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Kettenwurzeln und Kettenoperationen
Vorbemerkungen
Die Kettenbriiche

1

p; +
pa+

1
py+...

und die unendlichen Reihen

Py +p2+p3+...,

die man auch als Kettensummen bezeichnen kénnte, sollen hier als spezielle Kettenopera-
tionen aufgefasst werden. Sei f(x) >0 fiir x >0, und sei p,, n=1,2,3,... eine Folge
positiver reeller Zahlen. Dann soll die Folge betrachtet werden

B=f(p) B=f(pi+Sf(pl)) B=S(pr+Sf(p2+S(P3))--. @)

Kettenbriiche erhilt man fiir f(x)= x~!, unendliche Reihen fiir f(x)= x. Fiir den
Grenzwert von (1), falls er existiert, will ich schreiben f({p,)).

Fir f(x) = x% 0 < a < 1, erhdlt man Kettenwurzeln. Bekannte Beispiele fiir quadratische
Kettenwurzeln sind

N +/5 und /2> =2.

2

Auf einem kleinen Taschenrechner kann man sehr schnell und bequem folgende Werte
berechnen:

Jnd = 1,757932757;  /{n™> = 2,066176687; /<n!"y = 2,618086580. @)

Man sieht, dass sogar sehr schnell wachsende Folgen p, auf konvergente quadratische
Kettenwurzeln fithren kénnen.
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Merkwiirdigerweise scheint es bisher kaum systematische allgemeine Uberlegungen zu
Kettenoperationen zu geben. Einiges findet man in [3], allerdings nur fiir den Fall der
quadratischen Kettenwurzeln. Das dort angegebene Konvergenzkriterium werde ich im
Abschnitt 1 noch einmal und etwas kiirzer beweisen. Die Beweisidee 1asst sich auf gewisse
monoton wachsende Funktionen f (x) und insbesondere auf beliebige Kettenwurzeln
ibertragen (Abschnitt 2). Es ist merkwiirdig, dass hier sehr einfache notwendige und
zugleich hinreichende Bedingungen existieren.

Teilresultate fiir monoton fallende f (x) gebe ich in Abschnitt 3 an. Es ist mir aber nicht
gelungen, ein Analogon zu dem schonen Kriterium fiir Kettenbriiche (bei p, > 0) zu
finden, welches schon aus den vierziger Jahren des 19. Jahrhunderts stammt [2]: Der
Kettenbruch { p,> ~! konvergiert genau dann, wenn die unendliche Reihe (p,>*! =3 p,
divergiert.

1. Konvergenz von quadratischen Kettenwurzeln
Da f(x) = \/3-: fiir x = 0 positiv und monoton wachsend ist, gilt das gleiche fiir die Folge
der Naherungswurzeln P, aus (1). Sie konvergiert daher genau dann, wenn sie beschrinkt

ist. Damit hat man sofort den

Vergleichstest
Wenn 0 < p, < q, fiir alle n, und wenn ./{q,) konvergiert, dann konvergiert auch ./ {p,.

Sei insbesondere g, = b'*” fiir ein b > 0. Die zugehorige Folge Q,, nach (1) gebildet,

. . 5 , "
konvergiert dann, und es gilt \/{q,> =b . Daher konvergiert ,/{p,>, wenn fiir

ein b > 0 und alle n gilt p, < b7,
Diese Bedingung ist auch notwendig. Es gilt ndmlich

Pl =4 P1 =p(12_x)’
B =/py+ /P2 >4/ =1¢ 7,

R,=\/p1 +\/...+\/Z> p.=p¥ "

Falls P, konvergiert und b eine obere Schranke aller dieser Ndherungswurzeln ist, folgt
p. < b7, Etwas anders formuliert, folgt das

Konvergenzkriterium fiir quadratische Kettenwurzeln

Notwendig und hinreichend fiir die Konvergenz von ./{p,> (p, 2 0) ist die Existenz einer
reellen Zahl B so, dass

27 "logp, < B fiiralle n.

Aquivalent dazu sind lim2~"logp, < co oder lim p}/*" < co.
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Aus dem Kriterium kann man noch eine gute Fehlerabschdtzung erhalten. Ich setze bei
gegebenen p, und N jetzt g, = p, fiir n < N und, falls p, < b@" fiir n 2 N, q, = b®” fiir

n=2N.Dannist B P= \/< P = \/(q,,> = (. Nun setze ich noch

— b(zN)é_t_\/_g
Y 2

r,=d{q, =Dy fur n<N, s rn=0 fir n;N+1

und erhalte Q = R = ./{r,). Die Fehlerschranke
R—B=zP—-PB, 20

kann in endlich vielen Schritten berechnet werden. Mit dieser Fehlerschranke ist die
Genauigkeit der Zahlenbeispiele (2) auf die hingeschriebenen Dezimalen ermittelt wor-
den, unter Verwendung der folgenden geringfiigigen Verbesserung. Wenn namlich die
Folge 27 "log p, fir n 2 N nicht wichst, kann man log b = 2" ¥log py setzen, d.h.

