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Then for m=1 we have

s2>2m+2r2m(Im—2)R2 —m*+19m+2) Rr+4r?]/m[m(@m+1) R —4r].
(17)

The same inequality (17') is obtained for 0 <m <1 and R > 4r/m(m + 1). In the case, when
0<m=1and 2r < R<4r/m(m+1), we obtain

s (m+2r2m(Tm—2) R? — (m*+19m+2) Rr+4r?]/m[m(m+1) R —4r]. (17")

Finally, we note that the inequality (10) gives the best presently known rational lower
bound for s?, because of the following chain of well-known inequalities

s2>24r(12R>—~11Rr+r*)/BR—-2r)=r(16R—-5r) = r(4R+1r)?/(R+7)
2r(16R+3r)4R+1r)?*/4R—-1r)(AR+T7r)=r(4R+1r)/2R—r)(2R + 57)
>3r@R+r)=r(@R+1r?*Q2R—-r)=3r(4R+71)*/(TR-5r)%. (18)

Svetoslav Jordanov Bilchev,
Emilia Angelova Velikova, Russe, Bulgaria
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Funktionen beschrankter Homogenitat

Wir fiihren in dieser Arbeit eine neue Funktioneneigenschaft ein, die zur Unterscheidung
vom gewdOhnlichen Homogenititsbegriff (Gl. 1-3) als «beschrinkte Homogenitat»
(Gl. 5-6) bezeichnet wird. Anschliessend veranschaulichen wir diese spezielle Skalenei-
genschaft durch mehrere praktische Beispiele (Gl. 8—23).

Wir betrachten hier stetig differenzierbare Funktionen f:R™—> R wobei R™ =
={X =(x{,%,,..., X,)| x, € R}. Einfachheitshalber schreiben wir aber fast alle Glei-
chungen nur fir m =2 oder m =1 auf, weil die Verallgemeinerung fiir beliebiges m
offensichtlich ist.

Nach der gewdhnlichen Definition ist f= f (X) eine homogene Funktion vom Homoge-
nititsgrad s, wenn

fAxy,A%3) = 2f (x1,%,) (1)

fiir beliebiges Ae R* erfiillt ist.
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Solche Funktionen geniigen der wohlbekannten Eulerschen Identitit:

Ef(X)=sf(X) (2)
wobei der lineare Operator

0 0 0
E=X15;—+x2'a‘;‘“+...+xm5;- (3)
1 2 m

als «Eulersche-Operator» bezeichnet wird.

Wenn h = h(X) ebenfalls eine, im Sinne der Definition (1) homogene Funktion ist und
denselben Homogenitétsgrad s wie die Funktion f = f(X) besitzt, so gilt, als Folge von
(2), E(f (X)/h(X)) = 0. Die Eulersche Identitét (2) kann also in trivialer Weise wie folgt
umgeschrieben werden

Ef(X)=sf(X)+g(X)E(f (X)/h(X)) 4)

ohne, dass dadurch ihr Inhalt beeintrdchtigt wird. (g = g (X) stellt hier eine beliebige
Funktion g: R™ — R dar).

Die Funktionen von «beschriankter Homogenitit» @: R™ — R, die wir in der vorliegenden
Arbeit prdsentieren, zeichnen sich, im Vergleich mit den gew6hnlichen homogenen Funk-
tionen, durch die spezielle Eigenschaft aus, dass sie die Gleichung

D(Ax1,Axy) = A D(xy, X)) (5)
nicht fiir beliebige A€ R*, sondern nur fiir eine abzihlbare Untermenge {A,} von R*:
(A} =:4cR*. (6)

erfiillen.

Zum Unterschied gehort auch die Tatsache, dass diese «beschriankt-homogene» Funk-
tionen @ die Eulersche Identitdt in ihrer gewohnlichen Form (2) nicht erfiillen. Sie
geniigen der Eulerschen Identitét lediglich in ihrer «ergédnzten» Form (4), dies aber auch
noch dann, wenn g durch h ersetzt wird, d. h.:

E®(X)=s®(X) + h(X) E(@(X)/h(X)), (7)

wobei h eine beliebig (stetig differenzierbare) Funktion vom Homogenititsgrad s ist.
Wohlgemerkt ist aber die Beziehung (7) keine typische Identitét fiir die beschrankt-homo-
genen Funktionen; sie ist fiir jede @ erfiillt, falls h der Identitdt E h(X) = sh(X) geniigt.

Erstes Beispiel.

