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Ein numerisches Verfahren zur simultanen Ermittlung
aller Nullstellen eines Polynoms

1. Die Herleitung des Verfahrens

In diesem Aufsatz wird ein numerisches Verfahren vorgeschlagen, mit dem sich die
Nullstellen eines beliebigen komplexen Polynoms der Form

P@)=z"+ é(—nfp,.z"-f (1)

J

gleichzeitig berechnen lassen. Die Grundidee des Verfahrens beruht auf den bekannten
Beziehungen zwischen den Nullstellen x,,x,, ..., X, von P(z) und seinen Koeffizienten

pl’pZ’“-,pn:
o,(x):=x,+x, +...+x, =p,
0,(X)i=x; X+ X,x3+ ...+ X,_1X, = D>

2

Op(X)i=X,Xp...Xp_ | X, = Pp-
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Wir fassen diese Beziehungen als Gleichungssystem im €" auf und schreiben kiirzer

o(x)=p, (3

wobei
Xi=(Xy,X35...5%,)s 0:=(0,,05,...,0,), P:=(P1:P2s+->Pn)

bedeuten.

Dieses System wollen wir unter Verwendung von speziellen Eigenschaften der elementar-
symmetrischen Funktionen [2] mit Hilfe eines Newton-Verfahrens auflosen.
Wirsetzenin(3)x=y+ h,woy:=(y,,y5,..., y)und h:=(h,, h,, ..., h,) die Korrektur-
werte bezeichnen, und linearisieren o (y + h) um den Punkt y. Das ergibt ein Nidherungs-
system der Form

c(y)+Da(y)-h=p, 4

wobei

Oo .
pen-(3)

die Funktionalmatrix ist.
Verwenden wir die elementaren Beziechungen

0o
%wp@ﬂm=mimu=Lgﬂn 5)

mit 6,:= 1, so lautet das System (4) ausgeschrieben:
61+'§100hi = Py
o, + :4:1 o, (yi=0h;, =p,

o3+ 2:1 o,(yi=0)h; =p; (6)

U,,+ .;10n~1(yi=0)hi=pn'

Durch Multiplikation der j-ten Gleichung mit (— 1) y?~/ (k fest, j=1,2,..., n) und an-
schliessender Summation gelingt die Auflésung nach den Korrekturwerten h; in folgender
Weise:

jil(—l)fa,-yz*w X (0o 0i= Ok = X (0 pi

j=ti=1

\
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oder

Vi + _Zl(—l)"a,-yZ“’? EEWo  0i=0hy; =i+ X (—1p;yp7Y.
= i=1

i j=1i=1 j

Mit (1) und der bekannten Beziehung [2]

T (Va0 = T1e-y) )

ji=

gewinnen wir

10—+ X h[z (—1¥0,, 04 =0) y;:-f] =P ()

n n—1
0+ .21 hi[,zo(“ 1)j+1 Gj(yi = O)yZ""} = P(yy)
i= j=
und wieder mit (7)
- ‘21 h; I—I1 0k — Yj) = P(y))
i= j=

Jj¥i

und

— by _zlﬁll(yk—'yj)=P(yk)'

j¥k

Fir die Korrekturwerte erhalten wir

—P
hy = . V) .
I[The—y j)
i=1
¥k
Bemerkung:

Die eben vorgezeigte Elimination der h,-Werte liefert als Nebenresultat, dass fiir die
Funktionalmatrix D ¢ der elementarsymmetrischen Funktionen deren Inverse

oo, \ ! M+l =
(;‘_k) GtV A S
Oy; n
_I_Il(yryi)
i*k

lautet und genau fiir y, # y; (k % i) nichtsinguldr ist.
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Ergebnis:
Die Auflosung des Systems (3) durch Linearisieren liefert uns bei einem Startpunkt
x9,x3,...,x2 die Iterationsformel fiir die verbesserten Werte x!,x1, ..., x}
P(x?
x,:=x,?—-;-——(—’i— k=1,2,...,n. (8)
IT (x¢ — x5)
j=1
j*k

2. Hinweise zum Verfahren

Bemerkung 1:

Im Nenner von (8) wird die Ableitung des durch die Start- bzw. Vorgingerwerte
x?,x9, ..., x2 definierten Polynoms i (z — x9) bei z = x|} verwendet und diese strebt im
Falle der Konvergenz gegen P’ (x,?).J=1

Bemerkung 2:

Aus der ersten Zeile von (6) entnehmen wir das jeweilige Verschwinden der Fehlersumme

3 (x, — xi) bei beliebiger Wahl der Startwerte x, wobei x, die exakten Polynomnull-
k=1

stellen bedeuten.

