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Potenzen der Pascalmatrix und eine Identitat
der Kombinatorik

Einleitung

In dieser Note beschéftigen wir uns mit Matrizen, deren Elemente Binomialkoeffizienten
oder Verallgemeinerungen davon sind. Die Rekursionsformeln zwischen diesen werden
mit Hilfe des Matrixproduktes dargestellt. Umgekehrt erhalten wir aus der Matrixdar-
stellung kombinatorische Identitdten.

Die Elemente einer (n + 1) x (n+ 1) Pascalmatrix P sind durch P (j,k):= 1, fiir j = k oder
k=0und j=0,...,n P(j,k):=0 fir k>j; P(j,k):=P(G—1,k)+P(j—1,k—1), fir
j=1,...,n,k=1,...,n, gegeben. Die Zahlen P (j, k) sind nichts anderes als die wohlbe-
kannten Binomialkoeffizienten [1], [3]. Wir wissen, dass die Summe der n-ten Zeile die
Anzahl verschiedener Teilmengen einer n-elementigen Menge angibt:

> P(nk)=2"
k=0

Die Aufgabe, die Anzahl Hy (n, k) der k-dimensionalen Randzellen eines Hyperwiirfels in
einem n-dimensionalen Euklidischen Raum zu bestimmen, fiithrt auf die folgende Rekur-
sionsformel [2] und auf die Hyperwiirfelmatrix Hy: Hy(k,k):=1, Hy(k,0):= 2*, fiir
k=0,...,n; Hy(j,k):=0 fir k>j; Hy(jk):=2Hy(j—1,k)+ Hy(j— 1,k — 1), fiir
i=1,...,nk=1,...,n Fir n =5 erhalten wir die folgenden Matrizen und die entspre-
chenden Zeilensummen:

100000 2°
110000 2
p | 121000 22
133100 2°
146410 24
1 51010 5 1 2°
100000 3°
210000 3t
Hy=[ 441000 3
812 6 1 0 0 3
163224 8 1 0 3*
32 80 80 40 10 1 3’

Der Hyperwiirfel im R® besitzt 32 Ecken, 80 Kanten, ebensoviele 2-dimensionale Seiten,
40 3-dimensionale Wiirfel und 10 4-dimensionale Hyperwiirfel. Die Hyperwiirfelmatrix
und die Pascalmatrix sind durch die Gleichung Hy = P? miteinander verkniipft. Fiir die
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inversen Matrizen und deren Zeilensummen erhalten wir;

1 0 0 0 00 1
-1 1 0 0 00 0
pt | 12 1 0 00 0
“{-1 3 -3 1t 00 0
1 -4 6-4 10 0
~1 5-10 10 =5 1 0
t 0 0 0 00 1
-2 1t 0 0 00 —1
4 -4 1 0 00 1
Hy''=| -8 12 -6 1 0 0 —1
16 —32 24 -8 1 0 1
—32 80 —80 40 —10 1 —1

So wie in der n-ten Zeile der Pascalmatrix die Koeffizienten der Entwicklung von (1 + x)"

stehen, so stehen in den n-ten Zeilen der Hyperwiirfelmatrix die Koeffizienten von
2+ x)" [6], [7]

Wir definieren die (n + 1) x (n + 1) Matrizen B, ,), pe R, wie folgt:
B(n,p)(k’k):= 1, B(",p)(k,O):"-—_ pk, fﬁr k=0’...,n’ (1)

B, »(,k):=pB (i —1,k) + B, , (= 1,k—1), firj=1,...,n,

B, (i k):=0, fir k<k<n. )
Offensichtlich gilt B, ,,= P, B, ,, = Hy und

B, +1,,U,k) =B, ,(.k), firj=0,...,n, k=0,...,n. (3)
Die Zahlen B, ,, (j, k) sind verallgemeinerte Pascalzahlen, die neben den Randbedingungen
(1) fiir festes p und n durch die Rekursionsformel B(j,k):=pB(j— 1,k) + B(j— 1,k —1)

bestimmt sind. Andere Erweiterungen finden sich in [4], [5] und [8].

