschlossene Hülle kompakt ist, äquivalent dazu, wenn er jede beschrankte Folge in eine Folge transformiert,

die eine konvergente Teilfolge enthalt Em kompakter linearer Operator transformiert jede schwach

konvergente Folge in eine stark konvergente, und ist der betreffende Raum reflexiv (wie z B £v und LP mit
1 < p < oo), so gilt auch die Umkehrung

[8*] Beispiele von Folgen- und Funktionenraumen, die Rieszräume bilden, findet man z B in G Birkhoff, Lattice
Theory, 3 Aufl (Amencan Mathematicai Society, Providence, RI 1967), Kap XV, wo auch Banachverbände
ausführlich behandelt werden
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Die Polynome von Yang-Lee und ihre Nullstellen

1. Einführung

Das Ising-Modell der statistischen Mechanik führt zur Untersuchung der Nullstellen
spezieller Polynome in einer komplexen Variablen. Je nach den Werten der beteiligten
Parameter befinden sich diese Nullstellen auf dem Einheitskreis, auf der negativen reellen
Halbachse oder auf der Vereinigung der beiden Mengen. Es gibt aber auch Fälle, in denen
sie diese Vereinigungsmenge verlassen.
Das Ising-Modell benützt einen Graphen G, dessen Eckpunkte ie {1,2,..., n) die Lage
der Teilchen markieren und dessen Kanten {i,j}eK Teilchenpaare verbinden, welche in
Wechselwirkung stehen. Für jedes Teilchen ist ein Spin ale{+ 1,-1} gegeben und die

Energie des Systems berechnet sich aus

E=-J I alaJ-H"E(Tl. (1.1)
{i,j}e_- i

Dabei ist H die Magnetfeldstärke und J eine Konstante, die bei ferromagnetischen
Wechselwirkungen positiv, bei antiferromagnetischen negativ ist. Summiert man über alle
2n Werte des Vektors a (al9...9an)9 so erhält man die «Partitionsfunktion»

Z_ _>-«"'*_-«p(J1 I «^+ #!_><) (1-2)

(k ist die Boltzmann'sche Konstante, Jx J/k T die Temperatur- und JFaf^ H/k T die

Magnetfeldvariable). Die freie Energie ist dann

f(T9H)= lim -— logZn. (1.3)
»-oo Tl

Singularitäten dieser Funktion entstehen dort, wo sich Nullstellen der Zn häufen, und
erscheinen physikalisch als Phasenübergänge. Es ist deshalb wichtig, Aussagen über die

Lösungen von Zn — 0 zu gewinnen.
Wir beschränken uns hier auf den Fall H 0. Man kann dann Zn im Wesentlichen als

erzeugende Funktion interpretieren: man betrachtet die a% als unabhängige Zufallsvaria-
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