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elements. Taking now into account that ¢ (x):= | A (x)|/| Z (G)|, it results that | Z (G)| = s().
But this contradicts the hypothesis and we are done.

Corollary. Let G be a finite group with 1< Z(G) <G and ®(G)=1. Let

c:=max{|Cs(x)|/xe G\Z(G)} and b(G):=max {x(1)/xelrr(G)}.

1

2

C
Then b(G) > (m)

Proof: As a direct consequence of the Theorem, we obtain that c¢|A(y)| >|Z(G)||G| for

every nonlinear yelrr(G). On the other hand, it’s a simple exercise to prove that

r?=1 . (B@G)Y-1_x(1)’ -1

AWI<IG =0 S T = a7

lows by combining these inequalities.

We have already seen that if y € Irr(G) is nonlinear, then |Z(G)|||A(x)|. This result may

be refined in certain very special cases. For example, suppose that G is a finite group and

x € Irr (G) is faithful such that y(1)=2 and x(g)e @ for every g € G. It is a matter of simple

calculations to show that | A(x)| = 3|Z(G)|. If, moreover, Z(G) =1, then |A(y)]=3 and G
has a maximal subgroup of index 3 (the centralizer of an element of A(y)).

Marian Deaconescu, Department of Mathematics,

University of Timisoara, Romania

for every yelrr(G), the result fol-

REFERENCES

1 Gaschiitz W.: Uber die #-Untergruppe endlicher Gruppen. Math. Z. 58, 160170 (1953).
2 Isaacs I. M.: Character theory of finite groups. Academic Press, New York (1976).

© 1990 Birkhiuser Verlag, Basel 0013-6018/90/030080-0281.50 + 0.20/0

Aufgaben

Aufgabe 1009. n Zahlen x,, ..., x, mit x; €{0,1,..., k} (k > 2) werden einmal linear, ein
andermal kreisformig so angeordnet, dass die Summe zweier Nachbarglieder stets von
k + 1 verschieden ist. Fiir beide Fille bestimme man die Anzahl der zuldssigen Anord-
nungen.

J. Binz, Bolligen
Losung des Aufgabenstellers (Bearbeitung der Redaktion).
s, bzw. t, bezeichnen die Anzahlen der zulédssigen linearen bzw. kreisférmigen Anordnun-
gen.

a) Es gilt s, = a, + b,, wobei a, die Anzahl der auf 0 endenden, b, dicjenige der iibrigen
zuldssigen linearen Anordnungen bedeuten. Dann ist

a"+1=an+bn’ bn+1=kan+(k_°1)bm a2=k+1, b2=k2a
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woraus man fiir s, die Rekursion
Spv1=ks,+5,_, 1)

und die Anfangswerte s, = k* + k + 1, s; = k> + k? + 2k + 1 erhilt. Ergiinzt man — mit
(1) vertréglich — durch

So=1,8,=k+1 2

und fithrt zur Losung von (1), (2) die formale Potenzreihe s = 3 s, x™ ein, so erhélt man
in geldufiger Weise m20

s=1+x)A —xk+x)"1=(1+x) I x™(k+ x)™

m>0

s, ist darin der Koeffizient von x", somit ergibt sich

N e !
jzo0 J J

b) Von den s, zulédssigen linearen Anordnungen beginnen h, mit 1 und enden auf k,
ebensoviele beginnen mit k und enden auf 1. Da x, und x, jetzt benachbart sind, miissen
diese Folgen ausgeschlossen werden. Somit ist ¢, = s, — 2 h,, und es geniigt, h, zu bestim-
men.

Bedeuten c (n,i) die Anzahlen der zuldssigen linearen Folgen, welche mit 1 beginnen und
aufienden (i=0,...,k), so ist h, = c(n, k). Fiir n > 2 gewinnt man

cn+1,00= ¥ cm o)
i=0
und
cn+1Li)=cn+1,0)—c(nk+1—1i), i=1,...,k. 4)

Aus (3), (4) leitet man die Relationen

c@i,1)—c(,k)=1 fir i=2,....,n+1
cmk)y=cn+1,0)—c(n+1,1)
cn+1Li)—cmn+1,)=cnk)—cnk+1—-i)=cn—1i))—c(n—1,1)
_ {c(Z,i)~c(2, 1)=0 (n + 1 gerade)
c(2,k)—c(2,k+1—i)=—1 (n+1 ungerade), 2<i<k—1

her. Mit Hilfe dieser Relationen findet man

2 —k (n ungerade)

hnﬂ=k-c(n,k)+c(n,k—1)+k“1+{0 (n gerade)

=khy+hy_y +k—1+(k—2)(—1+ (= 1)/2.
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Fiir g, = 2 h, gilt dann

Gnsr =Ko+ Gomy +h+ (=10 (k=2), (5)
g1 =9¢,=0. (6)
Die Losung von (5), (6) mittels der formalen Potenzreihe g = Y g,, x™ ergibt nach einiger
Rechnung m>1
1 —-3—j . —4—j .
.= —{z(kz —k+) ¥ (" ) J)k”“3‘21 Y (" , ]>k"”4’21
k >0 J jz0 j

+(— 1)"‘1(k—2)—k}

Schliesslich ist t, = 5, — g,.

