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The linearity ofthe Moessner-mapping (pn)y->(qt) for fixed (kx) finishes the Job. There are
no convergence problems in the infinite summation formula, because every qx is affected
only by a finite number of terms in this summation.
As an example, we take pn n and kx i:

Figure 8 shows that we end up with the factorials!

0 2 2 4 5 6 7 8 9 lö 11 12 13 14 15 16

0 6 11 18 26 25 46 58 71 85 101

0 24 5Q 96 154 225 326

0 120 224 600

0 720

0
Figure 8 The factorials are obtainable in the Moessner-diagram in an obvious way'

Karel A. Post, University of Technology,
Department of Mathematics and Computing Science, Eindhoven
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Kleine Mitteilungen

Zur linearen Unabhängigkeit von Quadratwurzeln
über den rationalen Zahlen

Wir nennen eine Quadratwurzel y/a «reduziert», wenn a eine quadratfreie ganz-rationale
Zahl ist Die nichttrivialen reduzierten Quadratwurzeln sind umkehrbar eindeutig den
quadratischen Erweiterungskörpern des rationalen Zahlkörpers Q, die «triviale» Wurzel
y/l dem Körper Q selbst zugeordnet.
Wir werden zeigen, daß die Menge der reduzierten Quadratwurzeln, d. h. jede endliche
Teilmenge, linear unabhängig über Q ist.
Dieses Ergebnis ist - in wesentlich allgemeinerer Form - bekannt [1*]. Bei dieser Note
geht es daher um die Methode der Herleitung, die eine, wie ich meine, hübsche und nicht
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direkt auf der Hand liegende Anwendung des Hauptsatzes der Galoistheorie darstellt.
Beispiele, welche die Kraft dieses Hauptsatzes an Fragestellungen demonstrieren, die
nicht unmittelbar zu seinem Anwendungsbereich gehören, gibt es nicht viele.
Seien also n verschiedene reduzierte Quadratwurzeln

vorgegeben. Wir betrachten den Körper

E <$(y/a~x,y/a~29...,Ja~n)

der eventuell bereits von weniger Wurzeln erzeugt wird.
Mit Ej <^(^/ä[9..., y/äj); j 1,2,..., n gelte o.B.d.A.

E Er Q(x/a~X9...,y/a~r)9 [E:Q] 2\

Wir werden zeigen, dass die Menge aller in E enthaltenen reduzierten Quadratwurzeln
eine Basis von E über Qbilden, insbesondere also <Ja~X9 y/a~2,..., y/a~n linear unabhängig
über Q sind. Dazu bemerken wir zunächst, daß die aus den Basen {1, y/äj) der
Einzelerweiterungen Ej/Ej_x gewonnene Produktbasis von £/Q aus 2r Quadratwurzeln, unter
ihnen ^/l, besteht.
Durch Reduktion gewinnen wir daraus eine aus y/i und 2r — 1 nichttrivialen reduzierten
Quadratwurzeln bestehende Basis B von £/Q.
Die Galoisgruppe G der galoisschen Erweiterung £/Q wird von den durch

«* *<>/*>-{ vl;i+;' j=u-'r
charakterisierten unabhängigen Automorphismen der Ordnung 2 erzeugt und ist somit
ein r-faches direktes Produkt zyklischer Gruppen der Ordnung 2

G ((px,...9(pr)^Z2.

Sie besitzt genau die 2r durch

charakterisierten Homomorphismen in die zyklische Gruppe Z2 < — 1 >, somit genau
2' — 1 Homomorphismen auf < — 1 >, denen, als Kerne, die Normalteiler vom Index 2 von
G bijektiv zugeordnet sind. (2r — 1) ist daher die Anzahl der Untergruppen vom Index 2

der abelschen Gruppe G, und weiter nach dem Hauptsatz der Galoistheorie die Anzahl
der quadratischen Unterkörper von E. Nach der einleitenden Bemerkung liegen also

genau 2r — 1 nichttriviale reduzierte Quadratwurzeln in E. Die oben erhaltene Basis B
besteht somit aus allen in E enthaltenen reduzierten Quadratwurzeln.

K. Bürde, Institut für Algebra und Zahlentheorie, TU Braunschweig
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ANMERKUNGEN

[1*] Siehe hierzu [l]-[5]
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Über eine Verallgemeinerung der Bernoullischen Ungleichung

Im Jahre 1968 veröffentlichte L. Gerber [1] folgende bemerkenswerte Verallgemeinerung
der berühmten Bernoullischen Ungleichung:
Für alle nicht-negativen ganzen Zahlen k und für alle reellen Zahlen a und x mit

- 1 < x + 0 gilt:

\k + lj L P=o\pJ J

wobei der in der eckigen Klammer stehende Ausdruck genau dann verschwindet, wenn
ae{0,l,...,/c}.
Für k 1 erhalten wir die Ungleichung von Bernoulli. Der von Gerber publizierte
Induktionsbeweis ist kurz, jedoch recht kompliziert. Das Ziel dieser Note ist es, einen sehr
einfachen Beweis für Gerbers Ungleichung anzugeben.
Wir definieren

f(x)=f(k9a;x) (l+x)a- Z
p=o\pt

Differentiation nach x ergibt für n > 0:

f(n)(x) n\ ;(> ?«¦-j.QCM
und es folgt

/<»>(0) 0, n 0,l,...,fc,
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