Zeitschrift: Elemente der Mathematik

Herausgeber: Schweizerische Mathematische Gesellschaft

Band: 45 (1990)

Heft: 2

Rubrik: Aufgaben

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 25.11.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

sowie

$$f^{(k+1)}(x) = (k+1)! \binom{a}{k+1} (1+x)^{a-k-1}.$$

Der Satz von Taylor liefert somit für f die Darstellung

$$f(x) = \binom{a}{k+1} (1+cx)^{a-k-1} x^{k+1}, \quad 0 < c < 1.$$

Schließlich erhalten wir

$$\binom{a}{k+1} x^{k+1} \left[(1+x)^a - \sum_{p=0}^k \binom{a}{p} x^p \right] = \binom{a}{k+1}^2 x^{2(k+1)} (1+cx)^{a-k-1} \ge 0,$$

wobei der in der eckigen Klammer stehende Ausdruck genau dann gleich Null ist, wenn $\binom{a}{k+1} = 0$.

Horst Alzer University of the Witwatersrand, Johannesburg

LITERATUR

- 1 Gerber L.: An extension of Bernoulli's inequality. Amer. Math. Monthly 75, 875-876 (1968).
- © 1990 Birkhäuser Verlag, Basel

0013-6018/90/020053-02\$1.50 + 0.20/0

Aufgaben

Aufgabe 1005. Man beweise: Die durch

$$x_1 = 1$$
, $x_n = e - n \cdot x_{n-1}$ (e ist die Eulersche Zahl)

rekursiv definierte Zahlenfolge (x_n) strebt mit wachsendem n gegen Null und divergiert (in dieser Form) bei der Berechnung auf jedem Computer

R. Wyss, Flumenthal

Lösung (Bearbeitung der Redaktion). Es sei ε der Rundungsfehler (Maschinenfehler) von e bei der Berechnung der x_n auf dem Computer. Diese erfolgt also gemäss

$$x_1 = 1, \quad x_{n+1} = e + \varepsilon - n x_{n-1}.$$

Man zeigt leicht durch vollständige Induktion, dass

$$x_n = (-1)^n n! \frac{\varepsilon}{e} + (e + \varepsilon) s_n,$$

wobei

$$s_n = \sum_{k=0}^{\infty} \frac{(-1)^k}{(n+1)(n+2)\dots(n+1+k)}.$$

Die Abschätzung

$$|s_n| \le \sum_{k=0}^{\infty} \frac{1}{(n+1)(n+2)\dots(n+1+k)}$$

$$\le \sum_{k=0}^{\infty} (n+1)^{-k-1}$$

$$= \frac{1}{n}$$

zeigt, dass $s_n \to 0$, also

$$\lim_{n \to \infty} |x_n| = \begin{cases} 0 & \text{wenn} \quad \varepsilon = 0 \\ + \infty & \text{wenn} \quad \varepsilon \neq 0 \end{cases}.$$

F. Götze, Jena, DDR

Weitere Lösungen sandten P. Bundschuh (Köln, BRD), H. Guggenheimer (New York, USA), A. A. Jagers (Enschede, NL), W. Janous (Innsbruck, A), O. P. Lossers (Eindhoven, NL), Chr. A. Meyer (Bern), A. Müller (Zürich), B. Ruh (Solothurn), H.-J. Seiffert (Berlin), Hj. Stocker (Wädenswil), G. Unger (Dornach), P. Weisenhorn (Achern, BRD).

Aufgabe 1006. Einem Rechteck PQRS sollen $2k \ge 4$ Kreise K_i, K_i' wie folgt eingelagert werden: K_1 berührt das Rechteck im Mittelpunkt C der Seite SP; K_2 berührt K_1 in B und das Rechteck im Mittelpunkt A der Seite QR. K_i berührt K_1, K_{i-1} und die Rechteckseite QR (i = 3, 4, ..., k, falls k > 2); K_{k+1} berührt K_1, K_k und die Rechteckseiten QR, RS und SP. Die Kreise K_i' (i = 3, 4, ..., k = 1) sind die Spiegelbilder der Kreise K_i an der Achse AC.

Für welche Rechtecke ist eine solche Einlagerung möglich?