3+./5
2

Ty =Dy und r,=0 fir n=N+1.

Direktes Ausrechnen zeigt, dass fiir die beiden letzten Beispiele in (2) geniigt N = 8, und

fir \/{(n) reicht N =17.

2. Allgemeine Kettenwurzeln

Es sei f(x) > 0 fiir x > 0 monoton nicht fallend, beispielsweise f (x) = x* 0 < a. Wieder
ist eine notwendige Konvergenzbedingung fiir f({p,»>), dass die Partialndherungen P, aus
(1) beschrinkt sind. Fiir eine gegebene Folge p, = 0 hat man stets

Po=f(p), B=f(py+f(p)Zf(f(p))=S(ps);

B=f(py+f(p2+...+f(p).- D= f"(ps)-

Daraus folgt, dass die Existenz eines B mit f"(p,) < B fiir alle n eine notwendige Konver-
genzbedingung ist. Offensichtlich ist diese Bedingung aber im allgemeinen nicht hinrei-
chend. Bei den unendlichen Reihen ist f (x) = x, also f"(p,) = p,, und die Bedingung sagt
nur aus, dass p, < B fiir alle Glieder der Reihe Y p,. Man wird daher zusitzliche Voraus-
setzungen an f (x) machen, und es ist im Hinblick auf den speziellen Fall der quadrati-
schen Kettenwurzeln naheliegend, das Wachstum von f(x) zu beschrinken.

Ich nehme jetzt an, dass es ein o gibt mit 0 < o < 1 und x,, B so dass

flax)a*f(x) fiiralle a=1, x2x,>0 @)

und f"(p,) < B fiir alle n.



92 El. Math., Vol. 45, 1990

Das ist fiir Kettenwurzeln erfiillt, f (x) = x* 0 < a < 1, aber auch fiir Kettenlogarithmen,
f(x)=1log(1 + x).
Sei nun x, > x; > x,. Dann hat man

05 fxg) — f (%)) = f(zﬁm) ~fEx) s [(3‘—) - 1]f(x1).

1 X1

Daraus sieht man, dass f(x) fiir x > x,, stetig ist. Ich nehme zuséitzlich noch an, dass f(x)
streng monoton wichst fiir x > x, und bezeichne die fiir ¢t > x, definierte inverse Funk-
tion mit f ~1(¢) = g(¢). Es gibt jedenfalls ein x’' mit f (x) < x < g(x) fiir alle x = x’, und ich
kann annehmen, dass x" > x,. Ausserdem kann die Schranke B durch jede gréssere Zahl
ersetzt werden, und in nehme noch B = x’ an.

Unter all diesen Annahmen folgt zunichst p, < g"(B) und dann

B=f(p)=sfl@gB)=B=Q,,
B=f(p,+f(p))=f@B)+ f@*B)=f(2g9(B)=2"f(g(B) =2"B=Q,,

Py=f(py+ f(p2+ f(Pa)) = f(py+ f(g*(B) + f(g° (B))
=f(@+29g9B)=(1+2°B=Q,.

Vollstdndige Induktion gibt
Bl = f((1 + qn—l)g(B)) é an = Qns
wobei ich gesetzt habe

qk+1 =(1 + qk)ay qqy = 1, 4k+1 > 1 fﬁl’ k g 1.

Sei h(x) = (1 + x)*. Fiir x = 1 gilt

o o

O<h’(x)=(1 +x)1-a§ 21"&

<1.

Daher konvergiert die Folge g, von unten gegen den Fixpunkt g von h(x), und es gilt
P, £ Q, < ¢ B fiir alle n. Die Folge P, ist mithin beschrinkt, also konvergent. Damit ist
bewiesen:

Konvergenzkriterium fiir Kettenwurzeln

Notwendig und hinreichend fiir die Konvergenz von {p,)* bei 0 <a <1, p,=0, ist
o"log p, < C fiir ein reelles C.

