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46 El Math., Vol. 45, 1990
Beispiel 2. Komplexes Polynom mit einer 3-fachen Nullstelle:

PR =@z—-QQ+)’=22-CB+3i)z>+(6i)z+ (2 —2i)

Simultane Iteration: (Fehlergrenze 0,0001)
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An dieser Stelle danke ich Frau C. Bandle, Basel fiir die Beratung bei der Abfassung dieser
Arbeit.
R. Wyss, Kantonsschule Solothurn
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Moessnerian theorems. How to prove them
by simple graph theoretical inspection

Introduction

Alfred Moessner formulated his original theorem about 40 years ago. It states the
following:

Theorem (Moessner, 1951). Let k be a positive integer.
Perform the following algorithm:

STEP 1: Write down the sequence of integers (n);> ,

\
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STEP ¢ (2 <t < k): Leave out every (k — 2 + t)'® term of the preceding sequence and write
down the sequence of partial sums of the remaining sequence.

Then, at step k, we end up with the sequence of k'™ powers (i*)2 ;.

As an example, we take k = 3:

1 2 3 4 5 6 7 8 9 10 11 12 13 ...
1 3 7 12 19 27 37 48 61 ...

O @) @23 ...

So we arrive at the sequence of cubes

From 1951 until 1966 several proofs and generalisations were formulated, e.g. by Perron,
Paasche, Salié, van Ijzeren, Kazandzidis and Long (cf. Leveque [3]), but during the last
two decades, as far as the author knows (cf. Leveque [3], Guy [1]) no contributions have
been written except two papers in the Mathematical Gazette (Long [4], Slater [7]), and one
in the Fibonacci Quarterly (Long [5]), that only give illustrative examples of Moessnerian
theorems, and that refer to proofs given by Paasche ([6]), which they consider to be
«somewhat involved and not really suitable at school level».

Besides, all proofs that the author knows from the literatur quoted by Leveque ([3]) are
rather complicated by their extensive use of binomial identities, generating functions, or
linear transformation techniques. In this paper we shall discuss a surprisingly simple
graph theoretical method to prove both Moessner’s original theorem and its generalisa-
tions. As a matter of fact the author is convinced of the possibilities to explain this method
easily at school level. It is even a challenge for the readers to find graph theoretical proofs
for general situations, as soon as they have seen the proof of the original theorem.

Graph theoretical proof of Moessner’s theorem

Our basic graph theoretical argument is the following:

Suppose every edge in a graph G is directed, and A and B are any two vertices of G. Let
H be the graph that originates from G by reversing the directions of all of its edges.
Then the number of paths in G from A to B is equal to the number of paths in H from
B to A.

The proof of this fact is obvious: Take every path in its reversed direction.

The question is how to transform Moessner’s process in a graph theoretical setting.
Therefore we first insert an extra STEP 0 in Moessner’s algorithm so that STEP 1 also
fits into the inductive scheme of the other steps. This is an easy enterprise: We take

STEP 0: Write down the all-one sequence (1);%,.

Our example k = 3 then looks as follows:
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The graph G, corresponding to this example looks like the street map of an American
city:

Situate a vertex at the position of every entry in Moessner’s extended diagram, and draw
an edge between every neighbouring pair in every row and column. Let every horizontal
edge be directed to the East, and every vertical edge to the South (see Figure 1).

—

R

Q P

Figure 1. The directed graph G,.

We situate the vertex A in the North West corner of the graph, and observe that any other
vertex P can be reached from its western neighbour Q and its northern neighbour R, so
the number of paths getting from A to P is equal to the sum of the numbers of paths
leading to Q and R.

But this is exactly the way of forming partial sums. And, since the entries at the leftmost
and topline of the Moessner diagram are all ones, all Moessner’s entries in the extended
diagram are the corresponding path counting numbers!

So let us have a look at the reversed graph H, in order to count paths leading from vertex
B; up to vertexA (see Figure 2).

Figure 2. The directed graph H,.

Path counting starting at B; is an easy job when we perform it triangle-by-triangle by
induction, and gives rise to simple geometric sequences:

Triangle Tj_3 Triangle Tj_2 Triangle Tj-l
- 64 48 36 27 - 27 18 12 8 - 8 4 2 1 -- 1
- 1612 9 . - 9 6 4 . -- 4 2 1 - 1
- 4 3 . . - 3 2 . . - 21 - 1
- 1 . . .- 1 . . . - 1. - 1
Bj-3 Bj2 Bi1 B;

Figure 3. Path counting in H,, starting at B;.

