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Ein numerisches Verfahren zur simultanen Ermittlung
aller Nullstellen eines Polynoms

1. Die Herleitung des Verfahrens

In diesem Aufsatz wird ein numerisches Verfahren vorgeschlagen, mit dem sich die

Nullstellen eines beliebigen komplexen Polynoms der Form

p(z) zn+ i:(-iypjzn-j (i)
j=i

gleichzeitig berechnen lassen. Die Grundidee des Verfahrens beruht auf den bekannten

Beziehungen zwischen den Nullstellen xx,x2,...,xn von P(z) und seinen Koeffizienten

Pl>P2>--->_V

crx(x):= xx+x2 +... + xn =px
2 \X) '• Xx X2 + X2 X3 +

cxn(x):= xxx2...xn-xxn

tr2(x):= xxx2 + x2x3 + + xn.xxn p2 ^
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Wir fassen diese Beziehungen als Gleichungssystem im C auf und schreiben kürzer

a(x) p, (3)

wobei

x:=(xx,x2,...,xn)9 cr:=(ax,cT29...,tTn)9 p:= (px,p2, ...,pn)

bedeuten.
Dieses System wollen wir unter Verwendung von speziellen Eigenschaften der elementar-

symmetrischen Funktionen [2] mit Hilfe eines Newton-Verfahrens auflösen.
Wir setzen in (3) x y + h, wo y: (yx, v2,..., yn) und h:=(hx,h2,...,hn) die Korrekturwerte

bezeichnen, und linearisieren o(y + h) um den Punkt y. Das ergibt ein Näherungssystem

der Form

o(y) + Dcj(y)h p9 (4)

wobei

die Funktionalmatrix ist.
Verwenden wir die elementaren Beziehungen

cV,
-^(y) ^J-i(yl 0) ifest,j=l,2,...,n (5)

mit ö"0:= 1, so lautet das System (4) ausgeschrieben:

n

°i + Z tfo^i =Pl
i=l

n

<>2+ Z <ri(y, Q)K =p2

<r3+I.02(y, ö)K Ps (6)
1 1

*„ + 2^-1^ 0)^ ^,,.
t l

Durch Multiplikation derj-ten Gleichung mit (— Vf ynk~J (/cfest, j' 1,2, ...,ri) und
anschliessender Summation gelingt die Auflösung nach den Korrekturwerten hx in folgender
Weise:
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oder

yi+ zZ(-iy°Jyrj+ £ £(-iY<TJ„x(yx o)hxy»k-j fk+ £(-iyP,yrj.
J=l ;=li=l j=l

Mit (1) und der bekannten Beziehung [2]

£(-iy<r,(y)z"-;= fl(z-y.) (7)
.=o J=x

gewinnen wir

YKyk-y^ ZK Z (-1)^,-1(^ 0)yr
j=i

P(yk)

0+ ihx\nz\-l)J+1crJ(yx 0)yr'^] P(yk)

und wieder mit (7)

- Yhln(yk-yJ) P(yk)
1=1 y=l

und

-KU (yk - y)
j- i

^(y*).
j*k

ür die Korrekturwerte erhalten wir

nü_-j'/)
j i
j**

Bemerkung

Die eben vorgezeigte Elimination der hk-Werte liefert als Nebenresultat, dass für die
Funktionalmatnx D g der elementarsymmetrischen Funktionen deren Inverse

iVf1 (-ir'yjr
öjv

j,k l,2,...,n
IKyk-y.)
i=i

lautet und genau für yfc + yx (k + i) nichtsingulär ist.
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Ergebnis:

Die Auflösung des Systems (3) durch Linearisieren liefert uns bei einem Startpunkt
x°x,x°2,..., x° die Iterationsformel für die verbesserten Werte x\,x\,...,xl

k l92,...,n. (8)V1 Y° p(4)
Xk — Xk

ri (4 - *?)
j=i
J*k

2. Hinweise zum Verfahren

Bemerkung 1:

Im Nenner von (8) wird die Ableitung des durch die Start- bzw. Vorgängerwerte
n

xj,x°,..., x° definierten Polynoms _£ (z — x°) bei z xk verwendet und diese strebt im
; i

Falle der Konvergenz gegen F (xk).

