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Extension theorems for integral representations
of Solutions of a functional equation [*]

oo

Summary. Integral representations F (x) j" e~* <P (t, x — 1) dt of Solutions of the function-
o

al equation F(x + l) g(x)F(x), which were obtained in previous papers for the interval
(0,1), are extended to Solutions on 1R+ Additional properties ofthe kernel function $ are
discussed in this context

1. Introduction

We start with the following observations

a) Let cp 1R+ -? R, g IR+ -? IR be given If g exp cp, then the Solution set ofthe difference

equation

G(x + 1)-G(x) cp(x) (0)

is known, iff the set of positive Solutions of

F(x + l) g(x)F(x) (1)

is known In general, equations (0) and (1) are not equivalent
b) The theory of equation (0), and in particular the theory of its principal Solutions

in the sense of Norlund, Krull, Schroth (see [4], and [7] to [12]), is well developed
There is no obvious way to extend this concept of a pnncipal Solution to the general case
of equation (1)
c) In the theory of equation (1) Solutions of the form

oo

F(x)= ^e-l^(t,x-l)dt (2)
o

play a prominent role Take as an example F(x) T(x), Euler's Gamma function
In [1], [5] and [6] we obtained Solutions of (1) which are of type (2), where the kernel
satisfies the functional-differential equation

<Pt(t,x) g(x)<P(t,x-l) (3)

For convenience of the reader we restate Theorem 1 of [1] in a shghtly modified form

Theorem 1. Let UJ c JR and g U -> IR Assume that $ 1R+ x (HJ u {u - 1 ueV}) -> IR
has the following properties

hx) <Pt(t,x) exists for every tE 1R+ and xeU,

[*] Supported by Ministero Pubbhca Istruzione, Rome (Italy)
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h2) hm #(t,x) 0 for every x e HJ,

t->o

h3) for every xeHJ there are pE (0,1), _0elR+, KelR+ such that

e~pt\<P(t,x)\ <K for every t>t0

If<P satisfies the equation (3) for £elR+, xgü then the integrals

oo oo

F(x)= Je-'<J>(£,x-l)d£ and F(x + 1)= $ e~f <P(t,x)dt
o o

exist for every xeHJ and equation (1) holds for xeHJ
In [1] we used instead of h3) hm e~pt<P(t,x) 0 for every xeHJ and every pe(0,1] It

t~* + 00

is readily checked that the theorem remams true with the weaker condition h3)
In the following Theorem 2 of [2] we introduced another functional equation for the
kernel <P, motivated by the reflection formula for pnncipal Solutions

<P(t, -x) l/<P(t,x) (4)

Theorem 2. Let HJ (0,1), g HJ -* R+, $ 1R+ x ((- 1,0) u (0,1)) -? 1R+ and assume that $
satisfies (4) for t elR+, xeHJ Then $ satisfies hx), h2) and h3) of Theorem 1 and (3) for
felR+,xeHJ, iff

$(t,x) h(x)nx)~y{x)tnx), telR+,xeHJ,

where y(x) g(x)/[g (1 — x) + g(x)] and h HJ -* 1R+ is Solution ofthe reflection equation

h(x)h(l - x) g(x)y(x)g(l - x)y{l~x)

This theorem shows that a kernel $ which satisfies (3) and (4) and some regulanty
conditions must be of Separation type $ (t, x) G (x) ty(x) (Functions which will be later
subject to an extension procedure are marked with a circumflex) The aim of this note
is to extend these results for kerneis defined onlR+x(—l,oo) and to study the behaviour
of kerneis of Separation type with respect to the equations (1), (2), (3), (4)

2. Strueture and Extension Theorems

We begin this section with a remark on kerneis of the type <P(t,x) G(x)tyix) and their
connection with the functional equation (1) Euler's gamma function is involved

Theorem 3. Assume g _R+ -? JR, G (— 1, oo) -> IR, y (— 1, oo) -> (— 1, oo) and

F(x) ]e-tG(x-l)tyix'l)dt, xe!R+
o
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Then the following conditions are equivalent

