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Potenzen der Pascalmatrix und eine Identität
der Kombinatorik

Einleitung

In dieser Note beschäftigen wir uns mit Matrizen, deren Elemente Bmomialkoeffizienten
oder Verallgemeinerungen davon sind. Die Rekursionsformeln zwischen diesen werden
mit Hilfe des Matrixproduktes dargestellt. Umgekehrt erhalten wir aus der Matrixdarstellung

kombinatorische Identitäten.
Die Elemente einer (n + 1) x (n +1) Pascalmatrix P sind durch P(j, k): 1, für j k oder
k 0und; 0,...,n;P0',k):=0für k>j; P(j,k):= P(j- 1,/c) + P(j-l,k-l)9 für

j 1,..., n, k 1,..., n, gegeben. Die Zahlen P(j, k) sind nichts anderes als die
wohlbekannten Bmomialkoeffizienten [1], [3]. Wir wissen, dass die Summe der n-ten Zeile die
Anzahl verschiedener Teilmengen einer n-elementigen Menge angibt:

ZP(n,k) 2n.
fc 0

Die Aufgabe, die Anzahl Hy (n, k) der fe-dimensionalen Randzellen eines Hyperwürfels in
einem n-dimensionalen Euklidischen Raum zu bestimmen, führt auf die folgende
Rekursionsformel [2] und auf die Hyperwürfelmatrix Hy: Hy(k,k):= 1, Hy(k,0):=2k9 für
k 0,...,n; Hy(j,k):=0 für k>j; Hy (j,k): 2 Hy(j- l,k) + Hy(j- l,k - 1), für

j 1,..., n, k 1,..., n. Für n 5 erhalten wir die folgenden Matrizen und die
entsprechenden Zeilensummen:

p

Hy=\

'
1 0 0 0 0 °\ 2°
1 1 0 0 0 °\ 21

1 2 1 0 0 0 22

1 3 3 1 0 0 23

1 4 6 4 1 0 2*

k
1 5 10 10 5 1/ 25

10 0 0 0 °\ 3°
2 1 0 0 0 °\ 31

4 4 1 0 0 0 32

8 12 6 1 0 0 33

16 32 24 8 1 °/ 34

32 80 80 40 10 1/ 35

Der Hyperwürfel im R5 besitzt 32 Ecken, 80 Kanten, ebensoviel 2-dimensionale Seiten,
40 3-dimensionale Würfel und 10 4-dimensionale Hyperwürfel. Die Hyperwürfelmatrix
und die Pascalmatrix sind durch die Gleichung Hy P2 miteinander verknüpft. Für die
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inversen Matrizen und deren Zeilensummen erhalten wir:

p-1 =i

f A 0 0 0 0 °\ 1

1 0 0 0 °\ 0
-2 1 0 0 0 0

3 --3 1 0 0 0

-4 6 -4 1 °/ 0
5 - 10 10 -5 1/ 0

f 1 0 0 0 0 °\ 1

-2 1 0 0 0 °\ -1
4 -4 1 0 0 0 1

-8 12 -6 1 0 0 -1
16 -32 24 -8 1 0 1

-32 80 -80 40 --10 1/ -1

Hy-l \

So wie in der n-ten Zeile der Pascalmatrix die Koeffizienten der Entwicklung von (1 + x)n

stehen, so stehen in den n-ten Zeilen der Hyperwürfelmatrix die Koeffizienten von
(2 + x)".[6],[7].

Wir definieren die (n + 1) x (n -f 1) Matrizen Binp)9 peR9 wie folgt:

B(n,p)(k9k):~l9 B^p)(k90): f9 für k 0, ...,n,

BintP)(j9k): pBintP)(j - 1,/c) + B{ntP)(j - 1,/c - 1), für ; 1,..

B{ntP)(j9k): 09 für k<k<n.

Offensichtlich gilt B{nX) P,_5(II 2> #y und

£(n+i,p)Ü\*) BintP}(j,k), für ; 0,..., n, /c 0,..., n.

(1)

(2)

(3)

Die Zahlen Binp) (j, k) sind verallgemeinerte Pascalzahlen, die neben den Randbedingungen
(1) für festes p und n durch die Rekursionsformel B (j, k): p B (j — 1, k) + B (j — 1, k — 1)

bestimmt sind. Andere Erweiterungen finden sich in [4], [5] und [8].

Theorem 1:

n

£ B(„tP)(n9k)xk (p + xf9 neN9 p9xeR.
k-0

Beweis. Die Behauptung ist sicher wahr für n 0. Mittels vollständiger Induktion erhalten

wir:

n+l

fc«0
£ Bin+Up)(n + l,k)xk= £ {pß(.+ 1,p)(/i,fc) + ß(II+ltP)(n,fc-l)}x*

* 0

Z pB{ntP)(n9k)xk+ I B{ntP)(n9k)xk
k=0 fc=0

=P{p+xY+(p+xr=(p+xf+i.
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Setzen wir x 1, so erhalten wir

Korollar 1.

i B(niP)(n,k) (p + \f, neN,peR.

Theorem 2:

B(*p) *8u), fürpeZ\{0}.

Beweis. Die Aussage ist wahr für p \,neN, und für alle peZ\{0}, n 0. Der
Induktionsschritt von {n,p)eNxZ\{0} auf (n+l,p +1)bNxN, beziehungsweise auf
(n + l,p - l)eNxN~, erfolgt durch:

Lcrß(.1)+„T ij
r </+1, oi
Lcrß(,1)+„r ij-

Nun zeigen wir, dass die (n + 2)-te Zeile des Produktes wie die Rekursionsformel für die
(n + 2)-te Zeile von Bin+Xp) aufgebaut ist. Wir benützen die Gleichungen (2) und (3).

(Bin + i,p)Bin+UX))(j,k)= "Z Bin+Up)(j,f)B{n+UX)(f,k)

ioPB{n+x,p)u-ij)(fy

pBin,p+X)(j-Uk)+ £ B(n+Up)(j-l,f-l)(f~X
f=i

+|iB(B+1.P)o--i,/-i)(f:11)

pB(„,p+i)U- Uk) + ß(n.P+i,(;-1,*) + »(..,+d(/-1,* -1)
(p + l)B(.-+1)ü-U) + ß(„>P+1)0'-U-l)- ¦

Die beiden Theoreme ergeben eine Identität der Kombinatorik.

Korollar 2.

i i... T *_¦*<#*¦»(;)(£')•¦ ¦('l"iCr)-"+m
ki 0k2 0 k|P|-i 0 H,p,=0 \"<l/\Kl/ \K\p\-lJ\ K\p\ /

fürpeZ\{0}.
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Für p 2 erhalten wir:

fci=o k2=o\kxJ\k2J

und für p — 2:

*i=o*2=o \kiJ\k2J

M. Jeger wies mich darauf hin, dass das Korollar 2 auch aus dem polynomischen Satz

«•¦-•¦^--.^xrrr"»-'--»*-*¦¦(::>

hergeleitet werden kann [4]. Setzen wir hier k p + 1 und xx xp+x 1, resp.

xx =X|P| - 1 und X|p| + 1 1, so folgt

(P+ir- i (H)(H-0\..(n-v>-----v"-\-ir+ ?•-.

n

,-j, .-„--.,,,.,/ „ W B_pi \

»,=0«i 0 v,-|=0 \n ~ "l/ \" ~ Vl ~ V2/

(n-v1-...-vlri.l\ +vip[

\ " — »_ — --- — »|»| /

fc1=ofc2=o klpl o\kxJ\k2J \ /c,p| /
R. Brawer, Seminar für angewandte Mathematik, ETH-Zünch
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