Bemerkung 2:

Aus der ersten Zeile von (6) entnehmen wir das jeweilige Verschwinden der Fehlersumme

X (xk — xl) bei beliebiger Wahl der Startwerte x£, wobei xk die exakten Polynomnull-
fc=i
stellen bedeuten.

Bemerkung 3:

Beim Verfahren (8) können wir keine globale Konvergenz erwarten. Auch bei lauter
verschieden gewählten Startwerten xk kann während der Iteration in (8) ein Nenner
verschwinden und das Verfahren scheitert. Dies zeigt das

Beispiel. P(z) z2 + z — 2 für die Startwerte

x?=-l, x^=-5 oder x? 3, x°2 l/l.
Nach dem ersten Iterationsschritt erhalten wir in beiden Fällen x{ x\ — \. Für den
Fall n 2 lässt sich das globale Konvergenzverhalten leicht überblicken:
Bezeichnen dk xk — xk9 dk xk — xrk (k 1,2) die Fehler nach r Iterationsschritten
(r l,2,...), so pflanzen sich bei der Iterationsvorschrift (8) diese nach elementarer
Rechnung wie folgt fort:

d°d°
'S- - -o ,o (d2=-d\)

*1-¦ x2 + d.% - „; V«2 —

(d\)2
(<*_

2_} - (*i - ^2)
d\ ,Al \" „, (d2=-d2)
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(dr)2
Die Fehler gehorchen also der Rekursionsformel d\+1 — und streben im

2drx-(xx-x2)
Reellen stets gegen 0 oder xx — x2 (d h xrx gegen xx oder x\ gegen x2) ausgenommen falls
nach dem ersten Iterationsschritt von (8) 2 d\ — (xx — x2) 0 wird Diese Bedingung lasst
sich als Doppelverhaltnis

ii n\ 1 1 X2 X2
(xx,x2,xx,x2) —q —ö =—1

Xi X? X-j Xi

umrechnen

Fur reelle quadratische Polynome mit verschiedenen reellen Wurzeln xx,x2 divergiert das

Verfahren (8) genau für die Wahl x°x x2 oder falls die Startpunkte x°x,x°2 harmonisch zu
den Punkten xx,x2 hegen

3. Modifikation des Verfahrens

Das Verfahren (8) soll noch verbessert werden, indem wir bei der Ermittlung von x£ die
schon verbesserten Losungen x},x2, ,x{_x verwenden Auf diese Weise erhalten wir
das folgende

Iterationsverfahren zur gleichzeitigen Berechnung der n einfachen Nullstellen eines komplexen

Polynoms

P(z)= £ajZJ

mit den Startwerten xk

xl=x° — ^^ k 1,2,3, ,n (9)

an Yl(x0k-xj) n (xt-x*)
j=i j=k+i

(wobei im Nenner allenfalls leere Produkte mit 1 zu ersetzen sind)

Auch bei diesem Verfahren können wir keine globale Konvergenz erwarten Dies zeigt das

Beispiel: P(z) z3 - 3 z2 + 2 z mit den Startwerten

xx — 1, x2 5, x3 —2

Nach dem ersten Rechenschritt in (9) erhalten wir x{ - 2 und können (wegen x{ x^)
x\ nicht bestimmen
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4. Fehlerabschätzung und lokale Konvergenz

Zum Beweis der lokalen Konvergenz (9) (bzw. (8)) setzen wir für die Fehler

d®: xk — xk, d\:=xk — xl,... k 1,2,..., n.

