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Kettenwurzeln und Kettenoperationen

Vorbemerkungen

Die Kettenbrüche

1

I
Pi +

1

p2 + -

p3 +

und die unendlichen Reihen

die man auch als Kettensummen bezeichnen könnte, sollen hier als spezielle Kettenoperationen

aufgefasst werden. Sei f(x) > 0 für x > 0, und sei pn9 n 1,2,3,... eine Folge
positiver reeller Zahlen. Dann soll die Folge betrachtet werden

Pl=f(Pl)> *W(Pl+/(P2)), ^3=/(Pl+/(P2+/(P3))X... (1)

Kettenbrüche erhält man für /(x) x_1, unendliche Reihen für /(x) x. Für den
Grenzwert von (1), falls er existiert, will ich schreiben /«p„».
Für f(x) xa, 0 < a < 1, erhält man Kettenwurzeln. Bekannte Beispiele für quadratische
Kettenwurzeln sind

<l) 1+y5 und y<2> 2.

Auf einem kleinen Taschenrechner kann man sehr schnell und bequem folgende Werte
berechnen:

v/<n> 1,757932757; v/(^) 2,066176687; y<nT>== 2,618086580. (2)

Man sieht, dass sogar sehr schnell wachsende Folgen pn auf konvergente quadratische
Kettenwurzeln führen können.
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Merkwürdigerweise scheint es bisher kaum systematische allgemeine Überlegungen zu
Kettenoperationen zu geben. Einiges findet man in [3], allerdings nur für den Fall der
quadratischen Kettenwurzeln. Das dort angegebene Konvergenzkriterium werde ich im
Abschnitt 1 noch einmal und etwas kürzer beweisen. Die Beweisidee lässt sich auf gewisse
monoton wachsende Funktionen f(x) und insbesondere auf beliebige Kettenwurzeln
übertragen (Abschnitt 2). Es ist merkwürdig, dass hier sehr einfache notwendige und
zugleich hinreichende Bedingungen existieren.
Teilresultate für monoton fallende / (x) gebe ich in Abschnitt 3 an. Es ist mir aber nicht
gelungen, ein Analogon zu dem schönen Kriterium für Kettenbrüche (bei pn > 0) zu
finden, welches schon aus den vierziger Jahren des 19. Jahrhunderts stammt [2]: Der
Kettenbruch < p„> ~~i konvergiert genau dann, wenn die unendliche Reihe < pn} + 1

_T pn

divergiert.

1. Konvergenz von quadratischen Kettenwurzeln

Da f(x) y/x für x ^ 0 positiv und monoton wachsend ist, gilt das gleiche für die Folge
der Näherungswurzeln Pn aus (1). Sie konvergiert daher genau dann, wenn sie beschränkt
ist. Damit hat man sofort den

Vergleichstest

Wenn 0^p„^ q„für alle n, und wenn x/(qn} konvergiert, dann konvergiert auch x/</7„>.

Sei insbesondere qn bi2n) für ein b > 0. Die zugehörige Folge Qn, nach (1) gebildet,

/ l+\/5 /konvergiert dann, und es gilt N/<^B> b Daher konvergiert V\P«>> wenn für
ein b > 0 und alle n gilt p„ S b{2n). 2

Diese Bedingung ist auch notwendig. Es gilt nämlich

-_- n(2_1)Pl=>/Pl=P{i

P2 Jpi + y/Fi > \IYi PT2\

^ v/pi + \/--- + v/^>^ ^2"m)-

Falls Pn konvergiert und b eine obere Schranke aller dieser Näherungswurzeln ist, folgt
pn b(2n). Etwas anders formuliert, folgt das

Konvergenzkriterium für quadratische Kettenwurzeln

Notwendig und hinreichendfür die Konvergenz von s/(p„} (p„ 0) ist die Existenz einer
reellen Zahl B so, dass

2~nlogpn£B für alle n.

Äquivalent dazu sind lim2~~nlogpn < oo oder limp£/2n < oo.
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Aus dem Kriterium kann man noch eine gute Fehlerabschätzung erhalten. Ich setze bei
gegebenen pn und JV jetzt qn pn für n < JV und, falls pn b{2n) für n N,qn b{2n) für
n N. Dann ist Pn fg P x/(pn} _S \/<<?n> ß. Nun setze ich noch

3 + /5
rn Qn Pn ^r n<JV, rN fc(2N) ^-, r„ 0 für n ^ JV + 1

und erhalte ß R x/<rn>. Die Fehlerschranke

K-PN^P-P„^0

kann in endlich vielen Schritten berechnet werden. Mit dieser Fehlerschranke ist die
Genauigkeit der Zahlenbeispiele (2) auf die hingeschriebenen Dezimalen ermittelt worden,

unter Verwendung der folgenden geringfügigen Verbesserung. Wenn nämlich die
Folge 2-nlogp„ für n ^ JV nicht wächst, kann man log b 2~NlogpN setzen, d.h.

