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The linearity of the Moessner-mapping (p,)— (g,) for fixed (k;) finishes the job. There are
no convergence problems in the infinite summation formula, because every g, is affected
only by a finite number of terms in this summation.

As an example, we take p, =n and k; =i

Figure 8 shows that we end up with the factorials!

@ 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
@ 6 11 18 26 35 46 58 71 85 101
@ 2% 50 96 154 225 326

120 274 600

Figure 8. The factorials are obtainable in the Moessner-diagram in an obvious way!

Karel A. Post, University of Technology,
Department of Mathematics and Computing Science, Eindhoven
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Kleine Mitteilungen

Zur linearen Unabhédngigkeit von Quadratwurzeln
uber den rationalen Zahlen

Wir nennen eine Quadratwurzel \/Z «reduzierty, wenn a eine quadratfreie ganz-rationale
Zahl ist. Die nichttrivialen reduzierten Quadratwurzeln sind umkehrbar eindeutig den
quadratischen Erweiterungskorpern des rationalen Zahlkorpers @, die «triviale» Wurzel
\/I dem Korper @ selbst zugeordnet.

Wir werden zeigen, daBl die Menge der reduzierten Quadratwurzeln, d.h. jede endliche
Teilmenge, linear unabhéngig iiber @ ist.

Dieses Ergebnis ist — in wesentlich allgemeinerer Form — bekannt [1*]. Bei dieser Note
geht es daher um die Methode der Herleitung, die eine, wie ich meine, hiibsche und nicht
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direkt auf der Hand liegende Anwendung des Hauptsatzes der Galoistheorie darstellt.
Beispiele, welche die Kraft dieses Hauptsatzes an Fragestellungen demonstrieren, die
nicht unmittelbar zu seinem Anwendungsbereich gehoren, gibt es nicht viele.

Seien also n verschiedene reduzierte Quadratwurzeln

vorgegeben. Wir betrachten den Korper

E=Q(/a1,\/ay,...,\/a,)

der eventuell bereits von weniger Wurzeln erzeugt wird.
Mit E; = Q(/ay,...,~/a);j=1,2, ..., n gelte 0.B.d.A.

E=E =Q(/a;,...,\/a), [E:Q]=2".

Wir werden zeigen, dass die Menge aller in E enthaltenen reduzierten Quadratwurzeln
eine Basis von E iiber @) bilden, insbesondere also \/a_l , \/a-z yerns \/a—,, linear unabhingig
iiber @ sind. Dazu bemerken wir zunichst, daB die aus den Basen {1,./a;} der Einzeler-
weiterungen E;/E;_; gewonnene Produktbasis von E/Q aus 2" Quadratwurzeln, unter
ihnen \/%, besteht.

Durch Reduktion gewinnen wir daraus eine aus \/I und 2" — 1 nichttrivialen reduzierten
Quadratwurzeln bestehende Basis B von E/Q.

Die Galoisgruppe G der galoisschen Erweiterung E/@Q wird von den durch

0;: <p,-(\/c7i)={—:/f‘§f :j j=1,...r

charakterisierten unabhéingigen Automorphismen der Ordnung 2 erzeugt und ist somit
ein r-faches direktes Produkt zyklischer Gruppen der Ordnung 2

G=K0y,....0,)=Z}.

Sie besitzt genau die 2" durch

charakterisierten Homomorphismen in die zyklische Gruppe Z, = (— 1), somit genau
2" — 1 Homomorphismen auf { — 1), denen, als Kerne, die Normalteiler vom Index 2 von
G bijektiv zugeordnet sind. (2" — 1) ist daher die Anzahl der Untergruppen vom Index 2
der abelschen Gruppe G, und weiter nach dem Hauptsatz der Galoistheorie die Anzahl
der quadratischen Unterkorper von E. Nach der einleitenden Bemerkung liegen also
genau 2" — 1 nichttriviale reduzierte Quadratwurzeln in E. Die oben erhaltene Basis B
besteht somit aus allen in E enthaltenen reduzierten Quadratwurzeln.

K. Burde, Institut fiir Algebra und Zahlentheorie, TU Braunschweig
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ANMERKUNGEN

[1*] Siehe hierzu [1]-[5].
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Uber eine Verallgemeinerung der Bernoullischen Ungleichung

Im Jahre 1968 veroffentlichte L. Gerber [1] folgende bemerkenswerte Verallgemeinerung
der berithmten Bernoullischen Ungleichung:

Fiir alle nicht-negativen ganzen Zahlen k und fiir alle reellen Zahlen a und x mit
—1<x#0gilt

a + aq . a p
(k+ 1)x" 1[(1 + x) -Eo(p>x ]20,

wobei der in der eckigen Klammer stehende Ausdruck genau dann verschwindet, wenn
ae{0,1,...,k}.

Fir k =1 erhalten wir die Ungleichung von Bernoulli. Der von Gerber publizierte
Induktionsbeweis ist kurz, jedoch recht kompliziert. Das Ziel dieser Note ist es, einen sehr
einfachen Beweis fiir Gerbers Ungleichung anzugeben.

Wir definieren

F®=flax) =1 +x— T (“)x".

p=0\p

Differentiation nach x ergibt fiir n > 0:

el 50

und es folgt

f®0 =0, n=0,1,...,k,
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