Weitere Losungen sandten O. P. Lossers (Eindhoven, NL), K. Schiitte (Miinchen, BRD).
Aufgabe 1010. Es sei

F(z):= hli(l + z19%) |z| < 1.
Mit &¢:= exp (27 i/99) werde gesetzt

98 o)
G@2):=(1/99 T Fe'2)= ¥ gi2" |z]<1.
j=0 k=0
Man zeige, dass g, #+ O fiir unendlich viele k und ermittle das kleinste k > 0 mit g, + 0.

P. Bundschuh, K6ln, BRD

Losung mit Verallgemeinerung. Es sei
F(z)=T1(1+2z); aeN\{1}.
h=1

Mit ¢ = exp (2 mi/(a® — 1)) werde gesetzt

az-2

G(2) = (1/(@® — 1)) b F(ez) = éo g, 2

Wir zeigen, dass g, # O fiir unendlich viele k und ermitteln das kleinste positive k mit
9, * 0. Vorab bemerken wir noch, dass man F und G als formale Potenzreihen auffassen
kann; die Bedingung |z| < 1 ist fiir die Losung ohne Bedeutung.
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Wir notieren F (z) additiv:

F@)=1+ XY z¢ mit
i=1

k= {a"'“ fir j=2m

ke fir jmomyr T 0LZeslsr<2n)

Im Zahlsystem zur Basis a bestehen die k; nur aus Ziffern 0 und 1.
Ferner wird

1 «-2 (0 fir k#0(moda®—1)
I = 2 Z £ = . _ 2
a‘—1 =% 1 fir k=0(moda®—1).
2(a— 1)t
Firj=2%"Y"_1(=1,23,..)wirdk;= Y d' eine Zahl, die aus 2(a — 1)t Ziffern
s=1

1 und der Endziffer 0 besteht. Ihre «Zweierblockquersumme» betrigt
dk)=a+(@+)(@at—t—1)+1=t(@*-1).

Fir alle solchen k; gilt k; =d(k;) = 0 (mod a® — 1) und somit g, = 1. Jedes k = 0 muss

d (k) = 0 (mod a® — 1) erfiillen; das kleinste k > 1 muss also moglichst wenig Ziffern ent-
2(a—1)
halten und d (k) = a* — 1 erfilllen. Es lautet somit k= Y d°
s=1

In der Originalaufgabe ist a = 10 und somit das kleinste positive k

k=1111111111111111110.
J. Binz, Bolligen

H.-J. Seiffert (Berlin) bemerkt, dass Aufgabe 1010 identisch ist mit Problem 728, Nieuw
Arch. Wiskd., IV Ser., 4/1986, p. 269—-270, gestellt von K. Mahler, Lésung von A. A.
Jagers. Weitere Losungen sandten W. Janous (Innsbruck, A), O. P. Lossers (Eindhoven,
NL), J-Y. Thibon (Enghien, F).

Aufgabe 1011. Die Funktion f:IN — N sei folgendermassen rekursiv definiert:

fQ=1, fCm=fm+gm-1), fCn+1)=f(n+1)+gn/72)
fiir alle neN, wobei g(x) die kleinste Zweierpotenz > x bezeichnet. Man zeige, dass f

involutorisch ist, d. h. dass f(f (n)) = n fiir alle ne N gilt.

K. Schiitte, Miinchen, BRD
Losung (mit Priizisierung). Fiir die Intervalle

I:={nlneN,2? +1<n<2?*'} p=0,1,2,...

\
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lasst sich auf Grund der rekursiven Definition der Funktion f fiir p > 1 die Beziechung

1
f(n ; ) + 27! falls nel,, nungerade

f=< g
f(i) + 2P falls nel,, ngerade

gewinnen, sodass durch vollstindige Induktion mit den Verankerungen f (3) = f(2) + 2°
=241=3und f@=f(2) +2'=2+2=4 folgt, dass f eine Permutation auf dem
Intervall I, ist, wobei seine ungeraden Zahlen genau in die erste Halfte und die geraden
Zahlen in die zweite Hilfte von I, abgebildet werden.

Ebenso lassen sich induktiv mit den Verankerungen f(3)=2f(2)— 1 und f(4) =2 f(2)
mittels den gegebenen Eigenschaften von f fiir ne I, die Beziehungen

2-f(n—2P"Y)—1 falls 2P 4+1<n<2F42°° !

f(n)={2-f(n—2”) falls 2P +2°"'+1<n<2r*! @)

herleiten, die zeigen, wie die Bilder des Intervalles I, durch diejenigen von I,,_, dargestellt
werden: Die Bilder der ersten Hilfte von I, sind also ungeradzahlig, die der zweiten Halfte
geradzahlig.

