Zeitschrift: Elemente der Mathematik
Herausgeber: Schweizerische Mathematische Gesellschaft

Band: 45 (1990)

Heft: 1

Artikel: Extension theorems for integral representations of solutions of a
functional eqaution

Autor: Cannizzo, A.

DOl: https://doi.org/10.5169/seals-42405

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich fur deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veroffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanalen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En regle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
gu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 13.01.2026

ETH-Bibliothek Zurich, E-Periodica, https://www.e-periodica.ch


https://doi.org/10.5169/seals-42405
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en

El Math., Vol. 45, 1990 9

Extension theorems for integral representations
of solutions of a functional equation [*]

Summary. Integral representations F (x)= j e ' ®(t,x — 1)dt of solutions of the function-
0

al equation F (x + 1)=g(x) F (x), which were obtained in previous papers for the interval
(0, 1), are extended to solutions on IR , . Additional properties of the kernel function @ are
discussed in this context.

1. Introduction

We start with the following observations:

a)Letp: R* >R, g: R, — IR be given. If g = exp ¢, then the solution set of the differ-
ence equation

Gx+1)-Gx)=9(K) )
is known, iff the set of positive solutions of
F(x+1)=g(x)F(x) (1)

is known. In general, equations (0) and (1) are not equivalent.

b) The theory of equation (0), and in particular the theory of its principal solutions
in the sense of Norlund, Krull, Schroth (see [4], and [7] to [12]), is well developed.
There is no obvious way to extend this concept of a principal solution to the general case
of equation (1).

c¢) In the theory of equation (1) solutions of the form

F(x)=[e"®(t,x — 1)dt (2
0
play a prominent role. Take as an example F(x) = I' (x), Euler’s Gamma function.

In [1], [5] and [6] we obtained solutions of (1) which are of type (2), where the kernel
satisfies the functional-differential equation

D,(t,x) =g(x)P(t,x —1). 3)
For convenience of the reader we restate Theorem 1 of [1] in a slightly modified form:

Theorem 1. Let Uc R and g: U —» R. Assume that &: R, x(Uu{u—-1:uelU}) >R
has the following properties:

h)) @,(t, x) exists for every teRR, and xeU,

[*] Supported by Ministero Pubblica Istruzione, Rome (Italy).
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h,) lim @(t, x) = 0 for every xeU,

t—0
h;) for every xeU there are pe(0,1), toeR,, KeR, such that

e P D(t,x)| <K forevery t>t,.

If @ satisfies the equation (3) for te R, , xeU then the integrals
Fx)=[e'®(t,x—1)dt and Fx+1)=[e '@ (t,x)dt
0 0

exist for every xe U and equation (1) holds for xeU.
In [1] we used instead of h;): lim e 7 @(t,x)=0 for every xe U and every pe(0,1]. It

t—+ o

is readily checked that the theorem remains true with the weaker condition h;).
In the following Theorem 2 of [2] we introduced another functional equation for the
kernel @, motivated by the reflection formula for principal solutions:

d(t,—x)=1/®(t,x). 4)
Theorem 2. Let U =(0,1),g: U—>R,,$: R, x((— 1,0) U (0,1)) > R, and assume that ¢
satisfies (4) for te R, xeU. Then & satisfies h,), h,) and h3) of Theorem 1 and (3) for
teR,, xelU, iff

&(t,x)=h(x)P(x)"W*®  teR,, xel,
where 7(x) := g(x)/[g(1 — x) + g(x)] and h: U - R | is solution of the reflection equation

RO —x) =g (0! g(1 — x4,

This theorem shows that a kernel & which satisfies (3) and (4) and some regularity
conditions must be of separation type: ®(t,x) = G (x)t*™ (Functions which will be later
subject to an extension procedure are marked with a circumflex). The aim of this note
is to extend these results for kernels defined on R | x (— 1, o0) and to study the behaviour
of kernels of separation type with respect to the equations (1), (2), (3), (4).

2. Structure and Extension Theorems

We begin this section with a remark on kernels of the type @ (¢, x) = G(x)t’™ and their
connection with the functional equation (1). Euler’s gamma function is involved.

Theorem 3. Assume g: R, >R, G:(—1,0) =R, y:(—1,0) = (— 1, 0) and

Fx)=[e 'G(x—1)rr*"Ydr, xeR,.
0
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Then the following conditions are equivalent:
(i) F satisfies (1) for xeR,,
) GX)Iryx)+1)=9gx)Gx—DI'(y(x—1)+1) for xeR,.