Es sei

D(xy,x):=12(1,62), ¢i=Inx; 8)
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eine in den Logarithmen &; und £, der unabhingigen Variablen x; und x, periodische
Funktion mit derselben Periode T, d. h. z(¢, + T, ¢, + T)=z(&4,,&,). So gilt D (A x,,4x,)
=z(& +InA ¢+ Ind)=2(,,E)=P(x,,x,) falls InA=nT, n=0,+1,+2,.... Mit
anderen Worten definiert die Gl. (8) (mit x, € R*) eine beschrinkt homogene Funktion
vom Homogenitétsgrad s = 0, die die Gleichung (5) nur fiir

A=4,=eT, n=0,+1,+2,... 9)

erfillt. Ein konkretes Beispiel dieser Art ist @ (x,, x,) = sin(ln x,) + cos (In x,) wobei sich
A, =exp(2nn) ergibt. Es ist leicht nachzupriifen, dass diese Funktion die Eulersche
Identitédt in ihrer gewohnlichen Form (2) nicht, wohl aber in ihrer «ergidnzten» Form (7)

(mit einer beliebigen homogenen Funktion h = h(x,,x,) vom Homogenitédtsgrad s = 0)
erfiillt.

Zweites Beispiel.

Es leuchtet sofort ein, dass die in (8) definierte z-Funktion multipliziert mit einer beliebi-
gen Funktion H = H (X), die homogen im gewo6hnlichen Sinne ist und den Homogeni-
tiatsgrad s besitzt, d. h.

¢(x19x2):=H(xl,xZ)Z(flséZ) (10)
eine im Sinne (5-6) «beschriankt homogene» Funktion vom Homogenitdtsgrad s ergibt.

Drittes Beispiel.

Wir betrachten nun den Fall der uns eigentlich zum Nachdenken tber die «beschrinkte
Homogenitédt» veranlasst hat.
Wir gehen von der beriihmten Emden-Fowler Gleichung [1, 2]:

_X+x_Py2p_3=O (11)

aus, wobei p eine rationale Zahl ist, p >2 und x > 0.
Durch die Substitution

y(x)=x"22z(¢)

¢ =3lnx (12)
geht die GI. (11) in die Gleichung

2" =z — 47273, (13)
mit konstanten Koeffizienten iiber, wo der Strich die Ableitung d/d¢ bezeichnet. Fiir

unseren Zweck ist es ausreichend, die Losung von Gl. (13) nur qualitativ zu diskutieren.
Dies kann «anschaulich» durchgefiihrt werden, indem man erkennt, dass (13) mit der
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Newtonschen Bewegungsgleichung eines Teilchens der Masse 1 im Potential

1
V)= —=22+

T 22D, (14)

identisch ist.
Damit stellt das «Energieintegral»

1224 V(@)=86 (15)

ein erstes Integral der Gl. (13) dar, wobei die «Gesamtenergie» & durch die Anfangsbedin-
gungen bestimmt ist.

Wir betrachten hier nur die Félle p=2,3,4,....

Fir p = 3,4,5, ... beschreibt die Formel (14) das «Doppeltopfpotential» der Fig. 1 wobei

q+2 1/q 1 1/q q 1\2/a
= —e s . = -_— K:— —_
“ < 3 ) i (4> und 2(q+2)(4)

und g=2p—-4=2,4,6,....

V(z)

-Z% 0 +z%

| Ve

Figur 1. Qualitativer Verlauf des Potentials (14) fiir p = 3,4,5.

Es ist sofort ersichtlich, dass fiir ¥V, < & <0 Gl. (13) zwei Losungsfamilien von periodi-
schen (oszillierenden) Funktionen hat, die fiir & > 0 in eine Losungsfamilie von periodi-
schen Funktionen iibergehen. Die Schwingungsperiode ist gegeben durch

T=2252 dz

L3 \/2(6—- V)

wobei z, , die Koordinaten der «Umkehrpunkte», d.h. die Losungen der Gleichung
V (z) = & sind. Folglich sind die z-Losungen im erwdahnten Wertintervall von & perio-
dische Funktionen von &, d. h. z(£ + T) = z(¢) und damit, aufgrund von (12), haben wir

(16)

yAx)=A"2x"2z(Inx + 3Ind) = 112 y(x) (17)
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falls
Ae{ip|ld,=e"T, n=0,+1,42,...}. (18)

Fiir die Werte 4 = 4, gegeben durch (18) sind also die Losungen y = y(x) der Emden-
Fowler Gleichung (11) beschrankt-homogene Funktionen vom Homogenitétsgrad s = 1/2,
im Sinne der Definition (5-6).

