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Periodizitatseigenschaften p-adischer Kettenbriiche

Im Jahre 1968 beschrieb Th. Schneider einen dem bekannten reellen Kettenbruchalgo-
rithmus nachgebildeten Kettenbruchalgorithmus fiir p-adische Zahlen. Wihrend fiir die
reellen Kettenbriiche bereits seit langer Zeit eine umfangreiche Theorie existiert, gibt es
bisher jedoch nur wenige Untersuchungen, die sich eingehender mit dem Schneiderschen
p-adischen Kettenbruchalgorithmus beschaftigen.

Bundschuh zeigte, dass die Charakterisierung der rationalen Zahlen als der Zahlen mit
abbrechender Kettenbruchentwicklung — im wesentlichen — auch fiir den Schneiderschen
Algorithmus giiltig bleibt und stellte die Frage nach einem p-adischen Analogon zum
Euler-Langrangeschen Satz. Man sieht leicht, dass der Satz von Euler in einer modifizier-
ten Form richtig bleibt: Hat eine Zahl einen periodischen p-adischen Kettenbruch, so ist
sie eine quadratische Irrationalitdt oder rational von einem bestimmten Typ. Dass die
Umkehrung dieser Aussage, nimlich das Analogon zum Satz von Lagrange, nicht richtig
ist, wurde erst kiirzlich von de Weger bewiesen, indem er explizit quadratische Irrational-
zahlen mit nicht-periodischer p-adischer Kettenbruchentwicklung angab.

Hat nun aber die Quadratwurzel einer rationalen Zahl bereits eine periodische p-adische
Kettenbruchentwicklung, so kann man ein Analogon zum Satz von Legendre zeigen, d. h.
die Periode eines solchen Kettenbruches beginnt gleich nach dem Anfangsglied und sie
besteht aus einem symmetrischen Teil, gefolgt von dem doppelten Anfangsglied. Der
Beweis dieses Satzes ist Gegenstand der vorliegenden Arbeit.

1. Bezeichnungen

Fiir eine feste Primzahl p werden im folgenden mit ||, die normierte p-adische Bewertung
von Q, bezeichnet (vgl. [1], S. 48 ff.). Fiir ein gegebenes {,e Q, mit |¢,|, = 1 gibt es dann
genau ein bye{l,...,p—1} mit [, —by|,<1. Falls &, —by+0, so setzt man
ay:=1& — byl und & 1= a, (£, — bo)~'. Es gilt dann a, = p* mit ae N und |¢,|, = 1.
Man kann nun mit &, in der gleichen Weise fortfahren und erhdlt so sukzessive
bo,by,...€{l,...,p—1} und a,,qa,,...€{p*|laeN}, solange nur &, — b, + 0 ist. Fiir £,
ergibt sich daraus die p-adische Kettenbruchentwicklung

a| a,|
Eo=by+ 4 ...+ —,
% b, 1€n

fir die wir im folgenden abkiirzend schreiben: &, = [by,a,; by, ..., a,; ). (Ndhere Anga-

ben zur Existenz, Eindeutigkeit und Konvergenz solcher Entwicklungen finden sich in [2]
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und [4].) Bricht die Kettenbruchentwicklung von &, nicht ab, d. hist £, — b, stets von Null
verschieden, so erhdlt man einen unendlichen p-adischen Kettenbruch fiir £,. Einen
solchen Kettenbruch nennt man periodisch, falls es m, ke N gibt mita, ., =a,, b, = b,
fiir alle n > m. Man schreibt in diesem Fall

E=1bosay1;- -5 b 1503 by - s Qi 13 bmri— 1]

Das kleinste k mit dieser Eigenschaft heisst die Periodenldnge und das kleinste solche m
die Vorperiodenldnge der Entwicklung.

Die in der p-adischen Kettenbruchentwicklung auftretenden Teilzdhler sind von der
Form p* mit einer natiirlichen Zahl o und die Teilnenner sind Elemente des primen
Restsystems 1,...,p — 1 modulo p. Fiir eine feste Primzahl p sei deshalb festgesetzt:
E, = {p*laeN}und R,:={1,...,p—1}.