3 + x/5
rN pN—-^— und r„ 0 für n^JV + 1.

Direktes Ausrechnen zeigt, dass für die beiden letzten Beispiele in (2) genügt JV 8, und
für y<n> reicht JV 17.

2. Allgemeine Kettenwurzeln

Es sei f(x) > 0 für x > 0 monoton nicht fallend, beispielsweise f(x) xa, 0 < a. Wieder
ist eine notwendige Konvergenzbedingung für /«p„», dass die Partialnäherungen Pn aus
(1) beschränkt sind. Für eine gegebene Folge pn 0 hat man stets

Pi fiPil Pi /(Pi + f(Pi)) f(f(Pi)) f2(p2);

ii /(Pi+/(P2 + ..-+/(pJ...))^/"(pJ.

Daraus folgt, dass die Existenz eines B mit fn(pn) _g B für alle n eine notwendige
Konvergenzbedingung ist. Offensichtlich ist diese Bedingung aber im allgemeinen nicht hinreichend.

Bei den unendlichen Reihen ist f(x) x, also fn(pn) p„, und die Bedingung sagt
nur aus, dass pn B für alle Glieder der Reihe _T pn. Man wird daher zusätzliche
Voraussetzungen an f(x) machen, und es ist im Hinblick auf den speziellen Fall der quadratischen

Kettenwurzeln naheliegend, das Wachstum von f(x) zu beschränken.
Ich nehme jetzt an, dass es ein a gibt mit 0 < a < 1 und x0, B so dass

f(ax)Sa*f(x) für alle a^l, x£x0>0 (3)

mdfn(P„)^B für allen.
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Das ist für Kettenwurzeln erfüllt, f(x) xa, 0 < a < 1, aber auch für Kettenlogarithmen,
/(x) log(l+x).
Sei nun x2> xx> x0. Dann hat man

0 S f{x2) -f(Xl) /(^*i) - /(*i) ^ [(^Y - l]/(*i).

Daraus sieht man, dass f(x) für x > x0 stetig ist. Ich nehme zusätzlich noch an, dass /(x)
streng monoton wächst für x > x0 und bezeichne die für t > x0 definierte inverse Funktion

mit f~l(t) g (t). Es gibt jedenfalls ein x' mit f(x) < x < g (x) für alle x x', und ich
kann annehmen, dass x' > x0. Ausserdem kann die Schranke B durch jede grössere Zahl
ersetzt werden, und in nehme noch B — x' an.
Unter all diesen Annahmen folgt zunächst pn gn (B) und dann

Px=f(px)Sf(9(B)) B Qx,

Pi /(Pi + f(Pi)) £ f(9(B) + f(g2(B)) f(2g(B)) 2«f(g(B)) TB Q2,

P3 /(Pi + /(P2 + /(Pa))) S /(Pi + f(92(B) + f(93(B))))

^/((l+2a)^(B))^(l+2TB ß3.

Vollständige Induktion gibt

Pn f((l+qn.l)g(B))SqnB Qn,

wobei ich gesetzt habe

tfk+i=(l+4fc)a> 4i l, öfc+i>l für k l.

Sei h(x) (1 + xf. Für x ^ 1 gilt

0<*fW-(iT^s2^<1-
Daher konvergiert die Folge qn von unten gegen den Fixpunkt q von n(x), und es gilt
Pn _ä Qn 9 B für alle n. Die Folge Pn ist mithin beschränkt, also konvergent. Damit ist
bewiesen:

Konvergenzkriterium für Kettenwurzeln

Notwendig und hinreichend für die Konvergenz von </>„>* bei 0 < a < 1, pn 0, ist
aHlogpn — C für ein reelles C.

(Die Bedingung fn(pn)—^B ist nämlich äquivalent zu pJ,an)_§_B, also zu
ol" log pn S log B C)
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Eine Fehlerabschätzung erhält man wie im Spezialfall der quadratischen Kettenwurzeln.
Tatsächlich hat der Beweis etwas mehr gezeigt:

Satz 1. Es sei f(x)für x > 0 positiv und monoton nicht fallend, undf(ax) — dxf(x)für alle

a=l,x x0, wobei 0 < a < 1. Ferner seif(x) streng monoton wachsendfür x x'. Dann
ist eine notwendige und hinreichende Bedingung für die Konvergenz von /«p», dass

hmfn(pn)<(X).