Aus (9) ergibt sich etwa für k 1 für den Folgefehler nach dem ersten Iterationsschritt
durch Entwickeln nach der polynomischen Formel:

_i=d?+-
P(x°) n (*?-*,)

o J i

n (*?-*?)
J 2

¦d° + dl
dlUixI-x)

J 2

mxi-x°) n(xi-xJ + dj)
]=2 j=2

„?
Nenner n(x?-xJ + 4)- n(x?-x/|

7 2 7=2 J

iß—\H% s ri < • ri (*? - x; - n (x? - x;Nenner [_r=o 2<fc!< <*r* i 7=2 7=2

^0 fn-1 n r n ~|

-—-— z z n<- n (*?-*;•
T-T.vO v<>.L-r==1 2<fc_< <fcr«=l 7 2 Jll V^l Xj) Jjpki ^

J 2

(10)

Mit den Einschränkungen

d?:= max\dk\<-r mit m:= min \xx-Xj\ und M:= max \xx — x.|

folgen die Abschätzungen

|_?-d?|<y

m
|x? - xy| |xx - x, - <i?| < \xx - Xj\ + \d°x\ ^M + d2<M + -

\x\-x°J\^\xx-x}-(dl-d%^\\xx-xJ\-\d\-d°J\\>f^9

wodurch wir den Fehler mittels (10) wie folgt abschätzen können:

|//0j „-1 n r n

\d\H~-11—z 1 u\dty n ix?-x,i
0 v0| r= 1 2<*i <. <*ri l 7 2"" J**l, ,Kn \x°x-x°

J 2
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\d°\ n~1 n

f Wl \ r=l 2<kt< <kr

^4_t]z ("
r

yd°y(M + d?r>-' j^[{m + 2d°r> -(m + d?r>]

^dl^~1[(n-l)d?(M + dS + &d?f-2] (mitO<0<l)

l_°l_° (n-\)\M +
<fi!s_T(«-l)(Af + 2d?r2 <|„°|„°

m y / m

2

also endlich

w<wi«_-__(___-r. <„,
m \ m J

2(n — l)(2M + m\n~2
Mit der Bezeichnung der Konstanten C: 1 können wir d?

(einschränkend) so wählen, dass m \ m /
d? • C ^ L mit 0 < L < 1 wird, d. h. genauer

J0 mh m V"2
_. J0 mL -^ 11

<12>
dS^-z-, -\^tz bzw. d?<-—¦ im Fallen 2.

2(n-l)\2M + m/ 4

Wegen (11) \d{\ ^ \d°x\d? • C ^ \d°x\ • L gilt aber wieder

max{|^|,|^|,...,|^0|}< max \d°k\ d°,
l^k^n

sodass bei der Iteration mittels (9) für k 2 (und dann 3,4,..., n) wieder die analogen
Resultate (10), (11) gültig sind:

\dl\^\d°k\d?-C^\d°k\'L (k l,2,...,n). (13)

Somit erhalten wir für die euklidische Norm || || der Fehlervektoren

d°:=(\d%...,\d°n\) bzw. d': (\d\\,...,\dln\)

aus (13)

IId11| ^ M°|| • d? • c^ N°|| • \\d°\\ • c IM01|2 • c. (14)
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Für die weiteren r Rechendurchgange von (9) (r 2,3, bleiben also die Voraussetzungen

fur die Rechnungen (10) bis (13) erhalten, sodass (14) in

\\<r+1\\<\\dr\\2 c

übergeht und nach [1] p 228-229 ein Iterationsverfahren von mindestens zweiter
Ordnung mit lokaler Konvergenz vorliegt

Ergebnis

Fur die sichere (lokale) Konvergenz des Verfahrens (9) müssen wir die Startwerte weniger
als

+ nj
n~2 m

bzw — im Falle n 2
2(n-l)\2M + nJ 4

von den exakten Losungen entfernt wählen

Bemerkungen

Es ist zu beachten, dass diese Vorschrift beispielsweise fur ein reelles Polynom mit
komplexen Nullstellen verletzt wird, wenn lauter reelle Startwerte gewählt werden
Das Verfahren (9) erfordert fur jeden Rechendurchgang mit 2 n2 bzw 8 n2 + 3 n wesentlichen

Operationen bei reellwertiger bzw komplexwertiger Rechnung dieselbe Anzahl wie
das auf das Polynom P (z) angewendete Newton-Verfahren