Bemerkung 3:

Beim Verfahren (8) konnen wir keine globale Konvergenz erwarten. Auch bei lauter
verschieden gewihlten Startwerten x) kann wihrend der Iteration in (8) ein Nenner
verschwinden und das Verfahren scheitert. Dies zeigt das

Beispiel. P(z) = z2 + z — 2 fiir die Startwerte
x=—-1,x3=—5 oder x{=3,x5=1/7.

Nach dem ersten Iterationsschritt erhalten wir in beiden Fillen xi = xj = — 1. Fiir den
Fall n = 2 lasst sich das globale Konvergenzverhalten leicht iiberblicken:
Bezeichnen dj = x, — x?, d} = x, — x; (k=1,2) die Fehler nach r Iterationsschritten
(r=1,2,..), so pflanzen sich bei der Iterationsvorschrift (8) diese nach elementarer
Rechnung wie folgt fort:
d%dS

Cnnrd—@ BT

P 2d—(xy — x))

@ = -2
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dr 2
Die Fehler gehorchen also der Rekursionsformel di* ' = — ) und streben im
24 — (x; — x3)
Reellen stets gegen 0 oder x; — x, (d.h. x} gegen x; oder x| gegen x,) ausgenommen falls
nach dem ersten Iterationsschritt von (8) 2d} — (x; — x,) = 0 wird. Diese Bedingung lisst

sich als Doppelverhiltnis

=—1

0 0
(x X xo x()).le ’xl _x2 x2 —
1oV29V1o™2) 0 0
xl-xZ xz‘—xl

umrechnen.

Fiir reelle quadratische Polynome mit verschiedenen reellen Wurzeln x,, x, divergiert das

Verfahren (8) genau fiir die Wahl x9 = x9 oder falls die Startpunkte x9, x5 harmonisch zu
den Punkten x,x, liegen.

3. Modifikation des Verfahrens

Das Verfahren (8) soll noch verbessert werden, indem wir bei der Ermittlung von x; die
schon verbesserten Losungen x1,x3, ..., x1_, verwenden. Auf diese Weise erhalten wir
das folgende ‘

Iterationsverfahren zur gleichzeitigen Berechnung der n einfachen Nullstellen eines komple-
xen Polynoms

n
P(z)= 3 a;7
=0
mit den Startwerten x;

; P (x{)

0
X = X — -
_k Lo N, T 0 _ x0)
a, - IT (xg —xj) IT (x¢ —x;
j=1 j=k+1

k=1,2,3,...,n )

(wobei im Nenner allenfalls leere Produkte mit 1 zu ersetzen sind).

Auch bei diesem Verfahren konnen wir keine globale Konvergenz erwarten. Dies zeigt das

Beispiel: P(z) = z® — 322 + 2z mit den Startwerten
x}=—1, x3=5, xJ=-2.

Nach dem ersten Rechenschritt in (9) erhalten wir x} = — 2 und kénnen (wegen x} = x3)
X3 nicht bestimmen.
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4. Fehlerabschitzung und lokale Konvergenz
Zum Beweis der lokalen Konvergenz (9) (bzw. (8)) setzen wir fiir die Fehler

0

0. _ 1. _ 1 =
dk.—xk_xk, dk.—xk_xk,... k'—'l,z,...,n.

Aus (9) ergibt sich etwa fiir k =1 fiir den Folgefehler nach dem ersten Iterationsschritt
durch Entwickeln nach der polynomischen Formel:

n
P (xS - x, 4} I1 (<3 - x)
" et
di=d}+ ———=d}+ ——— =d} - —
(x} = x7) IT (x] —x3) IT(x}—x;+dj)
j=2 j=2 j=2
d(l) r n n
= H(X?—X,-er?)—l_l(xg—xj)
Nenner| j=> i=2
d(l) [n—1 n r 0 n 0 n o
= 2 2 Ild- IT (1—x)— T1(x1—x))
Nenner| ;=0 2<k,<... <k i=1 ke j=2 ! ot
J¥ky,en., k,
d(l) n—1 n r " n o
=X ¥ T& I f-x| (10)
0 o Lr=1 2<k;<... <k, i=1 j=2
l_I(xl—xj kg, k,
j=2
Mit den Einschrankungen
m . .
d?:= max |dj| <+ mit m:= min |x;—x; und M:= max |x;—X;
1<k<n 4 1<i,jsn 1<i,j<n