Es sei ausdrücklich bemerkt, dass sich das Kriterium nicht auf den Grenzfall a 1

ausdehnen lässt, welcher die unendlichen Reihen umfasst.

3. Reziproke Kettenpotenzen und reziproke Kettenwurzeln: Abnehmendes / (x)

In Verallgemeinerung der Kettenbrüche mit f(x) x"x untersuche ich jetzt f(x) x~*
für a > 0. Ich will bei 0 < a < 1 von reziproken Kettenwurzeln sprechen; die naheliegende
englische Bezeichnung «continued reciprocal roots» ist allerdings treffender.
Sei zunächst allgemeiner / (x) für x > 0 positiv monoton nicht wachsend; ich werde kurz
monoton fallend sagen.
Wieder sei die Folge Pn durch (1) definiert für eine gegebene Folge pn. Dann ergeben die

Voraussetzungen der Positivität und Monotonie

P_=/(p_)S_0

0^P2=f(px+f(p2))^f(px) Px

und ebenso mit nichtnegativen rn für n > 2

Pn f(Pi+rn) Pi-

Die Folge Pn ist also beschränkt. Nun sind die verschachtelten Funktionen in der Definition

von ii, je nach der in ihnen auftretenden Anzahl von Funktionszeichen /, abwechselnd

fallend und wachsend, und es folgt

(P0 )0 P2 ...=P2n-lSP2n Pln+l=Pln-l= •• ^1 • (4)

Daher existieren die Grenzwerte

P ~UmP2n lim P2n+1=P, (5)

und wir haben:

Satz 2. Notwendig und hinreichendfür die Konvergenz von Pn bei fallendem positivem f(x)
(für x>0) ist lim(ii+1 - ii) 0, und ebenso P P(= P =/</>„».
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Daraus folgen hinreichende Konvergenzbedingungen. Sei /' (x) stetig und /' (x) -> 0 für
x -» oo. Dann ist nach dem Mittelwertsatz

\P2-Pl\ \f(Pi+f(P2))-f(Pl)\
_-i/'(j>i)i-/(p_),

\P3~ P2\ \f(Pl+ f(P2+ f(P3)))~ f(P!+ f(P2))\

Z\f'(Pl)\-\f'(p2)\-f(P3),

15+1-51 ^ l/'(Pl)l • I/'(P_)I-I/'(PJI -/(P.+ l),

und man erhält:

Korollar 1. Für stetig ableitbares, monoton fallendes f(x) mit f'(x) -* 0 für x -» oo „nd"

pn-*co konvergiert P„.

Korollar 2. Da es bei f (x) -* 0 für x -* oo zw 0 < # < 1 e/w x Je {q) so gibt, dass

\f'(x)\ Sj qfür x^x, konvergiert Pn, wenn alle p„ ^ x, und es ist

|P.+ 1-P.|__ «"/(*).

— a
Bei /(x) x"a, 0 < a, ist |/'(x)| < 1 für x x > a1/1+a. Reziproke Quadrate

<p„> 2 konvergieren also sicher, wenn inf(p„) > \/2 1,26, und reziproke Quadratwurzeln

<p„>-1/2 für inf(pj > -L Uß 0,63.
V4 2

Es ist bei der groben Abschätzung aus Korollar 2 nicht zu erwarten, dass die Grenze
ai/i+« 0ptimai ist. Das wird sich im nächsten Abschnitt bestätigen.

4. Beispiele: Konstante Folgenpn—p>0

Diese einfachsten Spezialfälle geben einige weitere Hinweise. Hier ist

Pi~f(p\ P2 /(P + /(P)W(P + JiX".

und man hat die nichtlineare Differenzengleichung 1. Ordnung

JS+i«/(P + #. ft-0. (6)

Es sei f(x) stetig, positiv und monoton nicht wachsend für x > p. Falls lim ii — P existiert,
ist P P P, und P eine Lösung der Fixpunktgleichung x f(p + x).
Iterationsverfahren mit einem Parameter p, ii+1 f(p,Pn), sind neuerdings viel untersucht

worden. Ein beliebtes Beispiel ist ij+1 — 1 — pii2 [1].
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Aus

JÜ+2=/(P + /(P + JÖ) (7)

und (5) folgt, dass P und P positive Wurzeln der Gleichung

x f(p + f(p + x)) <t>(x). (8)

sind.