Theorem 1:
Y Bp (k) x*=(p+x), neN, p,xeR.
k=0

Beweis. Die Behauptung ist sicher wahr fiir n = 0. Mittels vollstdndiger Induktion erhal-
ten wir:

n+1 nt+1

kZO By, p(n+ Lk)xk = kZO {PB(n+ 1,5 k) + B,y l,p)(n’k —1)} x*

= ) pB(,,'p)(n,k)x"+ > B(,,,p)(n,k)x"
k=0 k=0

=p(p+x+(p+xy=(p+x*. [



El. Math., Vol. 45, 1990 109

Setzen wir x = 1, so erhalten wir
Korollar 1.

2 By ,mk)=(p+1), neN, peR.
k=0

Theorem 2:
B(n,p) == B(pn‘l), fﬁl‘ pEZ\{O}.

Beweis. Die Aussage ist wahr fiir p = 1, ne N, und fiir alle pe Z\ {0}, n = 0. Der Induk-
tionsschritt von (n,p)e Nx Z\{0} auf (n+1,p+ 1)e Nx N, bezichungsweise auf
(n+1,p—1)eNx N, erfolgt durch:

rpB(” ) 0 B(n 1) 0
BFn+1,p)B(n+1,1)= CT’p 1 d'T 1

i Bgt,p)B(n,l) 0
| "B, +d" 1
— i Bg:pl+ 1) 0
"By +d” 1]

Nun zeigen wir, dass die (n + 2)-te Zeile des Produktes wie die Rekursionsformel fiir die
(n + 2)-te Zeile von B, , aufgebaut ist. Wir beniitzen die Gleichungen (2) und (3).

nt+1

(B(n+ 1,p) B(n+ 1,1))0, k) = fgo B(n+1,p)(j’f)B(n+ 1,1)(f; k)

_ n . f n+1 ) f
- Z pB(n+1,p)(.]_1sf) + Z B(u+l.p)(.]__1:k—1)
f=0 k f=1 k

. “ . f—1
=pBy ,+1— 1Lk + fgl Boi1pi—1,f~— 1)( K

" _1
+ % Bueint-tr-0(1 7))
f=1

1
= pB(n,p+1)(j_ l’k) + B(n,p+1)(j_ 1’k) + B(n.p+1)(j—' l’k - 1)
=(P+1)B(n,p+1)(j‘—1ak)+B(n,p+1)(i“1ak“1)- n

Die beiden Theoreme ergeben eine Identitdt der Kombinatorik.

Korollar 2.

n ky kipi-2  kjpj-1 k ki, - k-
I P S 3 (sgn(p»"“'"‘(")( )( . )( A ‘)=(p+1)",
ki=0 k=0 k|p|_1=0 k3p|=0 kl k2 kIP""l Ipl

fir pe Z\{0}.
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Fir p = 2 erhalten wir:

LAY E AV
=3
klz=:o k22=0 <k1)(kz)

und fiir p= — 2:

. & n+ky H kl —(— 1)\
E 2 () ()=

M. Jeger wies mich darauf hin, dass das Korollar 2 auch aus dem polynomischen Satz

n n"—vl n‘—‘vl ""02 vk
(x;+ ...+ x)" = > X% X5 5y o X,
vi+...tvg=n Ul Uy U3 Uy

hergeleitet werden kann [4]. Setzen wir hier k=p+1 und x; =... =x,,, =1, resp.
Xy =...=X,=—1und x,,;, =1, so folgt

(p+1)’l= Z (n)<n~—vl)“.(n‘—l)1“...“UIPI—'I)(__ 1)vl+...+v|p|
vit..  +opre1=n \V1 U, Vip)
n n—vy n=v1=..."Vip|~1 n n__vl
Z Z o Z ( )( >
v1=0v2=0 Vip1 =0 B—v,/\B—V; — 0,

. (n —0; ... ~U|P|"1)(_ 1)u1+...+v|pl

n——vl——-...~—v|p|

hz=0k22=0”-"u§:=0(k1)(k2)“-<k“" e ‘

R. Brawer, Seminar fiir angewandte Mathematik, ETH-Ziirich
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