(Die Bedingung f"(p,)<B ist ndmlich &quivalent zu p*’< B, also zu
o"logp, < logB = \C.)
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Eine Fehlerabschétzung erhdlt man wie im Spezialfall der quadratischen Kettenwurzeln.
Tatsdchlich hat der Beweis etwas mehr gezeigt:

Satz 1. Es sei f (x) fiir x > 0 positiv und monoton nicht fallend, und f(a x) < a* f(x) fiir alle
az1,x 2= xy, wobei 0 < a < 1. Ferner sei f(x) streng monoton wachsend fiir x = x'. Dann
ist eine notwendige und hinreichende Bedingung fiir die Konvergenz von f({p)), dass
lim f"(p,) < 0.

Es sei ausdriicklich bemerkt, dass sich das Kriterium nicht auf den Grenzfall a =1
ausdehnen lasst, welcher die unendlichen Reihen umfasst.

3. Reziproke Kettenpotenzen und reziproke Kettenwurzeln: Abnehmendes f (x)

In Verallgemeinerung der Kettenbriiche mit f(x) = x ! untersuche ich jetzt f(x) = x~*
fir o > 0. Ich will bei 0 < a < 1 von reziproken Kettenwurzeln sprechen; die naheliegende
englische Bezeichnung «continued reciprocal roots» ist allerdings treffender.

Sei zundchst allgemeiner f (x) fiir x > 0 positiv monoton nicht wachsend; ich werde kurz
monoton fallend sagen.

Wieder sei die Folge P, durch (1) definiert fiir eine gegebene Folge p,. Dann ergeben die
Voraussetzungen der Positivitit und Monotonie

P =f(p)20

0SB =f(p+f(pD=Sf(p)=P
und ebenso mit nichtnegativen r, fiir n > 2

E=f(py+r)=h.
Die Folge P, ist also beschrinkt. Nun sind die verschachtelten Funktionen in der Defini-
tion von B, je nach der in ihnen auftretenden Anzahl von Funktionszeichen f, abwech-
selnd fallend und wachsend, und es folgt

(B=)0<Ph<..5Py ;SPB,S<P,Sh,_S..SP. @
Dabher existieren die Grenzwerte

P=limP, slimP,,, =P, (5)

und wir haben:

Satz 2. Notwendig und hinreichend fiir die Konvergenz von P, bei fallendem positivem f (x)
(fiir x> 0) ist lim(P,., — P) =0, und ebenso P = P(= P = f{p,)).
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Daraus folgen hinreichende Konvergenzbedingungen. Sei f(x) stetig und f”(x) — O fiir
x — o0. Dann ist nach dem Mittelwertsatz

|B, = Bl=1f(py + f(p)) — f (Pl
S (pIl- f(pa),

|Py = Bl =1f(py+ f(p2 + f(pa)) — f (P + [ (P
=1/ (el 1S (pII - f(P3)s

|Bvi = BIS L (Pl 1S (P L f ()] * f (Pas )

und man erhilt;

Korollar 1. Fiir stetig ableitbares, monoton fallendes f(x) mit f'(x)— 0 fiir x > oo und
p, — o konvergiert P,.

Korollar 2. Da es bei f'(x) =0 fir x> zu 0<qg<1 ein x=Xx(q) so gibt, dass
' (x)| £ q fiir x 2 X, konvergiert B,, wenn alle p, = X, und es ist

|Bsy — Bl = 4" f(%).

Bei f(x)=x7%0<aq,ist |f'(x)| =

| <1 fiir x 2 x > a'/!** Reziproke Quadrate
x

{p,> " * konvergieren also sicher, wenn inf(p,) > {/5 = 1,26, und reziproke Quadratwur-
1 1
zeln {p,> /2 fiir inf(p,) > m ot 2=0,63.

Es ist bei der groben Abschdtzung aus Korollar 2 nicht zu erwarten, dass die Grenze
al/1*® optimal ist. Das wird sich im ndchsten Abschnitt bestitigen.

4. Beispiele: Konstante Folgen p, =p > 0

Diese einfachsten Spezialfille geben einige weitere Hinweise. Hier ist

B=f(p, B=f(p+f(@)=f(p+P)...

und man hat die nichtlineare Differenzengleichung 1. Ordnung
Ri1=f(p+F), K=0. (6)

Es sei f (x) stetig, positiv und monoton nicht wachsend fiir x > p. Falls lim P, = P existiert,
ist P= P = P, und P eine Lésung der Fixpunktgleichung x = f(p + x).
Iterationsverfahren mit einem Parameter p, P,, ; = f(p, B), sind neuerdings viel unter-
sucht worden. Ein beliebtes Beispiel ist P, , =1 —pP? [1].