2. Der Satz von Legendre fiir p-adische Kettenbriiche

Fiir die reelle Kettenbruchentwicklung ist der Satz von Legendre (vgl. etwa [3], S. 87)
bekannt: «Sei d eine rationale Zahl grosser als 1, aber keine Quadratzahl. Dann hat \/E
einen periodischen Kettenbruch, dessen Periode gleich nach dem Anfangsglied beginnt
und die aus einem symmetrischen Teil, gefolgt von dem doppelten Anfangsglied besteht».
Da — wie von de Weger [5] kiirzlich bewiesen — fiir c € @ der p-adische Kettenbruch von
\/E nicht notwendigerweise periodisch sein muss, ist dies hier als zusdtzliche Vorausset-
zung zu fordern. Als Analogon zum Satz von Legendre lassen sich dann fiir ungerade
Primzahlen Satz 1 und fiir p = 2 Satz 2 beweisen.

Satz 1. (i) Sei p eine ungerade Primzahl, ce Q mit |c|, =1 und \ﬁ e@Q,\Q. Hat \/E einen
periodischen p-adischen Kettenbruch mit Periodenlinge h, so existieren a, ..., a,€ E, und
by, ..., b,eR, mit

Je=1Iboas;by,...,a,b,

und es gilt b, = 2 b, oder b, = 2by — p. Im Fall b, = 2 b, bestehen zwischen den Teilzdhlern
und -nennern die folgenden Beziehungen

™ a,=a,,,_, fir v=1,....,0h und b,=b,_, fir v=1,...,h—1.

(ii) Hat umgekehrt £ e Q, eine p-adische Kettenbruchentwicklung & = [by,a,;b,, ..., ay; by
mit ay,...,a,€E, und by, ..., b,e R, die die Symmetriebedingungen (*) und b, =2b,
erfiillen, so ist &* eine rationale Zahl.

Satz 2. (i) Sei ce Q mit |c|, =1 und \/ceQ,\Q. Hat \/E einen periodischen 2-adischen
Kettenbruch mit Periodenlinge h, so gibt es entweder a, ..., a,,,€E, mit

Je=[ajslazt, ..., a1
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oder a,...,a,,,€E, mit

\/(; =[1,a,;1,a,;1,a5:1,...,a,,,;1].
Im ersten dieser beiden Fille bestehen zwischen den Teilzdhlern die folgenden Beziehungen
** ay,,=a,=a,/2 und a,=a,,,_, fir v=2,...,h—1.

(&i) Hat umgekehrt & e, eine 2-adische Kettenbruchentwicklung

E=[1,a,;1,a551,...,a,, ;1]

mita,...,a,,€E,, die die Symmetriebedingungen (**) erfiillen, so ist £* eine rationale
Zahl.

Bemerkungen. 1. Im folgenden wird nur Satz 1 bewiesen; das Ergebnis fiir p = 2 lésst sich
mit dhnlichen Schliissen herleiten. 2. Dass in Satz 1 tatsidchlich b, = 2b, — p auftreten
kann und dass dann die Symmetrie der Entwicklung verlorengeht, zeigt das Beispiel
J10=102,3;2,3;1,9;1] in @,.

Der Beweis von Satz 1 wird durch zwei Lemmata vorbereitet, die die Auswertung der bei
der Betrachtung der Kettenbriiche auftretenden Nédherungsbriiche erleichtern. Zur Be-
rechnung solcher Ndherungsbriiche bedient man sich des Muirschen Symbols (siehe etwa
[3], S. 6), dessen Werte rekursiv wie folgt erklart werden.