(l) F satisfies (1) for xeR+

(n) G(x)r(y(x) + l) g(x)G(x-l)r(y(x-l)+l) for xeIR+

Proof For xeIR+, the following equations are equivalent

oo oo

\ e-*G(x)tnx)dt g(x)\e~lG(x - l)ty{x~l)dt,
o o

oo oo

G(x) \ e'ttnx)dt g(x)G(x - 1) \ e~lty{x~l)dt
o o

G(x)T(y(x) + 1) q(x)G(x - l)T(y(x - 1) + 1) ¦
The Solutions of (3) which are of Separation type now are characterized in the following

Theorem 4. Assume g R+ -? IR, G (- 1, oo) -? IR, y (- 1, oo) -> IR, and y (x) G(x) + 0 for
every xeR+ Then the following Statements are equivalent

(j) cp (f, x) G (x) ty{x) satisfies (3) for t e IR + x e IR +

Cu) y(x-l) + l=y(x) and G(x)y(x) g(x)G(x - 1) for xeR+

Proof From (j) we deduce

y(x)G(x)ty{x)~i =g(x)G(x-l)ty{x~l\ xeIR+

With t 1 we get the second equation of (jj) Now y (x) G (x) + 0 implies the first equation
°f Oj) Conversely, if <_>(£,x) G(x)ty{x\ the equations (jj) yield

cpt(t,x) y(x)G(x)ty^-i g(x)G(x - l)tHx-1] g(x)cp(t,x - 1)

Here the assumption y (x) G (x) + 0 was not used ¦Now we show that a kernel

$(t9 x) G (x) ty(x) t e 1R+, x e [0,1),

can be extended to

<P(t,x) G(x)tyix) telR+, xe(-l,oo)

a Solution of (3) More precisely*

Theorem 5. Let g- 1R+ -» R+, f. [0,1) -? (- 1, oo), 6 [0,1) -> R, and assume

$(t9x) G(x)tyix) reR+,xe[0,l).
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Then there are extensions y:( — l, oo)-»( —l,oo), G: —1, oo)->R, <P: R+ x( —1, oo) ->R+
ofy, G, $ such that $(t,x) G(x)ty{x) satisfies (3) for f eR+ xeR+
Ify(x)G(x) + 0 for every xe[0,1) and cr(0) =1= 0 then <P is uniquely determined.

Proof. For the existence Statement define y(x):= y(x — [x]) + [x] for xe(— 1, oo) and
[x] g(x-k + l)

G(x):=<3(x + l)7(x + l)/0(x + l) for xe(-1,0), G(x):= G(x - [x]) Yl
k o y (x) + k — [x]

for x > 0, with the usual Convention about an empty product; [x] denotes the greatest
integer not exceeding x. Then y and G are extensions of y and G which satisfy equations
(jj) of Theorem 4:

y(x - 1) + 1 f (x - 1 - [x - 1]) + [x - 1] + 1 y(x - [x]) + [x] y(x),

G(x)y(x) G(x)y(x) G(x - l)g(x) for xe[0,l),

G(x)y(x) [G(x-l)g(x)/y(x)]y(x) G(x-l)g(x) for xe[l,2),
G (x) y (x) [G(x-2)g (x) g (x - l)/(y (x)-l)y (x)] y (x)

[G(x-2)g(x-l)/y(x-l)]g(x) G(x-l)g(x) for xe[2,3).

ete
Because of y (x) — [x] f (x — [x]) the denominators y (x) + k — [x] in the above products
are positive when [x] > 1.

The final remark in the proof of Theorem 4 shows that <P(t,x) G(x)ty{x) is a Solution
of (3) for teR+, xeR+, regardless if y(x)G(x) + 0 for xe[0,l) or not.
According to the uniqueness Statement we note for any <P(t,x) G(x)ty{x) satisfying (3),

necessarily

y(x)G(x)tyix)-1=g(x)G(x-l)ty(x-1\ teR+,xeR+.

Hence

y(x)G(x) 0(x)G(x-l) for xeR+.

Now our assumption f (x) G (x) + 0 for x e [0,1) implies: y (x — 1) y (x) — 1 for x e (0,1).