Der Fall p = 2 ist explizit 16sbar und dadurch sehr anschaulich. Einfache Berechnungen
ergeben die Losung

1/2
y(x)= (_2_3{’ x) sin (4 Inx + const.) (19)

deren &-Periode ist T = 21t/\/§ und damit

ln=exp<4—}£), n=0,+1,+2,.... 20)
Es ist ebenfalls nachzupriifen, dass (19) die gewdhnliche Eulersche Identitdt (2) nicht
erfiillt wohl aber ihre «erginzte» Form (7).
Wir schliessen diese Arbeit mit einem vierten Beispiel einer Funktion von beschriankter
Homogenitét ab.
Diese Funktion stellt die allgemeine Losung der Riccatischen Differentialgleichung

q—1
X
dar und hat die Form (siche Ref. 1, S. 326):

y=—xy e oy e @1)

y(x) = x4~ ! tan(const. — In x) (22)
Man sieht sofort, dass y(4x) = A27! y(x) falls
Ae{dldy,=€"", n=0,+1,+2,..} (23)

d.h.,, dass die in (22) gegebene Funktion y(x) tatsdchlich eine beschriankt-homogene
Funktion vom Homogenitédtsgrad s = q — 1 ist.

Wir konnen also festhalten, dass die stetig differenzierbaren Funktionen, die an der
logarithmischen Skala periodisch sind, Funktionen darstellen bzw. zu Funktionen fiih-
ren, die an der «algebraischen» Skala im «beschrankten» Sinne (5-6) homogen sind. Wir
haben bisher keine weiteren Funktionentypen gefunden, die die Eigenschaft der «be-
schrankten Homogenitdt» aufgewiesen hitten, ohne mit dieser Klasse der «logarith-
misch-periodischen» Funktionen in Verbindung zu stehen.

Der Verfasser ist Prof. Catherine Bandle vom Mathematischen Institut der Universitét
Basel fiir ihre Anregungen dankbar.

Eugen Magyari, Technisches Forschungszentrum, HILTI AG,
Schaan, (Fiirstentum Liechtenstein)
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Kleine Mitteilung

Zeros of characters and the Frattini subgroup

Let G be a finite group and let Irr(G) be the set of its (complex) irreducible characters.
Of course, the Frattini subgroup @(G) being normal in G, it must be an intersection of
certain kernels of elements of Irr(G). However, it seems that the problem of describing
@(G) in terms of characters is still open. The aim of this short Note ist to give a sufficient
condition for the nontriviality of @(G) in terms of vanishing sets of nonlinear irreducible
characters of G.

Our notation is standard and follows that of [2]. Throughout, G will be a finite group and
Z(G), G' will denote its centre and its derived subgroup, respectively. If yeIrr(G) is
nonlinear, the vanishing set A (y) of x is defined by A (x):= {g€ G/x(g9)=0}. A well-known
result of Burnside asserts that A(y) + @; moreover, it’s clear that A(y) is a union of
conjugate classes of elements of G.

We prove the following

Theorem. Let G be a finite group with 1 < Z(G) < G. Suppose that there exists a nonlinear
x€lrr (G) such that A(x) contains fewer than |Z(G)| conjugate classes of elements. Then
P(G)+1.

Proof: The key observation is that actually A(y) is a union of cosets modulo Z(G). To
prove this, note that by Problem 3.12 of [2] it follows that for every ge G,

1
lx(9)? =—’I‘—((;|l Y x(g,h)). (%)
neG

Let now g,he G and ze Z(G); since [g, h] =[gz, h], it follows from (*) that ge A(y) iff
gze A(y) for every ze Z(G). This means that A(x) is a union of cosets modulo Z(G).
Suppose, by way of contradiction, that ¢(G)=1. By a well-known result of [1],
GNnZ(G)ZLP(G),so GnZ(G)=1.

Denote by s(x) and t(x) the number of conjugate classes of G contained in A(y) and the
number of cosets modulo Z (G) lying in A (), respectively. We shall reach a contradiction
by applying the pigeonhole principle. Suppose that g,he A(x), g + h and there exist ue G
and ze Z(G)such that g=h*=hz. Thenz=h"1g=h"1h* = [h,u]e G’ n Z(G), whence
g = h. This contradicts the choice of g and h and shows that A (x) contains at most s(x) t(x)

\
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