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ANMERKUNGEN

[1*] Siehe hierzu [1]-[5].
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Uber eine Verallgemeinerung der Bernoullischen Ungleichung

Im Jahre 1968 veroffentlichte L. Gerber [1] folgende bemerkenswerte Verallgemeinerung
der berithmten Bernoullischen Ungleichung:

Fiir alle nicht-negativen ganzen Zahlen k und fiir alle reellen Zahlen a und x mit
—1<x#0gilt

a + aq . a p
(k+ 1)x" 1[(1 + x) -Eo(p>x ]20,

wobei der in der eckigen Klammer stehende Ausdruck genau dann verschwindet, wenn
ae{0,1,...,k}.

Fir k =1 erhalten wir die Ungleichung von Bernoulli. Der von Gerber publizierte
Induktionsbeweis ist kurz, jedoch recht kompliziert. Das Ziel dieser Note ist es, einen sehr
einfachen Beweis fiir Gerbers Ungleichung anzugeben.

Wir definieren

F®=flax) =1 +x— T (“)x".

p=0\p

Differentiation nach x ergibt fiir n > 0:

el 50

und es folgt

f®0 =0, n=0,1,...,k,
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sowie

f*rD(x) = (k+1)!< ¢ )(1 + x)r kL,
k+1

Der Satz von Taylor liefert somit fiir f die Darstellung

fm=Q“

N 1)(1 +ex) Tk Ixt 0<e <.

SchlieBlich erhalten wir

a xk+1 (1+x)a_ é a X | = a 2x2(k+1)(1+cx)a—k“1>0
k+1 p=0\D k+1 -

wobei der in der eckigen Klammer stehende Ausdruck genau dann gleich Null ist, wenn

(1:-1):0‘
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Aufgaben

Aufgabe 1005. Man beweise: Die durch

xy=1, x,=e—n-x,_; (eistdie Eulersche Zahl)
rekursiv definierte Zahlenfolge (x,) strebt mit wachsendem n gegen Null und divergiert
(in dieser Form) bei der Berechnung auf jedem Computer

R. Wyss, Flumenthal

Losung (Bearbeitung der Redaktion). Es sei ¢ der Rundungsfehler (Maschinenfehler) von
e bei der Berechnung der x, auf dem Computer. Diese erfolgt also geméss

x,=1, X,4,=e+ée—nx,_,.
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