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Kleine Mitteilung

Zeros of characters and the Frattini subgroup

Let G be a finite group and let Irr(G) be the set of its (complex) irreducible characters.
Of course, the Frattini subgroup @(G) being normal in G, it must be an intersection of
certain kernels of elements of Irr(G). However, it seems that the problem of describing
@(G) in terms of characters is still open. The aim of this short Note ist to give a sufficient
condition for the nontriviality of @(G) in terms of vanishing sets of nonlinear irreducible
characters of G.

Our notation is standard and follows that of [2]. Throughout, G will be a finite group and
Z(G), G' will denote its centre and its derived subgroup, respectively. If yeIrr(G) is
nonlinear, the vanishing set A (y) of x is defined by A (x):= {g€ G/x(g9)=0}. A well-known
result of Burnside asserts that A(y) + @; moreover, it’s clear that A(y) is a union of
conjugate classes of elements of G.

We prove the following

Theorem. Let G be a finite group with 1 < Z(G) < G. Suppose that there exists a nonlinear
x€lrr (G) such that A(x) contains fewer than |Z(G)| conjugate classes of elements. Then
P(G)+1.

Proof: The key observation is that actually A(y) is a union of cosets modulo Z(G). To
prove this, note that by Problem 3.12 of [2] it follows that for every ge G,

1
lx(9)? =—’I‘—((;|l Y x(g,h)). (%)
neG

Let now g,he G and ze Z(G); since [g, h] =[gz, h], it follows from (*) that ge A(y) iff
gze A(y) for every ze Z(G). This means that A(x) is a union of cosets modulo Z(G).
Suppose, by way of contradiction, that ¢(G)=1. By a well-known result of [1],
GNnZ(G)ZLP(G),so GnZ(G)=1.

Denote by s(x) and t(x) the number of conjugate classes of G contained in A(y) and the
number of cosets modulo Z (G) lying in A (), respectively. We shall reach a contradiction
by applying the pigeonhole principle. Suppose that g,he A(x), g + h and there exist ue G
and ze Z(G)such that g=h*=hz. Thenz=h"1g=h"1h* = [h,u]e G’ n Z(G), whence
g = h. This contradicts the choice of g and h and shows that A (x) contains at most s(x) t(x)

\
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elements. Taking now into account that ¢ (x):= | A (x)|/| Z (G)|, it results that | Z (G)| = s().
But this contradicts the hypothesis and we are done.

Corollary. Let G be a finite group with 1< Z(G) <G and ®(G)=1. Let

c:=max{|Cs(x)|/xe G\Z(G)} and b(G):=max {x(1)/xelrr(G)}.

1

2

C
Then b(G) > (m)

Proof: As a direct consequence of the Theorem, we obtain that c¢|A(y)| >|Z(G)||G| for

every nonlinear yelrr(G). On the other hand, it’s a simple exercise to prove that

r?=1 . (B@G)Y-1_x(1)’ -1

AWI<IG =0 S T = a7

lows by combining these inequalities.

We have already seen that if y € Irr(G) is nonlinear, then |Z(G)|||A(x)|. This result may

be refined in certain very special cases. For example, suppose that G is a finite group and

x € Irr (G) is faithful such that y(1)=2 and x(g)e @ for every g € G. It is a matter of simple

calculations to show that | A(x)| = 3|Z(G)|. If, moreover, Z(G) =1, then |A(y)]=3 and G
has a maximal subgroup of index 3 (the centralizer of an element of A(y)).

Marian Deaconescu, Department of Mathematics,

University of Timisoara, Romania

for every yelrr(G), the result fol-
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Aufgaben

Aufgabe 1009. n Zahlen x,, ..., x, mit x; €{0,1,..., k} (k > 2) werden einmal linear, ein
andermal kreisformig so angeordnet, dass die Summe zweier Nachbarglieder stets von
k + 1 verschieden ist. Fiir beide Fille bestimme man die Anzahl der zuldssigen Anord-
nungen.

J. Binz, Bolligen
Losung des Aufgabenstellers (Bearbeitung der Redaktion).
s, bzw. t, bezeichnen die Anzahlen der zulédssigen linearen bzw. kreisférmigen Anordnun-
gen.

a) Es gilt s, = a, + b,, wobei a, die Anzahl der auf 0 endenden, b, dicjenige der iibrigen
zuldssigen linearen Anordnungen bedeuten. Dann ist

a"+1=an+bn’ bn+1=kan+(k_°1)bm a2=k+1, b2=k2a
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