Definition. Seien a,,a,,... und by, b,, ... rationale Zahlen. Dann setzt man

a;
K =b,, K =b,b
(b0> ° <bob1> 5P+

und fir h > 2

a, ...a, a, ...a,_, a, ...a,_,
K :=b, K +a, K ( )
<b0 b, ... b,,) g (bo b, ... b,,_1> " \by by ... by_,
Bemerkung. Die Reihenfolge der in den Muirschen Symbolen auftretenden Elemente darf

umgekehrt werden, ohne dass sich der Wert der Muirschen Symbole dadurch dndert ([3],
S. 12). Dies liefert fiir h > 2 die zweite Rekursionsformel

a ... a a e a a e a
K[ " li=bo K| 2 ")+a K( > ").
(bobl... b,,) 0 (b, b,... b, YU \by by ... by,

Lemma 1. Fiir eine Primzahl p und he N, seien a,, ..., a,e E, und by, ..., b,e R,. Dann
gilt:

a, ...a,
K =b,...b, (mod p),
(bobl... b,,) o:+-by (modp)
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Beweis. Die Aussage kann mittels vollstdndiger Induktion bewiesen werden. Man ver-
wendet dabei die in der Definition des Muirschen Symbols auftretende Rekursionsformel.

Lemma 2. Fiir eine Primzahl pund he N seiena,, ...,a,e E undb, ..., b,eR,. Dann sind
die folgenden Aussagen dquivalent:

_ a, ...a,_ a, ...a,

0w, )G )
b,b,... b,_, b, b,... b,

() a,=a,,,_-, fir v=1,...,h und

b,=b,_, fur v=1,...,h—1.

Beweis. Die Richtung (ii) = (i) ist eine direkte Folgerung aus der Tatsache, dass die
Reihenfolge der Elemente im Muirschen Symbol umgekehrt werden darf. (i) = (ii) zeigt
man mittels Induktion iiber . Die Falle h = 1 und h = 2 sind trivial und man nimmt nun
an, dass die Behauptung fiir 1,2,..., h —1 gilt und ausserdem mit a,,...,a,€ E, und
by,...,b,eR, die Bezichung

al .. ah_ 1 a2 e ah
K =K
(b,, b, ... bh—l) (b1 b, ... bh)
besteht.
Dann gilt auch:

a, ...a,_, a, ...a,_, )
K —b, K =
(b,,bl... b,,_l) g (bl b, ... b,_,
a2 n'vah a2 . ah_l
K -b,K .
(b1 b, ... b,,) ¢ (bl b, ... b,,_1>
Mittels der beiden Rekursionsformeln fiir das Muirsche Symbol folgt daraus:
Ay ...0_, a, ...0_,
K =q,K .
“ (bz by ... b) “" (bl by ... b)

Da nach Lemma 1 die Werte des Muirschen Symbols teilerfremd zu p sind, erhilt man
a, = a, und

a, ...ay_, ) ( a, ...ah_z)
K =K .
(bz b3 . e bh_l bl b2 e bh_.z
Erneute Anwendung von Lemma 1 auf beide Seiten der Gleichung liefert wegen
by,...,b,_,€R, bereits b, = b,_, und damit ergibt sich

a; ...0q,_, a, ...G,_,
K =K .
(bz by ... bh-—l) (bh-1 b, ... bh—-2)
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Da die Aussage des Lemmas bereits fiir h — 2 richtig ist, folgt aus dieser Gleichung die
Behauptung.

Beweis von Satz 1. Zundchst wird Teil (i) bewiesen; dazu nimmt man an, dass ¢ eine
rationale Zahl sei, die den Voraussetzungen des Satzes geniigt. Dann gibt es [e N, und
heN sowie a,,...,a;,,€E,und b, ..., b, € R, mit

\/C= [bo,ay;-- 50,14 1301415 -5 s bl

d.h. der p-adische Kettenbruch von \/;: hat die Periodenldnge h und die Vorperioden-
lange .

Man fiihrt nun die Annahme [ > 0 dadurch zum Widerspruch, dass man aus ihr g, = q,,,
und b, = b, , folgert; dies aber widerspricht der Minimalitdt von [.

Durch die Festlegung &:=[a;, ;b4 1, .-, @344 b 4,] erhdlt man

\/Ez[bO’al;bla---aal;bl+€] und E=aj ;b qins by + &

Um diese endlichen Kettenbriiche auszuwerten, definiert man:

A=k B o ® 0...1, A 1
s = v=0,...,1, —1.=1,
v by b, ... b, !
Cl2 av
B.:=K =1,....1, B_,:=0,B,:=1,
' (bl b2' bv) ’ ! °

a .. a
c¢=K( 1 ””) v=0,...,h, C_,:=1,
biinbivy - by, '

DﬁzK(bm+2 maHV) v="1,..h, D_;:=0,Dg:=1.