Proof. For xeR ,, the following equations are equivalent:

Oty 8

e'G(X)Vdt =g (x)fe ' G(x — 1)’>"Vdt,
0

G (x)

O ey, 8

e ' "dt = g(x)G(x — l)oj?e"ty("*“dt
0
GX)Iyx)+1)=gx)Gx—-DIkx—-1)+1). |

The solutions of (3) which are of separation type now are characterized in the following

Theorem 4. Assume g: R, >R, G:(—1,0) >R, y: (= 1,0) = R, and y(x) G(x) % 0 for
every xelR . Then the following statements are equivalent:

(G) D(t,x)=G(x)t"™ satisfies 3) for teR,, xeR,,
@) yx=1D+1=y(x) and G(x)y(x)=g(x)G(x—1) for xeR,.

Proof. From (j) we deduce
YX)GX) D P =g(x)G(x — 1>V xeR,.

With t = 1 we get the second equation of (jj). Now y (x) G (x) % 0 implies the first equation
of (jj). Conversely, if @ (t, x) = G (x) "™, the equations (jj) yield

D, (t,x) =7(x) GV =g (x)G(x = P*TV =g(x) 2(t,x — 1).

Here the assumption y(x) G (x) & 0 was not used. |
Now we show that a kernel

dt,x)=Gx) "™ teR,, xe[0,1),
can be extended to
D(t,x)=Gx)t"™ teR,, xe(—1,0)

a solution of (3). More precisely:

Theorem 5. Let g: R, >R, $:[0,1) = (— 1, ), G:[0,1) > R, and assume

&, x)=G(x)'" teR,, xe[0,1).
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Then there are extensions y: (—1,0) = (—1,00),G:(—1,0) >R, #: R, x(—1,0)-> R,
of 3, G, @ such that ®(t,x) = G(x) '™ satisfies (3) for teR, , xeR, .
If 7 (x) G (x) £ 0 for every x€[0,1) and ¢,(0) % 0 then @ is uniquely determined.

Proof. For the existence statement define y(x):= §(x — [x]) + [x] for xe(— 1, o) and

A =l gx—k+1)
G(x):=G(x+ 1)P(x+ 1)/g(x+1) for xe(—1,0), G(x):=G(x —[x]) [ —————
k=07(x) + k — [x]
for x > 0, with the usual convention about an empty product; [x] denotes the greatest
integer not exceeding x. Then y and G are extensions of $ and G which satisfy equations

(jj) of Theorem 4:

Y =D +1=fx—-1-[x=-1)+x-1]+1=9(x—[x]) + [x] =y (x),

G(x)y(x)=G(x)F(x)=G(x—1)g(x) for xe[0,1),

Gy (x)=[G(x = 1)g()/yN)y(x) =G(x —1)g(x) for xe[1,2),

G(x)y(x) =[G (x —2)g(x) g (x — D/y(x) — 1)y ()7 (x)
=[G(x—2)g(x = )/y(x = D]g(x) =G(x —Dg(x) for xe[23).

Because of y(x) — [x] = 7(x — [x]) the denominators y(x) + k — [x] in the above products
are positive when [x] > 1.

The final remark in the proof of Theorem 4 shows that & (t,x) = G(x)t'™ is a solution
of(3) forteR,, xeR,, regardless if y(x) G(x) & 0 for x€[0,1) or not.

According to the uniqueness statement we note for any & (¢, x) = G (x) t'™ satisfying (3),
necessarily

Y()GX) P 1 =g(x)G(x— 1)V, teR,, xeR,.
Hence
Y(x)G(x)=¢g(x)G(x—1) for xeR,.

Now our assumption $(x) G (x) # 0 for x €[0, 1) implies: y (x — 1) = y(x) — 1 for x€(0, 1).
For xe[1,2) we have y(x) G(x) = g(x) G(x — 1) = O because of g(x) >0and G(x — 1) £ 0
and again y(x — 1) = y(x) — 1. By induction y(x — 1) = y(x) — 1 for every xeR , . Conse-
quently in this case the extensions y, G of §, G must be defined as given above: the function
y defined above is the unique solution of y (x) — y (x — 1) = 1 which coincides on [0, 1) with
9 and the function G defined above is the unique solution of y(x) G(x) =g (x)G(x — 1)
which coincides on [0,1) with G. ]
Finally we apply the previous results to extend the kernel & which was obtained in
Theorem 2 for xe(— 1,0) U (0, 1) to a kernel @, defined for x e(— 1, c0) under preserving
at all its useful properties:

Theorem 6. Let g: R, —» R, be given and assume ®: R, x ((—1,0) U (0,1)) -» R, satisfies
conditions h,), h,), h;) of Theorem 1 and equations (3) and (4) for teR ,, x€(0,1). Then
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there is an extension ®: R, x(—1,0) - R, of ], which is of separation type and satisfies
(3) forteR,,xeR,.

The function F (x) = | e™'®(t,x — 1)dt is a solution of (1) on R, .
0

Proof. By Theorem 2, & (t,x) = h(x)7(x) " "™® "™, for teR,, xe(0,1), where §(x) =
g(x)/[g(1 — x) + g(x)] and h is a positive solution of the reflection equation

h(x)h(1 —x) = g(x)"Pg(1 — x)’*~V, xe(0,1).

