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4.4. Sei t <n, n=0(mod2) und (a,n) =1 (mod 2). Wegen n=0(mod2) und (a,n) =1
(mod 2) hat man a = 1 (mod 2). Fiir ein b € Z folgt aus (b,n) = 1 ebenso b = 1 (mod 2). Eine
mogliche zuldssige Darstellung a = b, + b, (mod n) von a wiirde also auf den Wider-
spruch 1 =1 + 1 (mod 2) fithren. Wegen u,(a) = 2 (da t < n) ist somit g, (a) = 3.

Fir Primzahlen p > 2 ist a £ — 2 (mod p) oder a % 2 (mod p) und folglich a = (a + 2)
—1 —1(modp*) odera = (a—2)+ 1+ 1(mod p* eine zuldssige Darstellung von a. Und
wegen a=1(mod2) ist a=(a—2)+ 1 + 1 (mod2”) ein zuldssige Darstellung von a.
Unter Heranziehung des Lemmas erhdlt man somit eine zuldssige Darstellung
a=b, +b, + by (modn) von a, so daB y,(a) < 3 und folglich g, (a) = 3.

Damit sind alle Félle «t <n, n=0,1(mod?2), (a,n) =0,1 (mod 2)» abgehandelt. Das
Theorem ist bewiesen.

H. Bergmann, Hamburg

ANMERKUNGEN

[1*] Fir neN ist ¢ (n) die Eulersche Funktion.

[2*] Die Frage ist offensichtlich nur fiir endliche zyklische Gruppen interessant.

[3*] Dabei bedeutet aed, daB aeZ ein Reprisentant (Element) der Restklasse ae R ist.
[4*] Eine Modifizierung des chinesischen Restklassensatzes.
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Didaktik und Elementarmathematik

An integral recurrence for sums of powers

Every first year calculus student encounters formulas for the sums of powers of the
integers. In this note, we present an elementary proof of the curious fact that the formula
for the sum of the (k + 1)st powers can be obtained simply from the integral of the formula
for the sum of the kth powers. This integral recurrence provides an easy means for
computing these formulas.

We note first that if a function F:[0, c0) —» R satisfies

i F@O)=0 and } *)
(i) F(x+1)=F(x)+(x+ 1)

for some xR, then it follows at once that
Finp= % j
i=1

for every positive integer n.
We next prove the following
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Lemma. Suppose a function F satisfies condition * for some value of o. Then the new
function G defined by setting

G(x)=(x+ l)EF(t)dt + Bx
where

B=1—(a+ l)iF(t)dt
satisfies condition * for the value o + 1.

Proof. Certainly G (0) = 0. We compute

G+ 1)=(@+1) | F(o)dt+B(x+1)
0

= (o + 1)§F(t)dt+(a+ 1)leF(t)dt+Bx+B
0 1
+1

=(cx+1)xj F(t)dt + Bx + 1
1

—(@+ 1) F(t+1)de+Bx+1
0

— @+ D) [IF@+(+17]de+Bx +1
0

=(a+ 1)fF(t)dt+Bx+(a+ 1)?(t+ 1)*de + 1
(4] 0
=G(x) + (x+ 1)+,

The reasoning for « = — 1 differs from the reasoning for « & — 1 at the last step but in
either case G satisfies the required condition.

It remains to note that if we begin our recurrence with the function F,(x) = x (which
satisfies condition * for a = 0) then we can generate polynomials F,,F,,F;, ... where

0
with
1
B,=1—k|F,_,(f)dt.
0

The polynomial F, defined in this way satisfies condition * for « = k and consequently
satisfies

F(n)= Y jk
i=1

for all positive integers n.

A
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There is of course an extensive literature on these sums of powers, dating back to the
Bernoullis. In [1], the authors write down explicitly a recurrence for the sequence of
polynomials F, but apparently fail to notice the simple integral expession for it. In [2] and
[3] the integral recurrence is derived but the derivation depends critically on a preliminary
lemma to the effect that the formulas are given by polynomials. In other references (see,

for example, [4] Problems 17.20—17.29) the derivation of a formula for Z j* is made
=1
somewhat more complicated by the objective of expressing the final result

1
F (x)= k_——l-_l[F;Hl (x+1)— K, (0)].

in terms of Bernoulli polynomials FB,.
In contrast, the approach facilitated by our lemma has two clear advantages. First, it
generalizes the result to non-integral exponents a and shows that even in the case of
integral exponents o = k, non-polynomial versions of the formula are available through
different choices of the starting function F,(t) whose values for 0 <t <1 are at our
disposal. Second, given that some result along these lines is possible, there is straight
forward motivation for the formula of the lemma: consideration of asymptotic values
determines the coefficient o + 1 and then consideration of the fact that G(1) =1 must
hold forces the value of B.

G. Gunther, Memorial University of Newfoundland

J. B. Wilker, University of Toronto
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Aufgaben

Aufgabe 1001. Mit den Catalan-Zahlen

1 (2i
CO=77 (il)

und den Stirling-Zahlen zweiter Art

1 g /
S ) =7 3 (=17 (;) (i—s)
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