Das Experiment zeigt, dass die Ergebnisse auch bei mehrfachen Nullstellen befriedigend

sind, sie erscheinen (bei lauter verschieden gewählten Startwerten) in ihrer Vielfachheit

auf dem Computer-Bildschirm
Ersetzen wir wahrend der Rechnung allenfalls verschwindende Produkte im Nenner von
(9) durch 10"8, so können wir die Startwerte fest mit xk k bzw xk =k + k i (i2 — 1)

bei komplexwertiger Rechnung einprogrammieren

5. Rechnerprogramm und Beispiele

Zum Schluss wollen wir noch die Programmstruktur fur das Verfahren (9) zur simultanen
n

Ermittlung der n (einfachen) Nullstellen eines Polynoms P (z) f] ajzj unä*zwei Rechen-
7 0

beispiele (davon eines im Vergleich mit dem Newton-Verfahren) anfuhren

PROGRAMM «Simultane Iteration»

BEGINN

FESTLEGEN Fehlergrenze
EINGABE Grad n

Koeffizienten a} 0 1. ,»)
Startwerte xk (*=i, ,»)
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WIEDERHOLE
WIEDERHOLE von k 1

BERECHNE

P(xt)
Xk ' — Xk

Onlltä-Xl)
j*k

BIS

xk:=xl (Uebergabe des aktuellen Wertes)

AUSGABE Näherungslösung x^

k n

BIS max \xl — xk | < Fehlergrenze
l<k<n

ENDE.

45

Beispiel 1. P(z) 20z3 - 49z2 - 15z + 54

Simultane Iteration: (Fehlergrenze 0,0001)

Startwerte (Schlechte) Startwerte

-0.9 t.l 2.1

Die iteriprten Losungen sind:

-l.OtO 1.214 2.252
- 1 .OOO 1 .200 2.250
-1 OOO t l*ou 2. 250
-1.oOO J.200 2.250

Die iterierten Losungen sind:
1 920 6 945 -46.846
1 917 6 152 -5.OOO
1 89^ 3 242 -l .87:6
1 75 t 2 107 -1.10 3
1 006 2 221 -O.990
l 20 _> 2 250 -1.OOO
1 2uO 2 25ü -1.00U
t 2O0 2 250 --1 000

Die Reihenfolge der ausgegebenen Lösungen ist von den Startwerten abhängig.

Newton-Verfahren: (Fehlergrenze 0,0001)

Start wert xO

-1.009
~1.000
-1.000

Losung x

-0.9

-1.000

Startwert xO 1. 1 Startwert xO

1. 196 2.291
t. 200 2.252
1. 200 2. nSO

2.250
Losung 1.200

Losung
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Beispiel 2. Komplexes Polynom mit einer 3-fachen Nullstelle:

P(z) (z - (1 + 0)3 z3-(3 + 3i)z2 + (6i)z + (2 -2i)

Simultane Iteration: (Fehlergrenze 0,0001)

Startwerte

c i ' 'i • « J - j 1 i

Die i t ei- l er 1 -»n (' ungpii i nil:
>¦

J. <'n n„ | H - J 1 1 1

o
n

rrc.V f <vt > 1

^ i 1

11- 1

i

n
o

n. rMi
(' i n. <

>

i

i )1 i 1

I H

o V94 n.9Vr.i >„ ° ;^ i Oi ' i | ^ ¦>

it > >
¦" n. s"? "i u„ » H )o<-h 1

n 9s V n. ,0Hi ». > •1 < « 's i ' i 1

o ' >. ' '3 1 .DUu 1 1 Ml 1 i .u )l I |

o V<v9 (' ~> 97 L 1 ,')()' 4 L.nnl i 1 1' l i
1 non 1 < nm 1 .nnn i n ui i i 1

i OUO t.nom L.n u + ()i 1 n | f v i

] (Jon + 1 .nom 3 ooo h .()l)i)l J nu > I J .'
l nnn i- t.nnni 1 .not» 1 OOii] '»» H t.i

An dieser Stelle danke ich Frau C. Bandle, Basel für die Beratung bei der Abfassung dieser

Arbeit.
R. Wyss, Kantonsschule Solothurn
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Moessnerian theorems. How to prove them
by simple graph theoretical inspection

Introduction

Alfred Moessner formulated his original theorem about 40 years ago. It states the

following:

Theorem (Moessner, 1951). Let k he a positive integer.
Perform the following algorithm:

STEP 1: Write down the sequence of integers (n)*=1
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