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It now follows that d(X) is not subharmonic in Q for, if it were, then the subharmonic
function s(X) = d(X) + 2 ¢ would satisfy property (iiia) giving

[{d(X)+2¢e}dx dx,=[2nM(s;(0,2¢),r)rdr >mne*s(0,2¢) = 0.
D 0

The same paper gives a counterexample to show that Theorem 4 fails in higher dimen-
sions. For example, when n = 3, let Q be the torus obtained by rotating the disc

{(0,x,,x3):(x, — 2)* + x3 < 1}

about the x;-axis. Then it can be shown that u is subharmonic in Q, yet Q is clearly not
convex. What can be said in higher dimensions is that, if we set u(X) = dist(X,0Q) for
X € R"\Q, then the function u is subharmonic in the whole of R" if and only if the domain
Q is a convex set (see [1] for details).

Stephen J. Gardiner, Department of Mathematics, University College, Dublin
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A note on L’Hopital’s rule

1. Introduction

Recently the classical L’Hopital’s rule, lim f/g = lim f'/¢’, has come again to the centre
of interest. Referring to the basic article of Stolz [4], Boas [2] offered a general construction
of counterexamples to the rule with non-monotonic g’s. He pointed out that not the
mere presence of zeros of g, but the infinite number of its sign changes may cause trouble
with the rule. Clearly, by the intermediate value property of the derivative, g’ can not
change sign without having zeros. This is not the case for one-sided derivatives. Starting
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from this observation, Vyborny-Nester [6] gave a version of L'Hopital’s rule using
monotonicity theorems for one-sided derivatives.

The purpose of this paper is to find an exact condition showing that to what extent g may
differ from being monotone for L’Hopital still to hold. In particular, our results imply the
known classical monotonic versions of the rule. In our considerations, we shall use the
notion of absolute continuity and the Newton-Leibniz formula for Lebesgue integration.
Thus throughout the paper, the expression «almost everywhere» (a.e.) and the integrals
are to be taken according to the Lebesgue measure. We consider limits of functions at
accumulation points of their domain and under the domain of a ratio f/g we mean the
set of all those points x, where f(x) and g(x) # 0 are defined.

2. General results

On the basis of Stolz [4], first we present a counterexample to L’Hopital’s rule for the
case we intend to deal with.

Example 2.1. Let ¢, :[1, o[ - R be defined by
¢() =<, +sinlcosg, Y(&)=e" (0.

By Stolz [4], lim ¢ (&) = lim Y (§) = + oo, lim ¢' ()Y () =0, however the ratio

g $=w i

¢/ = e~ has no limit at + co. Now for f,g:]0,1] — R defined by
fx)=1/6(1/x), gx)=1/y(1/x),

we have lim f (x)=0=1im g (x) and also lim " (x)/¢’ (x) =lim [¢’ (1/x)/}’ (1/x)] e*5i"}/) =0,
x\O0 x\O x\0 x\O

while the limit lim f (x)/g (x) = lim e***/*) does not exist.
x\O x\0

Theorem 2.2. Suppose that f,g:]a,b[— R are absolutely continuous functions and x,  a
is a sequence in la, b[. Under the assumptions

i) g(x)=0= f'(x)=0, ae xe€la,b|,
ii) g(x,)*0,neN and limsupjnlg’(t)ldt/|g(xn)|=K<oo,

n—> o a

we have that if lim f(x)=0=Ilim g(x) and lim f'(x)/g’ (x)=L € R, then lim f(x,)/g(x,)=L.

x\¢a x\ya x\ya n—

Proof. We may and do assume that L =0, since otherwise f — L g could be considered
rather than f Thus for every ¢ >0, there is a é >0 with |[f'(x)| < ¢|g'(x)| for a.e.
x€]a,a + é[. Hence, for sufficiently large n’s, we have a < x, <a + J and so

(x,)
g(x,)

&

1 =
Jrrodg =0

g (xn) a

=

g @1de.
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Therefore limsup | f (x,)/g (x,)] < ¢ K.