folgen die Abschitzungen
P -1 < F
|x?—x1|=|x1-xj—-d?|<|x1—xj|+|d?|<M+d9<M+T
X0 = xf1 =[xy == @ = )| > s =l — 14} — > =,

wodurch wir den Fehler mittels (10) wie folgt abschidtzen konnen:

) ld‘l)l n—1 n r o n .
dils5——3% ¥ Il I1 Ix-x
r= 1<...< i= j=
I_“x?—x;)l " ICITR



El. Math., Vol. 45, 1990 43

3] “ 0 oyn—1-
< o 2 @YyYM+d)y T
T r=1 2<k;<...<k,
5)
|9 nC -1 - |d?| _
- y_( )(d?)'(M+d9)" tor o 241 42401 - (M 4 dOy ]
my S m
G G
:(' = 1)d° (M + 40 + © 492 (mit 0 < ® < 1)
3

n—2
(n—1)(M+—)
d9|d? 2
< | l,. -(n—1)(M +2d2)"" 2 < |d9|d? N
(5) (‘2‘)

also endlich

_ M n—2

jdt| < (do) do 2= 1) (2M & m\T (11)

1 1
m m

Mit der Bezeichnung der Konstanten C:=
schrinkend) so wihlen, dass

2(n~1)<2M+m

n—2
) konnen wir d? (ein-
m

m

d? - C<L mit 0<L<1 wird, d.h. genauer

mL m =2 mL (12)
? < <™ imFallen=2.
d 2(n——1)<2M+m) bzw. d , im Falle n

Wegen (11) |d}| <|d9|d? - C <|d?| - L gilt aber wieder

max {|di|, |d3],...,|d°|} € max |d}|=d?,

1<k<n

sodass bei der Iteration mittels (9) fiir k = 2 (und dann 3,4, ..., n) wieder die analogen
Resultate (10), (11) giiltig sind:

ldi| <|dp|d? - C<|d|- L (k=1,2,...,n). (13)
Somit erhalten wir fiir die euklidische Norm || | der Fehlervektoren
d®:=(|d%,...,|d°) bzw. d':=(|d}i|,...,|d}])
aus (13)

ld' | < I1d°) - d? - C < |1d°) - |1d°) - €= [|d°|)* - C. (14)
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Fiir die weiteren r Rechendurchgénge von (9) (r = 2, 3, ...) bleiben also die Voraussetzun-
gen fiir die Rechnungen (10) bis (13) erhalten, sodass (14) in

la&*t<di|?-c

iibergeht und nach [1] p. 228229 ein Iterationsverfahren von mindestens zweiter Ord-
nung mit lokaler Konvergenz vorliegt.

Ergebnis:

Fiir die sichere (lokale) Konvergenz des Verfahrens (9) miissen wir die Startwerte weniger
als

m m 2 m
bzw, — imFallen=2
2(n~1)(2M+n) .y mmraten

von den exakten Losungen entfernt wdhlen.

Bemerkungen:

Es ist zu beachten, dass diese Vorschrift beispielsweise fiir ein reelles Polynom mit
komplexen Nullstellen verletzt wird, wenn lauter reelle Startwerte gewéhit werden.
Das Verfahren (9) erfordert fiir jeden Rechendurchgang mit 2 n? bzw. 8 n> + 3 n wesentli-
chen Operationen bei reellwertiger bzw. komplexwertiger Rechnung dieselbe Anzahl wie
das auf das Polynom P(z) angewendete Newton-Verfahren.

Das Experiment zeigt, dass die Ergebnisse auch bei mehrfachen Nullstellen befriedi-
gend sind; sie erscheinen (bei lauter verschieden gewéhlten Startwerten) in ihrer Vielfach-
heit auf dem Computer-Bildschirm.