Define G (x):= h(x)7(x)" "™ for xe(0,1) and G(0):=0, $(0):= B with « >0, f >0 and
®(t,0):= at’. Then G:[0,1) >R, and $:[0,1)> R, .

By Theorem 5 there is a unique extension ®:R, x(—1,00) >R, of & such that
®(t,x) = G(x) "™, G and y extensions of G and 7 as defined in the proof of Theorem 5.
@ satisfies (3) for every teR, and every xelR, .

The conditions h,), h,), h;) of Theorem 1 in the case U = IR, are satisfied for our kernel
@, hence

F(x)= Te“d)(t,x —1)dt

defines a solution of (1) on R .
Note that every collection {h, a, 8}, h a positive solution of the reflection formula above,

a >0, B > 0, yields a kernel @; also note that the reflection equation has always a positive
solution:

h(x)=g(x)'™. [

A. Cannizzo, Dipartimento di Matematica e Applicazioni, Palermo

REFERENCES

1 Amaducci T., Cannizzo A.: Soluzioni integrali dell’equazione funzionale ¢ (y + 1) = f(3) ¢ (). Boll. Un. Mat.
Ital. 5-A, 39-45 (1986).

2 Anastassiadis J.: Définition des fonctions Eulériennes par des équations fonctionelles. Paris, Gauthier-Villars
1964.

3 Artin E.: The Gamma Function. Holt, Rinheart and Winston, New York 1964.

4 Busing L.: Vergleich von Hauptldsungsbegriffen fiir Norlundsche Differenzgleichungen und Anwendungen
auf die von Bendersky untersuchten Gammafunktionen (Dissertation). Clausthal 1982.

5 Cannizzo A.: Rappresentazione Euleriana estesa delle soluzioni dell'equazione di Artin. Rend. Sem. Mat.
Univers. Politecn. Torino 44, 293 -302 (1986).

6 Cannizzo A., Rodond L.: Soluzioni dell’equazione di Artin in forma Euleriana estesa. Istituto Lombardo
(Rend. Sc.) A 119, 51-64 (1985).

7 Kairies H.-H.: Einbettungen von log I durch Scharen spezieller Krull-Normallosungen. Aequationes Math.
29, 2835 (1985).

8 Krull W.: Bemerkungen zur Differenzengleichung g (x + 1) — g (x) = ¢ (x). Math. Nachr. 1, 365- 376 (1948)
und 2, 251-262 (1949).

9 Kuczma M.: Functional equations in a single variable. Polish Scientific Publishers, Warszawa 1968.



14 El Math., Vol. 45, 1990

10 Norlund N. E.: Differenzenrechnung. Berlin, Springer 1924.

11 Schroth P.: Zur Definition der Noérlundschen Hauptlésung von Differenzengleichungen. Manuscripta Math.
24, 239251 (1978).

12 Schroth P.: Hauptldsungen von Differenzengleichungen. Glasnik Mat. 14, 34 (1979).

© 1990 Birkhduser Verlag, Basel 0013-6018/90/010009-06$1.50 + 0.20/0

A generalization of Nagel’s middlespoint

In an 1836 paper, C. H. von Nagel defines the « Mittenpunkt» of a given triangle Even
though this point is readily constructed, it seems not to have found its way into the modern
geometry of the triangle. In this paper, we show that by looking at the point from a slightly
different point of view, one can obtain an infinite family of such points. In addition, we
generalize a set of three related points.

1. Introduction

In what seems to be a little-known and somewhat inaccessible paper [4], C. H. von Nagel
defines the middlespoint (Mittenpunkt) of a given triangle 4, A, A, in the following manner.

Definition. Let S;, i = 1,2, 3, denote the midpoints respectively of the sides A;,  A;,, and
I', the excentre opposite A; of the triangle A\ A, A5, then [\ S, I' = M, the middlespoint of
the given triangle. {

The name probably derives from the fact that the point is obtained using middles, i.e.,
centres of circles and midpoints of line segments. Even though this point has a simple
construction using well-known concepts associated with the triangle, it seems not to
appear in the available literature. One good recent paper on the subject known to us is
by Baptist [1].

In this paper, we show that there exists an infinite family of such points each being a
centre of perspectivity of a pair of triangles one circumscribed, the other inscribed, with
respect to a given triangle. We also generalize a set of three related points referred to as
«interior middlespoint» by Nagel. For the convenience of the reader, we supply some
background.

2. Some properties of the middlespoint
In [5], Nagel also proves that the points M, the centroid S, and the Gergonne point
G = () 4;G;, where G, is the contact point of the incircle with side 4;,,4;,, are

collinear. We add a further result in the form of a theorem which we have not previously
seen.
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