n— o

Corollary 2.3. Suppose that f,g:la,b[ - R are absolutely continuous functions such that

i) g(x)= 0=>f’(x) ae. x€lab[,
i) hmsupjlg (H)dt/|g(x)] = K < + .
x\va

If lim f(x) = 0 = lim g (x) and lim f'(x)/g’ (x) = Le R, then lim f (x)/g (x) =
x\ya x\va x\va x\a

3. Supplementaries

The general results above can easily be adapted for each version of L’Hopital’s rule.
Moreover, [6], Theorem 1 is a special case of our Corollary 2.3, or more generally, for
Dini derivatives, we have:

Theorem 3.1. Let f,g:]a,b[ — R be continuous functions and suppose that (formulating,
say, for the upper right-hand derivative) 0 < D* g(x) < + oo for all but a countable many
x €la, b[. Now whenever lim f (x) = 0 = limg(x) and im D™ f (x)/D* g(x) = L € R, then we

have lim f (x)/g (x) = L. x\a x\a
x\a

Proof. By [5], Corollary to Theorem 2, g is monotone increasing and so [3], Exer-
cise (18.35) implies the absolute continuity of g on Ja,b[. On the other hand,
ID*f|<(IL|+ 1)D* ¢ in a suitable neighbourhood [a,c], except perhaps a countable
subset. Hence, regarding that D* g =¢' = D, g a.e. in [a,c], we have

O<D*f+rD*g=D*f+rD,g<D*(f +rg)
a.e. in [a,c] with r =|L| + 1 > 0. Also, D, g = 0 implies that
—00<—rDYg<D*fE<D*'f+rD,g<D*(f +rg)

<D*f+rD* g<2rD*g< +

in [a, c], apart from a countable number of exceptional points. This means, by repeating
the above argument, that f + rg is absolutely continuous on [qg, c], and so is f. Finally,
since g’ > 0 a.e., it follows that

1 x
- “(old
| (x)|£|g (1)l dt =

P )l
giving the property ii) of Corollary 2.3.

Remarks 3.2. a) We mention that there is also an elementary version of Corollary 2.3
above, in which the absolute continuity of f and g is replaced by the continuity of f’ and
g’ on ]a, b[. This version however, does not cover [6], Theorem 1 any more.
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Notice that Corollary 2.3 is a proper generalization, as is shown by the function
g:10,1[ - R, g(x) = x + 2 x?sin(1/x).

b) Corollary 2.3 clearly shows that the essence of L’Hdpital’s rule lies in the condition
i1). Roughly speaking, this means that the variation of g in one direction must dominate
that of in the other, a property replacing the monotonicity. Otherwise, there always
appear certain «too small» values of |g| comparing with Hg’l in any neighbourhood of
a +, causing the failure of ii). Actually, condition ii) in Corollary 2.3 is essential for the

validity of L’Hopital’s rule: If lim supj]g’ (1)|dt/lg(x)] = + oo, then there always

x\a a
exists an absolutely continuous function f:]a,b[ - R such that lim f'(x)/g' (x) = 0 and
x\va
simultaneously lim sup | f (x)/g (x)| = + oco. Indeed, one can choose easily a measurable
x\ya x
function m: ]Ja, b[ — [0, 1] such that lim m(x) = O and limsup | |g' ()| m () dt/|g (x)] = + 0.
Then fcan be defined by *yo ¥ @

fG)=[lg ®Im(@)dt, xelabl.
Example 3.3. As an illustration to our general results, consider on ]0, 1[ the functions

B 1 if 27"<t<3-27"' n=1,3,5,...
g =

0 elsewhere,

—1 if 3-27"l<cpr<27"l n=1,3,5,...
g(t)=
0 elsewhere,

gl(x)=iza(t)+_g_(r)dt, gz(x)=’§(1+r)g'(t)+g(t)dt.

The functions g, and g, are positive, while g, satisfies condition ii) but g, does not. All
the same, their derivatives change sign according to the same rule.
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