Aus (1), (2) folgt nun wieder induktiv unter Anwendung der gegebenen Definitionen von
ffur 2P + 1 <n<2°P + 27~ (1. Hiilfte von 1))

M) =f2fn-2""—-1)
==Y +g(f(r—27") =Y =n-27"1 427" =
und fiir 27 + 277! + 1 <n < 27*! (2. Hilfte von I,)
fU)=fRfn=2N=f(f(n—2"D+9(f(n—2")—1)=n—-2"+2"=n.
dDamit ist bewiesen, dass f sogar auf jedem Intervall I, eine involutorische Permutation
arstellt.

R. Wyss, Flumenthal

Weitere Losungen sandten P. Bundschuh (K6ln, BRD), W. Janous (Innsbruck, A), Kee-
wai Lau (Hong Kong), O. P. Lossers (Eindhoven, NL), H. Widmer (Rieden).

Aufgabe 1012. Fiir neN, n > 2 sei

Li= {(1+x) 12dx.

Oty §

Man gebe mindestens ein Zahlenpaar (r,s) mit r % s an, derart, dass das Verhéltnis I,/I
rational ist.

M. Vowe, Therwil
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Losung: Mit der Substitution x = (t/(1 — t))" (0 < t < 1) erhilt man

1 1
= [T — g e Ben gy, (1)

Bezeichnen B(x, y) die Betafunktion und I' (x) die Gammafunktion, so erhilt man wegen

rxr 4
B(x,y) = F((x)+(y)) (f)" ld—eptde

aus (1) fiir jedes Zahlenpaar (r,s) mit r,s > 2,

ramrr—2)/2n)
r(A/sr(s—2/2s)

L/Is = (s/r) 2

(2) zeigt, dass I,/I; = s/r, falls das Zahlenpaar (r, s) die Gleichung s = 2 r/(r — 2) erfiillt. Ein
mogliches Zahlenpaar im Sinne der Aufgabenstellung ist somit (r, s) = (3, 6).

H.-J. Seiffert, Berlin

Weitere Losungen sandten P. Bundschuh (K6ln, BRD), F. Gotze (Jena, DDR), L. Kuipers
(Sierre), O. P. Lossers (Eindhoven, NL; 2 Losungen), P. Sakmann (Bern), K. Schiitte
(Miinchen, BRD).

Neue Aufgaben

Die Losungen sind getrennt nach den einzelnen Aufgaben in Maschinenschrift erbeten bis
10. Dezember 1990 an Dr. H. Kappus. Dagegen ist die Einsendung von Losungen zu den
mit Problem ... A, B bezeichneten Aufgaben an keinen Termin gebunden.

Bei Redaktionsschluss dieses Heftes sind noch ungelGst: Problem 601 A (Band 25, S. 67),
Problem 625 B (Band 25, S. 68), Problem 645 A (Band 26, S. 46), Problem 672 A (Band 27,
S. 68), Aufgabe 680 (Band 27, S. 116), Problem 724 A (Band 30, S. 91), Problem 764 A
(Band 31, S.44), Problem 862 A (Band 36, S.68), Problem 872A (Band 36, S.175),
Aufgabe 880 (Band 37, S. 93).

Aufgabe 1031. Beziiglich einer reellen Zahl r seien die Polynome f, (ne N U {0}) folgen-
dermassen rekursiv definiert:

fo=1, fiX)=x—r, fs1®)=x"f,(x)— f,-1(x) fir neN.

Man zeige, dass diese Polynome nur reelle Nullstellen haben, und bestimme in Abhingig-
keit von r das Infimum und das Supremum der Menge aller Nullstellen dieser Polynome.

K. Schiitte, Miinchen, BRD
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Aufgabe 1032. Man beweise: Wenn mit L, (x, y) die Mittelwertfamilie

xr__yr

L,(x,y)= [m

1/r
] , reR\{0}, x>0,y>0,

bezeichnet wird, dann gilt fiir alle reIR\{0} und fiir alle positiven reellen Zahlen x und
y mit x % y:

X +
VEy <3G +Lo k)< 22
H. Alzer, Johannesburg, Siidafrika

Aufgabe 1033. Die Nullstellen des Polynoms
fX=x"+a, X" '+...+a;x+ae; n=2 allegeR ™
seien sdmtlich reell. Man zeige, dass
2a,_ <a,_y(a,-1 +]ao]'".

Wann genau gilt Gleichheit?
W. Janous, Innsbruck, A
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1l existe une riche littérature d’une part sur les fonctions analytiques doublement périodiques dans le plan com-
plexe, d’autre part sur les fonctions et formes automorphes par rapport & un groupe discret de transformations
linéaires du demi-plan supérieur, en particulier sur les formes modulaires. Les auteurs du présent ouvrage propo-
sant un traitement systématique d’une classe de fonctions analytiques de deux variables complexes, ayant un
comportement proche de celui d’une fonction doublement périodique par rapport 4 la premiére variable, et proche
de celui d’'une forme automorphe par rapport a la seconde variable. Ces fonctions portent le nom de Jacobi qui
en a le premier rencontré un exemple particulier, en étudiant des séries théta. On retrouve des constructions et
résultats familiers de la théorie des formes modulaires comme les séries d’Eisenstein, les opérateurs de Hecke, les
«new forms» et «old forms», le produit scalaire de Petersson, etc. Plusieurs techniques pemettent d’établir des
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