\



El. Math., Vol. 45, 1990 95

Aus
Ri,=f(p+f(p+H) (7

und (5) folgt, dass P und P positive Wurzeln der Gleichung
x=f(p+f(p+x)=4¢(x). (8)

sind.
Satz 3. Sei f(x) fiir x > O positiv, stetig und monoton nicht wachsend. Wenn (8) nur eine

einzige positive Wurzel x = P hat, so gilt P = f{p), und die Iteration (6) konvergiert gegen
diesen Wert.

Ich betrachte speziell die reziproken Kettenwurzeln (p> % 0 < a < 1. Hier ist
px)=(p+(p+x"9°"

monoton wachsend zwischen ¢ (— p) =0> —p und ¢ (0) = p~* < c0. Die Ableitung
¢ =a’[pp+x)+(p+x)'"*"

ist fiir x > — p positiv und fallt monoton von ¢’ (— p) = oo zu ¢'(o0) = 0. Daher hat die
stetige Kurve y = ¢ (x) genau einen positiven Schnittpunkt mit der Geraden y = x, und
fur diesen gilt x=P =P = P:

Satz 4. Fiir jedes p > 0 und jedes a, 0 < o < 1, konvergiert (6) gegen den Wert der rezipro-
ken Kettenwurzel {p>~°.

Der Beweis gilt auch fiir « = 1, doch hat man fiir die Kettenbriiche die bessere Bedingung
aus [2].

Es sei jetzt a = 2.

Zu untersuchen ist hier die Differenzengleichung

1

P,.,=—, B =0. 9
"I (p+ B ° ®)

Im Falle der Konvergenz lim P, = P ist P Losung der Gleichung

1

X=— 10
b+ 0

also Nullstelle des kubischen Polynoms
Q:s(x)=x(p+xP?—-1=x3+2px*+p*x—1. (11)

Wegen p > 0 hat dieses Polynom genau eine reelle Nullstelle x,, 0 < x4 < 1; fiir p & 0 gilt
Xo &1, fir p~ 1 gilt x, ~ 0,47.
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Ich suche nun nach den Werten von P, P. Die Gleichung (8) fiihrt auf ein Polynom vom
Grade 5

Qs(x)=p*x*+x*@p*—1)+x>-2p(3p* - 1)
+x2-2p22p3 - 1)+ x(p® — 1) —p*.

Da alle Nullstellen von Q5 auch solche von Q4 sein miissen, wird die Division ohne Rest
ausfiihrbar sein. Es ergibt sich

Qs(x)=0Q3(x) Q,(x)
mit

Q,()=p*x* +(2p* - 1)x + p*.
Die Nulistellen von @, sind

1-2p%) +/1—4p°
= = (12)

p

1,2

Mit Satz 3 und (5) folgt:

1
Die Folge (9) fiir das «reziproke Kettenquadrat» konvergiert fiir p =2 — = p, = 0.63
gegen die einzige reelle Wurzel von (11). 4

(Diese ist bei p = p, librigens selbst gleich p,, und es gilt sogar x, = x, = x, = p,.)
Sei nun p < p,. Dann sind wegen

(1=2p?=1—4p+4ps
> /1 —--4p3’2

beide Werte von (12) positiv.

Durch Einsetzen in (11) folgt Q5(x;) > Q3(x¢) =0> Q;(x;), und da Q,(x) fir x=0
monoton wichst, gilt x, > x, > x, > 0.

Nun sind x4, x,, x, als einzige Lésungen von (8) auch die einzigen Kandidaten fiir P und
P. Wann kann x, = P oder x, = P eintreten? Es ist fiir 0 < p < p,

@' (xo) = f'(P+ [ (P + %)) f' (P + x0)

=(f'(p+x0)*= =4x3>4p3=1,

(Po + Xo)°
weil aus Q4 (x,) = 0 wegen (11) folgt, dass x, wichst, wenn p abnimmt. Fiir 0 < p < p,, ist
x, daher ein abstossender Fixpunkt von ¢ (x), und P = x, oder P = x, kann nur eintre-
ten, wenn P, = x, oder P, = x, als Anfangsbedingung gegeben ist. Dann ist P, = x,, fiir
alle n = 1. Ansonsten bleibt nur P=x, <x; = Pmit P,, » P=x,, B,,,; » P=x,. Das
Paar {x,,x,} nennt man einen Attraktor.

¥
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5. Die Existenz divergenter Folgen P,

Wieder sei f(x) monoton fallend und stetig. Der Einfachheit halber sei f(0) = oo,
f(o0) = 0. Bisher haben wir hinreichende Bedingungen fiir Konvergenz kennengelernt.
Jetzt soll gezeigt werden, dass es p, > 0 so gibt, dass P, divergiert, also P < P gilt.

