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ANMERKUNGEN

[1*] Siehe hierzu [l]-[5]
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Über eine Verallgemeinerung der Bernoullischen Ungleichung

Im Jahre 1968 veröffentlichte L. Gerber [1] folgende bemerkenswerte Verallgemeinerung
der berühmten Bernoullischen Ungleichung:
Für alle nicht-negativen ganzen Zahlen k und für alle reellen Zahlen a und x mit

- 1 < x + 0 gilt:

\k + lj L P=o\pJ J

wobei der in der eckigen Klammer stehende Ausdruck genau dann verschwindet, wenn
ae{0,l,...,/c}.
Für k 1 erhalten wir die Ungleichung von Bernoulli. Der von Gerber publizierte
Induktionsbeweis ist kurz, jedoch recht kompliziert. Das Ziel dieser Note ist es, einen sehr
einfachen Beweis für Gerbers Ungleichung anzugeben.
Wir definieren

f(x)=f(k9a;x) (l+x)a- Z
p=o\pt

Differentiation nach x ergibt für n > 0:

f(n)(x) n\ ;(> ?«¦-j.QCM
und es folgt

/<»>(0) 0, n 0,l,...,fc,
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sowie

/<* + 1)(x) (fc + l)!|
a

)(1+X)--*-1.\k+l)
Der Satz von Taylor liefert somit für / die Darstellung

f(x)
ü

)(l+cx)a-k-1xk+1, 0<c<l.

Schließlich erhalten wir

Jfc + 1

a
}xfe+1 (l + x)a- £ Mx^l r ^Yx^+^O+cxr^^O,

wobei der in der eckigen Klammer stehende Ausdruck genau dann gleich Null ist, wenn

k + l)
Horst Alzer

University of the Witwatersrand, Johannesburg
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Aufgaben

Aufgabe 1005. Man beweise: Die durch

xx 1, xn e — n • xn_ x (e ist die Eulersche Zahl)

rekursiv definierte Zahlenfolge (xn) strebt mit wachsendem n gegen Null und divergiert
(in dieser Form) bei der Berechnung auf jedem Computer

R. Wyss, Flumenthal

Lösung (Bearbeitung der Redaktion). Es sei e der Rundungsfehler (Maschinenfehler) von
e bei der Berechnung der xn auf dem Computer. Diese erfolgt also gemäss

*i l» xn + x e + e-nxn„x.
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