Satz 3. Sei f(x)für x > 0 positiv, stetig und monoton nicht wachsend. Wenn (8) nur eine

einzigepositive Wurzel x P hat, so gilt P =/</?>, und die Iteration (6) konvergiert gegen
diesen Wert.

Ich betrachte speziell die reziproken Kettenwurzeln <p>~a, 0 < a < 1. Hier ist

<t>(x)=(p+(p + xy*ra

monoton wachsend zwischen (j>(— p) 0 > —p und $(oo) p~a<oo. Die Ableitung

$(x) a2[p(p + x) + (p + x)1-']-*-1

ist für x > — p positiv und fällt monoton von 0' (— p) oo zu <j>' (oo) 0. Daher hat die
stetige Kurve y $ (x) genau einen positiven Schnittpunkt mit der Geraden y x, und
für diesen gilt x P P P:

Satz 4. Für jedes p > 0 undjedes oc, 0 < <x < 1, konvergiert (6) gegen den Wert der reziproken

Kettenwurzel <p>~*.

Der Beweis gilt auch für a 1, doch hat man für die Kettenbrüche die bessere Bedingung
aus [2].
Es sei jetzt a 2.

Zu untersuchen ist hier die Differenzengleichung

5+1=7_^-_T5. 5>=0. (9)
1

(P + Pn)

Im Falle der Konvergenz limP„ P ist P Lösung der Gleichung

x rr_-^' (10)
(P + xf

also Nullstelle des kubischen Polynoms

ß3(x) x(p + x)2-l x3 + 2px2 + p2x-l. (11)

Wegen p > 0 hat dieses Polynom genau eine reelle Nullstelle x0,0 < x0 < 1; für p « 0 gilt
x0 « 1, für p as 1 gilt x0 « 0,47.



96 El. Math., Vol. 45, 1990

Ich suche nun nach den Werten von P, P. Die Gleichung (8) führt auf ein Polynom vom
Grade 5

ß5(x) p2x5 + x4(4p3 - 1) + x3 • 2p(3p3 - 1)

+ x2 • 2p2(2p3 - 1) + x(p3 - l)2 - p4.

Da alle Nullstellen von ß3 auch solche von ß5 sein müssen, wird die Division ohne Rest
ausführbar sein. Es ergibt sich

Ö5(*)~Ö3 (*)•&(*)
mit

ß2(x) p2x2 + (2p3-l)x + p4.

Die Nullstellen von ß2 sind

(l-2p3) + y/T^4p3~
2p2xlt2 r-f (12)

Mit Satz 3 und (5) folgt:
1

Die Folge (9) für das «reziproke Kettenquadrat» konvergiert für p — p0 0.63

gegen die einzige reelle Wurzel von (11). V 4

(Diese ist bei p p0 übrigens selbst gleich p0, und es gilt sogar x0 xx x2 p0.)
Sei nun p <p0. Dann sind wegen

(l-2p3)2 l-4p3 + 4p<

yi>sfT^4p

beide Werte von (12) positiv.
Durch Einsetzen in (11) folgt Q3(xx) > ß3(x0) 0 > ß3(x2), und da ß3(x) für x 0

monoton wächst, gilt xx > x0 > x2 > 0.

Nun sind x0,xl9x2 als einzige Lösungen von (8) auch die einzigen Kandidaten für P und
P. Wann kann x0-P oder x0 P eintreten? Es ist für 0 < p < p0

0'(*o) /'(P + /(P + *o))/'(P + *o)

(/'(p + x0))2=
*

.6~4x3>4p3 l,
(Po + x0)

weil aus ß3 (x0) 0 wegen (11) folgt, dass x0 wächst, wenn p abnimmt. Für 0 < p < p0 ist

x0 daher ein abstossender Fixpunkt von 0(x), und P — x0 oder P — x0 kann nur eintreten,

wenn P0 — xQ oder Px x0 als Anfangsbedingung gegeben ist. Dann ist ii x0 für
alle n ^ 1. Ansonsten bleibt nur P x2 < xx P mit P2tt -+ P x2, P2n+x -> P - xx. Das
Paar {x2,xj nennt man einen Attraktor.
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5. Die Existenz divergenter Folgen Pn

Wieder sei f(x) monoton fallend und stetig. Der Einfachheit halber sei /(0) oo,

/(oo) 0. Bisher haben wir hinreichende Bedingungen für Konvergenz kennengelernt.
Jetzt soll gezeigt werden, dass es p„>0 so gibt, dass P„ divergiert, also P <P gilt.
Ich definiere zunächst für eine gegebene Folge p„ > 0:

F1(x) f{x), F2(x) /(Pl+/(*)), F3(x) f(Pl+f(p2 + f(x))), allgemein F„(x)
F„_!(p„_1 + /(*)). Es ist Fn(pn) P„ und

F1(oo) 0, F1(0)=oo,

F2(a,) P1, F2(0) 0,

F3(c») P2, F3(0) P!,

allgemein

F„(oo) F„_1(P„-i+/(co)) P„_1,

F„(0) =F„_1(pn_1+/(0)) FB_1M P-_2.

Die Fn (x) sind monotone Funktionen. Daher gilt:
Für n ^ 3 ist der Wertebereich von Fn(x) das Intervall mit den Enden Pn_x und ii_2; der
Wertebereich von Fx ist [0, oo), der von F2 ist [0, PJ. Jetzt konstruiere ich pn mit P < F.

Ich wähle beliebige positive pl9p2 und positive Zahlen ak so, dass für das gegebene f(x)
gilt

Zak<Px-P2 f(Px) - f(px + f(p2)).
fc 3

Für ein hinreichend kleines positives b3 a3 wird Px — b3 im Innern des Wertebereichs

von F3 liegen, und man kann p3 so wählen, dass Px — b3 F3(p3). Diesen Wert F3(p3)
nenne ich P3. Induktiv wähle ich entsprechende bk ak klein genug und dann p2-+1,
p2n+2 so dass

^2»-l -&2n+l =^2n(P2n + /(P2«+l))

Pin + &2n + 2 ^2n+l(P2n+l + f(Pln + l))'

Die gefundenen Werte nenne ich P2n+i und P2n+2.

Für n -? oo folgt

P limP2n+1=lim(P1+(P3-P1)+... + (P2rt+1-P2ll-1))
00

^ Pl ~~ _L ^2k+l»
k=l

P P2+ ib2k,



98 El Math Vol 45, 1990

und schliesslich

P-P PX-P2- I,bJ2:Px-P2- £a.>0.
J=3 j=3

Für jede so definierte Folge p„ > 0 divergiert /«pn».
D. Laugwitz, TH Darmstadt
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Perfekte Rechteekzerlegung

1. Ausgangspunkt

Innerhalb der elementaren Zerlegungsprobleme der euklidischen Geometrie der Ebene
ist die Frage nach perfekten Zerlegungen von Polygonen interessant. Dabei wird der

Begriff der perfekten Zerlegung gegeben durch

Definition 1: Eine Zerlegung eines Polygons P in Polygone Px, P2,..., Pn heisst perfekt
genau dann, wenn alle Polygone P} ähnlich zum Polygon P und paarweise inkonkruent sind.

Die Zahl n heisst dabei die Ordnung der Zerlegung.
Aus Untersuchungen von Bleicher [2] und Betke [1] folgt, dass sich konvexe Polygone mit
mehr als vier Ecken nicht perfekt zerlegen lassen. In [10] gibt Kaiser für jedes Dreieck die
minimale Ordnung seiner perfekten Zerlegung an.
Das Auffinden perfekter Quadratzerlegungen und die Suche nach der Minimalordnung
solcher Zerlegungen kann in einer ganzen Reihe von Beiträgen nachvollzogen werden
([3] -[9]). Der Autor plant eine Veröffentlichung seiner Überlegungen zu diesem Problemkreis,

die er schon in [11] vorstellte. Kernstück ist darin der Beweis der Tatsache, dass für
jede natürliche Zahl n>24 eine perfekte Quadratzerlegung der Ordnung n existiert.
Zudem sind Quadratzerlegungen der Ordnungen 21 und 22 bekannt sowie der Beweis, dass

mit weniger als 21 Teilquadraten keine perfekte Zerlegung eines Quadrates existiert ([7]).
Offen bleibt lediglich die Frage nach einer perfekten Quadratzerlegung der Ordnung 23.

Ziel dieser Arbeit ist es, für ein Rechteck mit dem Seitenverhältnis 1:2 perfekte Zerlegungen

anzugeben. Es wird dabei mit ganzzahligen Längenangaben gearbeitet. Die Angaben
beziehen sich dabei stets auf die kleineren Rechteckseiten und sind so gekürzt, dass der
grosste gemeinsame Teiler aller an einer Zerlegung beteiligter Längen gleich 1 ist.
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