141 biea oo bryy

Fir die Kettenbriiche von & und \/E ergibt sich daraus (vgl. etwa [3], S.7)

_ G &+ G,

é —Dh_lc+Dh_ l+h

und

vgzﬁsﬁﬁ:ﬁ
B,_, ¢+ B,

Dies formt man um zu
& Dy +EMDy+Dy_1 by — Choy) + Dybyy, — G =0 (1)

und

e BJc—A
Bt~1\/“Az~1

(2)
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Substituiert man in (1) gemdss (2), und multipliziert man anschlieBend noch mit
(B;—, \/E — A,_,)?%, so erhilt man einen Ausdruck der Form X + Y\[ = 0 mit ganzen
Zahlen X und Y, die wegen der Irrationalitdt von \/E beide Null sein miissen. Fiir den
Vorfaktor Y von ,/c bedeutet dies:

—2D,_yBA+D,+D,_,b,y,— C,_)(BjA;_y + B,_; 4)
+2(Cy—Dybyyy)B,_1 A;-; =0. 3)

Wegen Lemma 1ist C,_, — D,_,b,,,=C,— D,b,,, =0 (mod p), und bei Betrachtung
von Formel (3) als Kongruenz modulo p folgt damit aus Lemma 1:

—2by4 g bysp_ 1 (by...b)? +2byy ... bysybo(by...b_)*b,=0 (mod p).

Da by, ..., b,,,€ R, und p # 2, erhilt man daraus bereits b, = b, ,. Ersetzt man in (3) 4,
durch b, 4,_, + a,A,_, und substituiert auch B,, C, und D, durch die entsprechenden
Ausdriicke, so ergibt sich

- 2Dh—1Bz—2Al—za12 + Dy g1y — Cho ) By Ay + By A;-5) q
+2C, 3B 4-1a,4,=0.

Nach Lemma 1 sind die Vorfaktoren von af, g, und q,, , simtlich zu p teilerfremd, und
wegen a,,a,,,€ E, folgt daraus a,|a, ), bzw. a;,,|a,. Damit ist a; = g;,, und gemeinsam
mit b, = b, , liefert dies den Widerspruch zur Voraussetzung, dass [ als Vorperiodenlinge
bereits minimal ist.

Bei den weiteren Uberlegungen kann nun [ = 0 vorausgesetzt werden, und man betrach-
tet Gleichung (3), die dann folgende Gestalt hat:

—2Dh—lb0+Dh+Dh-lbh_Ch—l =O
bzw.

(bh_ZbO)Dh-—l = Ch-l —Dh'

Wegen Lemma 1 ist die rechte Seite kongruent Null modulo p, und zusammen mit
p4D,_, folgt daraus b, =2b, (mod p). Da aber b,,b,eR,, ist damit b, =2b, oder
b, = 2by — p. Im ersten Fall folgt C,,_, = D, und aus Lemma 2 ergeben sich damit die im
Satz behaupteten Symmetriebeziehungen zwischen den q; bzw. b;.

Um Teil (ii) des Satzes zu zeigen, nimmt man an, dass £ € Q, eine p-adische Kettenbruch-
entwicklung mit den in der Formulierung des Satzes genannten Eigenschaften besitzt.
Unter Beachtung von [ = 0 setzt man C, und D, wie oben fest und erhilt analog zu (1)
fur &€ =[bg,a,;b,, ..., a,; b,] die quadratische Gleichung

(€ —bo)’Dy_y + (¢ —be)(Dy+Dy_yb,—C,_y) + Db, — C,, =0
bzw.

szh—l + 6(——2Dh—1b0 +Dh+Dh~lbh—— Ch—1)+Dh—1b(2)—-Dhb0 _Dh—lbobh
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Aus den Symmetriebedingungen (*) folgt in Verbindung mit Lemma 2 C,_, = D,, und
zusammen mit 2 b, = b, fihrt dies zu

Cy_
& =bj+ " —a,eQ.
h—1

Damit ist Satz 1 vollstindig bewiesen.