Forxe[l,2)wehavey(x)G(x) 0(x)G(x- 1) + 0 because of#(x) >0 and G(x - 1) 4= 0

and again y (x — 1) y (x) — 1. By induction y (x — 1) y (x) — 1 for every x eR+.
Consequently in this case the extensions y, Gofj,ö must be defined as given above: the function
y defined above is the unique Solution of y (x) — y (x — 1) 1 which coincides on [0,1) with
f and the function G defined above is the unique Solution of y(x)G(x) g(x)G(x — 1)

which coincides on [0,1) with G. ¦
Finally we apply the previous results to extend the kernel $ which was obtained in
Theorem 2 for xe(— 1,0) u (0,1) to a kernel 4>, defined for xe(— 1, oo) under preserving
at all its useful properties:

Theorem 6. Let #: R + -? R + be given and assume $: R + x ((— 1,0) u (0,1)) -? R + satisfies
conditions hx), h2), h3) ofTheorem 1 and equations (3) and (4) for t eR+, xe(0,1). Then
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there is an extension <P: R+ x (- 1, oo) -? R+ of $, which is ofSeparation type and satisfies
(3) for _eR+,xeR+.

oo

The function F(x) j e~fcp(t,x - l)dt is a Solution of (1) on R+.
o

Proof By Theorem 2, <P(t,x) h(x)y(x)-y{x)tHx\ for teR+, xe(0,1), where f(x)
Q (x)/[g (1 -x) + g (x)] and h is a positive Solution of the reflection equation

h(x)h(l - x) g(x)Hx)g(l - xp-", xe(0,1).

Define G(x): h(x)y(x)~nx) for xe(0,1) and G(0): a, y(0):= ß with a > 0, ß > 0 and
$(t,0):= oitß. Then 6: [0,1) ->R+ and f: [0,1) -> R+.
By Theorem 5 there is a unique extension 3>:R+x(— l,oo)->R+ of $ such that
<P (t, x) G (x) ty{x\ G and y extensions of G and y as defined in the proof of Theorem 5.
<P satisfies (3) for every teR+ and every xeR+.
The conditions hx), h2), h3) of Theorem 1 in the case HJ R+ are satisfied for our kernel
<_>, hence

OO

F(x)= \e-lcp(t,x-l)dt
o

defines a Solution of (1) on R+.
Note that every collection {h9 a, /?}, h a positive Solution ofthe reflection formula above,

a > 0, ß > 0, yields a kernel <P; also note that the reflection equation has always a positive
Solution:

h(x) g(xfxK m

A. Cannizzo, Dipartimento di Matematica e Applicazioni, Palermo
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A generalization of NagePs middlespoint

In an 1836 paper, C. H. von Nagel defines the «Mittenpunkt» of a given triangle Even

though this point is readily constructed, it seems not to have found its way into the modern

geometry ofthe triangle. In this paper, we show that by looking at the point from a slightly
different point of view, one can obtain an infinite family of such points. In addition, we

generalize a set of three related points.

1. Introduction

In what seems to be a little-known and somewhat inaccessible paper [4], C. H. von Nagel
defines the middlespoint (Mittenpunkt) ofa given triangle AXA2A3 in the following manner.

Definition. Let Sx, i 1,2,3, denote the midpoints respectively ofthe sides Ax + xAx + 2 and
T, the excentre opposite Ax ofthe triangle AXA2A3, then f]StP M, the middlespoint oj
the given triangle. l

The name probably derives from the fact that the point is obtained using middles, i.e.,

centres of circles and midpoints of line segments. Even though this point has a simple
construction using well-known concepts associated with the triangle, it seems not to
appear in the available literature. One good recent paper on the subject known to us is

by Baptist [1].
In this paper, we show that there exists an infinite family of such points each being a

centre of perspectivity of a pair of triangles one circumscribed, the other inscribed, with
respect to a given triangle. We also generalize a set of three related points referred to as

«interior middlespoint» by Nagel. For the convenience of the reader, we supply some
background.

2. Some properties of the middlespoint

In [5], Nagel also proves that the points M, the centroid S, and the Gergonne point
G p\AxGh where G, is the contact point of the incircle with side _4l + 1_4I + 2 are

colhnear. We add a further result in the form of a theorem which we have not previously
seen.
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