J. Binz, Bolligen

Lösung des Aufgabenstellers. Wir legen die Gauss-Ebene so, dass AC auf der reellen Achse liegt und K_1 der Einheitskreis mit Zentrum O ist; so werden C = -1, B = 1 und $A = \alpha > 1$. Die Moebius-Abbildung $f(z) = \frac{-\beta z + 1}{z - \beta}$ hat die Fixpunkte 1 und -1, und

es gilt $f(\infty) = -\beta$. Wählt man z. B. $\beta = \alpha - \sqrt{\alpha^2 - 1}$, so wird $f(\alpha) = \beta$. Sind G, H die Geraden QR resp. SP, so werden $f(K_1) = K_1$, f(G) = G' (ein zu K_1 konzentrischer Kreis mit Radius β) und f(H) = H' (ein Kreis mit Durchmesser $(-1, -\beta)$, der dem Kreisring K_1 , G') eingeschrieben ist). Die 2k - 1 Kreise $f(K_i)$ und $f(K_i')$ ($i \ge 2$) bilden zusammen mit H' eine dem Kreisring (K_1, G') eingeschriebene geschlossene Kreiskette. Damit die

Einlagerung möglich ist, muss für $\varphi = \frac{\pi}{2k}$ die Bedingung $\sin \varphi = \frac{1-\beta}{1+\beta}$ erfüllt sein. Daraus folgt $\alpha = \frac{\beta^2 + 1}{2\beta} = 1 + 2\tan^2 \varphi$. Ist d' der Berührpunkt von $f(K_{k+1})$ mit H', also z. B. $d' = -\sqrt{\beta}(\cos \varphi + i \sin \varphi)$, so wird

$$d = f^{-1}(d') = \frac{\beta d' + 1}{d' + \beta} = -1 + \frac{\beta + 1}{\sqrt{\beta}}i = -1 + \frac{2}{\cos \varphi}i.$$

Das Verhältnis der Rechteckseiten wird dann

$$\lambda = \frac{2\operatorname{Im}(d) + \alpha + 1}{\alpha + 1} = 1 + \frac{2}{\cos\varphi(1 + \tan^2\varphi)} = 1 + 2\cos\varphi.$$

Die Einlagerung ist genau dann möglich, wenn das Verhältnis der Rechteckseiten $\lambda = 1 + 2\cos\frac{\pi}{2\,k} \text{ beträgt.}$

Weitere Lösungen sandten O. P. Lossers (Eindhoven, NL), Hj. Stocker (Wädenswil), G. Unger (Dornach).

Aufgabe 1007. In einer Ebene seien ein Dreieck Δ mit den Ecken A_1, A_2, A_3 und ein Punkt P, der auf keiner Seite von Δ liegt, gegeben. K_1 sei der Kegelschnitt, der die beiden von A_1 ausgehenden Dreiecksseiten in A_2 bzw. A_3 berührt und durch P geht. Analog sei der Kegelschnitt K_2 definiert. Die beiden Kurven besitzen ausser der Geraden $A_1 A_2$ noch eine weitere Tangente t. Man zeige: Bewegt sich P auf einer durch A_3 verlaufenden Ecktransversalen von Δ , so dreht sich t um einen festen Punkt T.

C. Bindschedler, Küsnacht

Lösung. Durch eine projektive Abbildung werden die Punkte A_1, A_2, A_3 und P auf die uneigentlichen Punkte A'_1, A'_2 der Koordinatenachsen, den Punkt $A'_3 = (0,0)$ und den Punkt P' = (1,1) abgebildet. Hierbei werden die Kegelschnitte K_1 und K_2 auf die Parabeln $x^2 = y$ und $y^2 = x$ abgebildet. Diese Parabeln haben ausser der uneigentlichen Geraden genau eine weitere gemeinsame Tangente t', nämlich in den Punkten $(-\frac{1}{2}, \frac{1}{4})$ und $(\frac{1}{4}, -\frac{1}{2})$. Daher haben auch die Kegelschnitte K_1 und K_2 ausser der Geraden A_1 A_2 genau eine weitere gemeinsame Tangente t, die auch die uneigentliche Gerade sein kann. Die Tangente t' hat die Gleichung

$$x+y+\tfrac{1}{4}=0.$$

Für die Schnittpunkte S', T' der Geraen $A'_3 P'$, t' mit der uneigentlichen Geraden folgt, dass A'_1, A'_2, S', T' in harmonischer Lage sind. Da diese Eigenschaft projektiv invariant ist, gilt auch für die Schnittpunkte S, T der Geraden $A_3 P$, t mit der Geraden $A_1 A_2$, dass A_1, A_2, S, T in harmonischer Lage sind.

Bewegt sich der Punkt P auf der durch A_3 verlaufenden Geraden, so bleibt der Punkt S fest. Dann bleibt auch der vierte zu A_1, A_2, S harmonische Punkt T fest. Daher geschieht bei dieser Bewegung von P folgendes: Hat die Tangente t einen eigentlichen Schnittpunkt T mit der Geraden A_1A_2 , so wird sie um diesen Punkt T gedreht. Andernfalls wird sie parallel verschoben, wobei die uneigentliche Gerade als eine Parallele der Geraden A_1A_2 aufzufassen ist.