The general case can be described in a huge graph with a multitriangular structure (see
Figure 4, which shows the reversed version).

\
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Figure 4. The multitriangular (reversed) graph H.

The inductive path counting step is illustrated in Figure 5, where b:=a + 1.
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Figure 5. Path counting by induction in H up to level t(b:=a + 1).

Generalisations of Moessner’s theorem

Generalisations of Moessner’s problem can be obtained in the following way:

Let (k;)2 , be a non-decreasing sequence of positive integers, and let (p,)>- ; be a sequence
of real (complex) numbers. Consider the multitriangular array of positions depicted in
Figure 6. Each triangle T; has size k; (i = 1,2,3,...).
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Figure 6. A general multitriangular array (k = (3,4,4,5,7,8,...)).

Write down the sequence (p,)2,; on the first line of this array. Skip the last element of
this sequence in each of the triangles, and write down the sequence of partial sums of the
remaining elements on the second line in the corresponding positions. Continue this
process. Question: What can be said about the sequence (c;)i2, of ultimately skipped
numbers ¢, in triangle T; (i =1,2,3,...)?
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Moessner’s original problem is obtained by taking k; =k, p,=n (or, equivalently,
ki=k+1,p,=1).
Further examples are

k; =k, p, arbitrary (Salié¢, Paasche)
k; arbitrary, p, =1 (Paasche)
ki=k, p,=an+b (Long)

k; arbitrary, p, =n (Kazandzidis).

We shall indicate the solution of the general problem by graph theoretical methods in two
steps:

A. We take (k;) arbitrary, p, = 1.
B. We make use of the linearity of the mapping (p,):> , — (¢,){Z , , when we consider a fixed
sequence (k;);~-

A. The graph theoretical interpretation of the all-one case for arbitrary non-decreasing
k;1s a straightforward extension of the method in the preceding Section: We have to count
paths from the bottom vertices in the (reversed) Moessner-graph of Figure 7, which in this
particular case is chosen to be graph corresponding to Figure 6.

Figure 7. The Moessner reversed graph of Figure 6. Bg

The general path counting number in this graph is again easily calculated triangle-by-
triangle from right to left.

We find for its value q; in the left upper vertex, when we start in the bottom vertex of
triangle T;:

q; = 1ki—ki-1 *2":—1"‘1—2*.“*(1' - l)kz‘h *x ki1

where * denotes multiplication.

This result was found, more or less explicitly, by Paasche and by Kazandzidis.

At this point it is useful to mention that also the sequence () consisting of v — 1
consecutive zeroes followed by the all-one sequence can be treated for arbitrary k;, since
it behaves as the all-one sequence for a slightly modified (also non-decreasing!) sequence
(k).

B. It is evident that for an arbitrary starting sequence (p,),-; We can write

() = p1 (@ + Ejztp., Do D)@,
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The linearity of the Moessner-mapping (p,)— (g,) for fixed (k;) finishes the job. There are
no convergence problems in the infinite summation formula, because every g, is affected
only by a finite number of terms in this summation.

As an example, we take p, =n and k; =i

Figure 8 shows that we end up with the factorials!

@ 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
@ 6 11 18 26 35 46 58 71 85 101
@ 2% 50 96 154 225 326

120 274 600

Figure 8. The factorials are obtainable in the Moessner-diagram in an obvious way!

Karel A. Post, University of Technology,
Department of Mathematics and Computing Science, Eindhoven
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Kleine Mitteilungen

Zur linearen Unabhédngigkeit von Quadratwurzeln
uber den rationalen Zahlen

Wir nennen eine Quadratwurzel \/Z «reduzierty, wenn a eine quadratfreie ganz-rationale
Zahl ist. Die nichttrivialen reduzierten Quadratwurzeln sind umkehrbar eindeutig den
quadratischen Erweiterungskorpern des rationalen Zahlkorpers @, die «triviale» Wurzel
\/I dem Korper @ selbst zugeordnet.

Wir werden zeigen, daBl die Menge der reduzierten Quadratwurzeln, d.h. jede endliche
Teilmenge, linear unabhéngig iiber @ ist.

Dieses Ergebnis ist — in wesentlich allgemeinerer Form — bekannt [1*]. Bei dieser Note
geht es daher um die Methode der Herleitung, die eine, wie ich meine, hiibsche und nicht
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