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Beispiel 2. Komplexes Polynom mit einer 3-fachen Nullstelle:

P(z) (z - (1 + 0)3 z3-(3 + 3i)z2 + (6i)z + (2 -2i)

Simultane Iteration: (Fehlergrenze 0,0001)
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Arbeit.
R. Wyss, Kantonsschule Solothurn
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Moessnerian theorems. How to prove them
by simple graph theoretical inspection

Introduction

Alfred Moessner formulated his original theorem about 40 years ago. It states the

following:

Theorem (Moessner, 1951). Let k he a positive integer.
Perform the following algorithm:

STEP 1: Write down the sequence of integers (n)*=1
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STEP t (2 t ^ k) Leave out every (k — 2 + t)th term ofthe preceding sequence and write
down the sequence of partial sums of the remaining sequence

Then, at step k, we end up with the sequence of kth powers (ik)™=
x

As an example, we take k 3

1224567 82 10 1112 13

11 7 12 19 22 37 4§ 61

© 0 © © ©
So we arnve at the sequence of cubes

From 1951 until 1966 several proofs and generahsations were formulated, e g by Perron,
Paasche, Sähe, van Ijzeren, Kazandzidis and Long (cf Leveque [3]), but dunng the last
two decades, as far as the author knows (cf Leveque [3], Guy [1]) no contnbutions have
been written except two papers in the Mathematicai Gazette (Long [4], Slater [7]), and one
in the Fibonacci Quarterly (Long [5]), that only give illustrative examples of Moessnenan
theorems, and that refer to proofs given by Paasche ([6]), which they consider to be

«somewhat involved and not really suitable at school level»

Besides, all proofs that the author knows from the hteratur quoted by Leveque ([3]) are
rather complicated by their extensive use of binomial identities, generating functions, or
linear transformation techniques In this paper we shall discuss a surpnsingly simple
graph theoretical method to prove both Moessner's original theorem and its generahsations

As a matter of fact the author is convinced ofthe possibihties to explain this method
easily at school level It is even a challenge for the readers to find graph theoretical proofs
for general situations, as soon as they have seen the proof of the original theorem

Graph theoretical proof of Moessner's theorem

Our basic graph theoretical argument is the following
Suppose every edge in a graph G is directed, and A and B are any two vertices of G Let
H be the graph that originates from G by reversing the directions of all of its edges
Then the number of paths in G from A to B is equal to the number of paths in H from
Bto A
The proof of this fact is obvious Take every path in its reversed direction
The question is how to transform Moessner's process in a graph theoretical setting
Therefore we first insert an extra STEP 0 in Moessner's algorithm so that STEP 1 also
fits into the inductive scheme of the other steps This is an easy enterpnse We take

STEPO Write down the all-one sequence (1)^°=1

Our example k 3 then looks as follows

11111111111111111122 456 782 10 11 12 13

12 7 12 19 22 37 4S 61

0 Q (zi) (3) (©
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The graph G3 corresponding to this example looks like the street map of an American
city
Situate a vertex at the position of every entry in Moessner's extended diagram, and draw
an edge between every neighbouring pair in every row and column Let every horizontal
edge be directed to the East, and every vertical edge to the South (see Figure 1)

Figure 1 The directed graph G3

We situate the vertex _4 in the North West corner ofthe graph, and observe that any other
vertex P can be reached from its western neighbour ß and its northern neighbour R, so
the number of paths gettmg from A to P is equal to the sum of the numbers of paths
leading to Q and R

But this is exactly the way of forming partial sums And, since the entries at the leftmost
and toplme of the Moessner diagram are all ones, all Moessner's entries m the extended
diagram are the corresponding path counting numbers1
So let us have a look at the reversed graph H3 in order to count paths leading from vertex

Bj up to vertex_4 (see Figure 2)

"2 D3 D4

Figure 2 The directed graph H3

Path counting starting at B. is an easy job when we perform it tnangle-by-tnangle by
induction, and gives rise to simple geometne sequences

Tnangle T 3 Tnangle T 2 Tnangle Tj
64 48 36 27

16 12 9

4 3

1

B»J-3

27 18 12

9 6 4

3 2

1J2 DM

Figure 3 Path counting in H3, starting at B}

The general case can be described in a huge graph with a multitnangular strueture (see

Figure 4, which shows the reversed version).
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if^-^ -i (JhhJ^) 6 ^h|) 6 HH^ -* f~

tr—tr—tr—tr—t
Figure 4 The multitnangular (reversed) graph H

The inductive path counting step is illustrated in Figure 5, where b:=a + 1.