K. Schütte, München, BRD

Weitere Lösungen sandten L. Kuipers (Sierre), O. P. Lossers (Eindhoven, NL), Hj. Stocker (Wädenswil), P. Weisenhorn (Achern, BRD), H. Widmer (Rieden).

Aufgabe 1008. Man zeige, dass für beliebige reelle a, b, c

$$(a+b+c)^2 - 4(ab+bc+ca) + 3(abc)^{2/3} \ge 0.$$

S. Gaschkov, Moskau, U.d.S.S.R.

Solution. Let $F(a,b,c) = a^2 + b^2 + c^2 - 2(ab + bc + ca) + 3(abc)^{2/3}$. Since F is symmetric in a,b,c and satisfies $F(a,b,c) \ge F(|a|,|b|,|c|)$, it is enough to prove $F(a,b,c) \ge 0$ assuming that $a \ge b \ge c \ge 0$. Then we have

$$a + b - c \ge 2(ab)^{1/2} - c \ge 0.$$
 (1)

In the weighted G.M.-A.M. inequality

$$x^{1/4} y^{3/4} \le \frac{1}{4} x + \frac{3}{4} y \quad (x, y \ge 0)$$

we set $x = c^2$, $y = (abc)^{2/3}$, thus obtaining

$$4c(ab)^{1/2} \le c^2 + 3(abc)^{2/3}. (2)$$

In view of (1) and (2),

$$F(a,b,c) = (a+b-c)^2 - 4ab + 3(abc)^{2/3}$$

$$\ge (2(ab)^{1/2} - c)^2 - 4ab + 3(abc)^{2/3}$$

$$= c^2 - 4c(ab)^{1/2} + 3(abc)^{2/3}$$

$$\ge 0.$$

Remark. Equality in (1) holds if and only if a = b, and in (2) if and only if c = 0 or $c^2 = ab$. Hence we have equality if and only if a = b = c or a = b and c = 0.

M. E. Kuczma, Warszawa, Polen

Weitere Lösungen sandten P. Bundschuh (Köln, BRD), H. Irminger (Wetzikon), A. A. Jagers (Enschede, NL), W. Janous (Innsbruck, A), L. Kuipers (Sierre), Kee-wai Lau (Hong Kong), O. P. Lossers (Eindhoven, NL), K. Schütte (München, BRD), H.-J. Seiffert (Berlin), Hj. Stocker (Wädenswil), P. Weisenhorn (Achern, BRD).

Neue Aufgaben

Die Lösungen sind getrennt nach den einzelnen Aufgaben in Maschinenschrift erbeten bis 10. Oktober 1990 an Dr. H. Kappus. Dagegen ist die Einsendung von Lösungen zu den mit Problem ... A, B bezeichneten Aufgaben an keinen Termin gebunden.

Bei Redaktionsschluss dieses Heftes sind noch ungelöst: Problem 601 A (Band 25, S. 67), Problem 625 B (Band 25, S. 68), Problem 645 A (Band 26, S. 46), Problem 672 A (Band 27, S. 68), Aufgabe 680 (Band 27, S. 116), Problem 724 A (Band 30, S. 91), Problem 764 A (Band 31, S. 44), Problem 862 A (Band 36, S. 68).

Aufgabe 1028. Man bestimme die Nullstellen der Polynome

$$P_n(x) = \sum_{k=0}^n \binom{2n-k}{2n-2k} 2^{2n-2k} (x-1)^k, \quad n \in \mathbb{N}.$$

Hj. Stocker, Wädenswil

Aufgabe 1029. Genau welche natürlichen Zahlen treten als Diagonalenlängen von (nicht ausgearteten) Quadern oder Rechtecken mit natürlichen Zahlen als Seitenlängen auf?

D. Laugwitz, Darmstadt, BRD

Aufgabe 1030. Man zeige: Für jede natürliche Zahl n existiert eine Bijektion $f: \mathbb{R}_0 \to \mathbb{R}_0$ derart, dass

$$f^n(x) = 1/x$$
 für alle $x \in \mathbb{R}_0$.

Dabei sei $\mathbb{R}_0 := \mathbb{R} \setminus \{0\}$, und f^n bezeichne die *n*-te Iterierte von f (also $f^1 := f$, $f^k := f^{k-1} \circ f$ für k = 2, ..., n). Wie lässt sich f effektiv konstruieren?

J. Binz, Bolligen B. Schindler, Könitz