3. Periodizitit p-adischer Kettenbriiche

Bei Satz 1 und Satz 2 wird jeweils vorausgesetzt, dass eine gegebene Zahl eine periodische
p-adische Kettenbruchentwicklung besitzt. Ein hinreichendes Kriterium dafiir, dass dies
fir die Quadratwurzel einer natiirlichen Zahl der Fall ist, wurde von de Weger [5] gezeigt:
«Ist ceN darstellbar in der Form ¢ = e? + dp* mit e,d, ke N, die den Bedingungen
ee{l,...,(p—1)/2} und d|2 e geniigen, so ist die p-adische Kettenbruchentwicklung der
zu e modulo p kongruenten Quadratwurzel aus ¢ periodisch mit Periodenlidnge 1 oder
2.» Ausserdem fiihrte de Weger dort einige «Ausnahmepaare» (c,p) an, fir die die p-
adische Kettenbruchentwicklung von \/2 periodisch (mit Periodenldnge 4 bzw. 6) ist,
ohne jedoch auch fiir diese ein dem Kriterium dhnliches, allgemeines Prinzip anzugeben.
Man stellt nun fest, dass sowohl sein Kriterium als auch die von ihm angegebenen
Ausnahmepaare Spezialfille des folgenden Satzes sind.

Satz 3. Sei p eine ungerade Primzahl, he N und ce@Q. Es mogen a,,...,a,€E, und
by, ..., b€ R, existieren, die den folgenden Bedingungen geniigen:

() 2bo=b, b,=b,_, fir v=1,....,h—1 und a,=a,, ., fir v=1,...,h,

C
.. =b2 h—2
() c=b5+ D

a, mit
h—1

al PR ah__2 a2 o s ah_,z
Gy i d D,_,:=K .
h-2 (b,, by ... b,,_2> S (b1 by ... b,,_z)

Dann hat der p-adische Kettenbruch von \ﬂ? fiir \/ = b, (mod p) die folgende Gestalt

Je=1[bo,as;b,,...,a,b,l.

Bemerkungen. 1) Gilt \/ = [by,a,;by, ..., a,;b,] mit 2b, = b, so kénnen daraus — wie
beim Beweis von Satz 1 erldutert — die iibrigen der unter (i) und (ii) aufgefiihrten Bedin-
gungen geschlossen werden. Die Formel aus (ii) gibt dann an, wie ¢ aus dem Kettenbruch
zu berechnen ist, und stellt fir den p-adischen Fall einen Zusammenhang zwischen der
Losbarkeit diophantischer Gleichungen und der Periodizitit von Kettenbruchentwick-
lungen dar.

2) Fiir den Fall p = 2 lisst sich ein zu Satz 3 dhnliches Resultat beweisen. Die Bedingung
(i) ist entsprechend den Symmetriebeziehungen aus Satz 2 zu modifizieren; die Formel aus
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(i) gewinnt eine andere Gestalt, da im 2-adischen Fall die Vorperiode aus drei und nicht
mehr aus einem Glied besteht.

Beweis von Satz 3. Seien a,,...,a,€E, und b,,...,b,e R, den Voraussetzungen des
Satzes geniligende Zahlen. Dann folgt aus den Bedingungen (i) und (ii)

(C—bg)Dh—l =a,C,_,=0a,C,_,.

Definiert man C,_,, D, und D, _, wie im Beweis von Satz 1 (unter Beachtung von | = 0),
so erhdlt man aus Bedingung (i) in Verbindung mit Lemma 2 und der Rekursionsformel

Cy-1=Dy=b,D,_y+a,Dy_,=2byDy_y +a,Dy_,.
Man betrachtet nun den endlichen Kettenbruch
(bo + \/E) Choy +a,Cyy

(bo + \/Z)Dh—l +a,D,_,

_ bo+OC +=bYDuy  _,
= - 0+\/Z.
(bo + /) Dy—y + Choy — 2bo D,

by, ay;by, ... ap-15by_ 1, a4 by +\/E] =

Aus dieser Identitdt folgt

b, +f= [by,ay;by,...,a, b,

bzw.

\/E=[b0,a1;b1,...,a,,;b,,].

P. G. Becker, Math. Institut, Universitit Koln
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