Ersetzen wir wiahrend der Rechnung allenfalls verschwindende Produkte im Nenner von
(9) durch 108, so konnen wir die Startwerte fest mit x) = kbzw. x) =k + k- i (i?= — 1)
bei komplexwertiger Rechnung einprogrammieren.

5. Rechnerprogramm und Beispiele

Zum Schluss wollen wir noch die Programmstruktur fiir das Verfahren (9) zur simultanen

Ermittlung der n (einfachen) Nullstellen eines Polynoms P (z) = [] a; z) und zwei Rechen-

j=0
beispiele (davon eines im Vergleich mit dem Newton-Verfahren) anfiihren:

PROGRAMM «Simultane Iteration»

BEGINN

FESTLEGEN Fehlergrenze

EINGABE Grad n
Koeffizienten a; (j=1,...,n)
Startwerte x? (k=1,...,n)
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WIEDERHOLE
WIEDERHOLE von k =1
BERECHNE
xbo=x0 — nP(xI?)
a, n (xl(c) - X?)
j*k
X — x

xg:=xi (Uebergabe des aktuellen Wertes)
AUSGABE Niherungslosung x;
BIS k=n

BIS max |x{ — x| < Fehlergrenze

1<k<n

ENDE.

Beispiel 1. P(z) = 2023 — 49272 — 152 + 54

Simultane Iteration: (Fehlergrenze 0,0001)

Startwerte (Schlechte) Startwerte
S0.9 1.1 a1 T 4 3]

Die 1terierten Lisungen sind: Die 1terierten Losungen sind:
=1.010 1.214 2e252 1.920 b.945 ~46.846
-1.000 1.200 2,080 1.917 b 152 =5, 000
-1.000 1.800 LRG0 1.89% T.242 -1.836
=1 . 000 10200 e 250 1.751 2.107 -1.10%

1.006 2,20 ~0.990
1,206 202050 =1.Q00
1.700 2,250 =1 . 000
1.200 280 -1, 000

Die Reihenfolge der ausgegebenen Losungen ist von den Startwerten abhingig.

Newton-Verfahren: (Fehlergrenze 0,0001)

Startwert 20 = -0.9 Startwert %0 = 1.1 Startwert «0 = 2.1
-1.009 1.196 L.291
=1.000 1.200 2.252
=1, 000 1,200 2.250
2.250
Losung % = —1,000 Lésung x = 1.200

Lésung x = 2.280
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Beispiel 2. Komplexes Polynom mit einer 3-fachen Nullstelle:

PR =@z—-QQ+)’=22-CB+3i)z>+(6i)z+ (2 —2i)

Simultane Iteration: (Fehlergrenze 0,0001)

Startwerte

SR 0,0 URIR S VAR B I I 1T 6 g

Me tteriterten Losaugen sanls

P R P R T P I Taw ™o c
0,759 4 0,91 L 1L u Ty Tarvd A4 i
PRV ESVIE AL IR IN R I IR 1,00,
QIR S T ¢ P I E S [ N A ol B,
Q0% 4 0,9 [RIFRELVEI IR D I [T L B I
OL74 + O, 67, (BTN IT A I RS TR T Poovrele 4 e, drondy
Ca P97+ 0,977 (R IPRE IS L 3] Tavees o w0y
0, 9wiy 0 O, P80 vr, T 4 Ly Tove ot ey
Q.99 4 g,y IR RISTIVENE B BRI [ UL T B R TR
1, U7+ G, Ry Toosirey 4 L e Tariel Ctenog
1.000 4 1,000 ST TS RN S B S TRIOE | | RTITE S B B TR
1.000 4+ 1,00 Lations |, gy [P SRS S BN TRTHRY
1.0y + 1, 006 PR INIS I S R S TR N [ THT S B B ATR TR
1.000 F 1,000, T.i0 7, (g IR TR R B A STRTRS

An dieser Stelle danke ich Frau C. Bandle, Basel fiir die Beratung bei der Abfassung dieser
Arbeit.
R. Wyss, Kantonsschule Solothurn
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Moessnerian theorems. How to prove them
by simple graph theoretical inspection

Introduction

Alfred Moessner formulated his original theorem about 40 years ago. It states the
following:

Theorem (Moessner, 1951). Let k be a positive integer.
Perform the following algorithm:

STEP 1: Write down the sequence of integers (n);> ,

\
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