Ich definiere zunéchst fiir eine gegebene Folge p, > 0:

Fix)=f(x), HLx)=/f(p,+f(x) Fx)=f(p, +f(p,+ f(x), allgemein F,(x)=
= F;l—l(pn—l +f(x)) Es ist Fn(pn) = Rt und

Fy(00) =0, F,(0)= o0,

F,(0)=PF, F(0)=0,

Fy(0)=F, F0)=PF,

allgemein

El(oo) = Fn—l(pn—-l + f(w)) = Rt~1s

F ) =F_;(pp-1+ f(0)=F,_y(0)=F,_,.
Die F,(x) sind monotone Funktionen. Daher gilt:
Fiir n = 3 ist der Wertebereich von F, (x) das Intervall mit den Enden P,_, und P,_,; der
Wertebereich von F, ist [0, o0), der von F, ist [0, P,]. Jetzt konstruiere ich p, mit P < P.

Ich wihle beliebige positive p,, p, und positive Zahlen a, so, dass fiir das gegebene f (x)
gilt

=3ak<P1 — B =f(p)—f(ps+ f(py))-

k

Fiir ein hinreichend kleines positives b, < a; wird P, — b, im Innern des Wertebereichs
von F; liegen, und man kann p,; so wihlen, dass P, — by = F;(p3). Diesen Wert F;(p5)
nenne ich P,. Induktiv wihle ich entsprechende b, < a, klein genug und dann p,,,,,
P2n+ 2 SO dass

I)Zn—l - b2n+1 = FZn(pZn - f(p2n+ 1))
Pp+bosy=Fopi1(Pant1 + f(P2n42)-

Die gefundenen Werte nenne ich B, und B, ,.
Fiir n - oo folgt

P=1lmP,,, =lim(P, + (B~ R) + ... + (Pp+1 — P2s-)))
=P — X by
k=1

Lo o]
P=P+ X by,
k=1
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und schliesslich

o0 [« o]
P-P=P-B- 3 b2R-PB— % a;>0.
ji=3 j=3

Fiir jede so definierte Folge p, > 0 divergiert f({p,)).
D. Laugwitz, TH Darmstadt
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Perfekte Rechteckzerlegung

1. Ausgangspunkt

Innerhalb der elementaren Zerlegungsprobleme der euklidischen Geometrie der Ebene
ist die Frage nach perfekten Zerlegungen von Polygonen interessant. Dabei wird der
Begriff der perfekten Zerlegung gegeben durch

Definition 1: Eine Zerlegung eines Polygons P in Polygone P, P,,. .., P, heisst perfekt
genau dann, wenn alle Polygone P, dhnlich zum Polygon P und paarweise inkonkruent sind.

Die Zahl n heisst dabei die Ordnung der Zerlegung.

Aus Untersuchungen von Bleicher [2] und Betke [1] folgt, dass sich konvexe Polygone mit
mehr als vier Ecken nicht perfekt zerlegen lassen. In [10] gibt Kaiser fiir jedes Dreieck die
minimale Ordnung seiner perfekten Zerlegung an.

Das Auffinden perfekter Quadratzerlegungen und die Suche nach der Minimalordnung
solcher Zerlegungen kann in einer ganzen Reihe von Beitridgen nachvollzogen werden
({31-[9)). Der Autor plant eine Veréffentlichung seiner Uberlegungen zu diesem Problem-
kreis, die er schon in [11] vorstellte. Kernstiick ist darin der Beweis der Tatsache, dass fiir
jede natiirliche Zahl n> 24 eine perfekte Quadratzerlegung der Ordnung n existiert. Zu-
dem sind Quadratzerlegungen der Ordnungen 21 und 22 bekannt sowie der Beweis, dass
mit weniger als 21 Teilquadraten keine perfekte Zerlegung eines Quadrates existiert ([7]).
Offen bleibt lediglich die Frage nach einer perfekten Quadratzerlegung der Ordnung 23.
Ziel dieser Arbeit ist es, fiir ein Rechteck mit dem Seitenverhaltnis 1:2 perfekte Zerlegun-
gen anzugeben. Es wird dabei mit ganzzahligen Lingenangaben gearbeitet. Die Angaben
beziehen sich dabei stets auf die kleineren Rechteckseiten und sind so gekiirzt, dass der
grosste gemeinsame Teiler aller an einer Zerlegung beteiligter Lingen gleich 1 ist.
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