cLJ^L. A^o X bt abt-i a2bt

^-^4" "^ T
bt_1 abt"2 aV'

aL Ab a1- -- aL

.t'1 _t-l

Figure 5 Path counting by induction in H up to level t(b a + 1)

Generalisations of Moessner's theorem

Generalisations of Moessner's problem can be obtained in the following way:
Let (/cj^ i be a non-decreasing sequence of positive integers, and let (p„)^°= x he a sequence
of real (complex) numbers. Consider the multitriangular array of positions depicted in
Figure 6. Each triangle 7^ has size kx (i 1,2,3,...).
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Figure 6 A general multitnangular array (k - (3,4,4,5,7,8,

Write down the sequence (p„)£Li on the first line of this array. Skip the last element of
this sequence in each of the triangles, and write down the sequence of partial sums of the
remaining elements on the second line in the corresponding positions. Continue this
process. Question: What can be said about the sequence (cx)f= x of ultimately skipped
numbers qx in triangle Tx (i 1,2,3,...)?
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Moessner's original problem is obtained by taking kx k, pn n (or, equivalently,
k. k + 1, pn 1).

Further examples are

K — K P„ arbitrary (Salie, Paasche)
kx arbitrary, pn 1 (Paasche)
kx k, pn an + b (Long)
kx arbitrary, pn n (Kazandzidis).

We shall indicate the Solution ofthe general problem by graph theoretical methods in two
steps:

A. We take (kx) arbitrary, pn 1.

B. We make use of the lmearity of the mapping (pn)™= x i-> (qt)?L x, when we consider a fixed

sequence (kx)x x.

A. The graph theoretical interpretation of the all-one case for arbitrary non-decreasing
kx is a straightforward extension ofthe method in the preceding Section: We have to count
paths from the bottom vertices in the (reversed) Moessner-graph of Figure 7, which in this
particular case is chosen to be graph corresponding to Figure 6.

')tt__1_______O O O-p 1 >~?~~?~i>~0T?—? ?~-|cj> ?~OT<

n__:n nr__TT-r r 1111 ]
V

ß2 B3

0 o—k—b i

Figure 7 The Moessner reversed graph of Figure 6

The general path counting number in this graph is again easily calculated triangle-by-
triangle from right to left.
We find for its value qx in the left upper vertex, when we start in the bottom vertex of
triangle Tx:

q ^ki-ki-t *2fc<-l-fc<-2*...*(f — i)*2-ki* j-fci-i

where * denotes multiplication.
This result was found, more or less explicitly, by Paasche and by Kazandzidis.
At this point it is useful to mention that also the sequence (e)iv) consisting of v — 1

consecutive zeroes followed by the all-one sequence can be treated for arbitrary kl9 since

it behaves as the all-one sequence for a slightly modified (also non-decreasing!) sequence
W).
B. It is evident that for an arbitrary starting sequence (pn)n=x we can write

(pn)~Pi(e){1)+ I(p,-P,-i)(«r.
v~2
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The linearity ofthe Moessner-mapping (pn)y->(qt) for fixed (kx) finishes the Job. There are
no convergence problems in the infinite summation formula, because every qx is affected
only by a finite number of terms in this summation.
As an example, we take pn n and kx i:

Figure 8 shows that we end up with the factorials!

0 2 2 4 5 6 7 8 9 lö 11 12 13 14 15 16

0 6 11 18 26 25 46 58 71 85 101

0 24 5Q 96 154 225 326

0 120 224 600

0 720

0
Figure 8 The factorials are obtainable in the Moessner-diagram in an obvious way'

Karel A. Post, University of Technology,
Department of Mathematics and Computing Science, Eindhoven
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Kleine Mitteilungen

Zur linearen Unabhängigkeit von Quadratwurzeln
über den rationalen Zahlen

Wir nennen eine Quadratwurzel y/a «reduziert», wenn a eine quadratfreie ganz-rationale
Zahl ist Die nichttrivialen reduzierten Quadratwurzeln sind umkehrbar eindeutig den
quadratischen Erweiterungskörpern des rationalen Zahlkörpers Q, die «triviale» Wurzel
y/l dem Körper Q selbst zugeordnet.
Wir werden zeigen, daß die Menge der reduzierten Quadratwurzeln, d. h. jede endliche
Teilmenge, linear unabhängig über Q ist.
Dieses Ergebnis ist - in wesentlich allgemeinerer Form - bekannt [1*]. Bei dieser Note
geht es daher um die Methode der Herleitung, die eine, wie ich meine, hübsche und nicht


	Moessnerian theorems : how to prove them by simple graph theoretical inspection

