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Convexity and subharmonicity

This article draws together a number of results (some recent) which link notions of
convexity with subharmonic functions. No specialist knowledge is assumed and all proofs
are elementary in nature.

1. Subharmonic functions

We shall be concerned with Euclidean space R"(n > 2), points of which are denoted by
X =(xy,...,x,). We write | X| = (x? +... + x?)!/2, and denote the open ball of radius r
centred at X by B(X,r). The closure and boundary of a subset E of R" will be denoted
respectively by E and OE.

Recall that a function u on an open subset @ of R" is called harmonic on w if it is twice
continuously differentiable and satisfies Laplace’s equation:

62u+ +62
ox? 7 ox?

<

0.

(This equation arises naturally in gravitation, electrostatics, hydrodynamics and the
theory of analytic functions.) Alternatively, letting M (u; X, r) denote the mean value of u
over the sphere 0B(X,r) whenever B(X,r) < w, a function u is harmonic on o if and
only if:

(i) —oo<u< + o0 on w;
(ii) u is continuous on w; and
(1) B(X,r)cow=u(X)=Mu;X,r).

By subdividing (i)—(iii) above we arrive at the dual notions of sub- and superharmonicity
(due to F. Riesz [4]). Thus a function u on w is called subharmonic if:

(ila) —o0 <u< + oo on wluz®k — oo on any component of w];
(iia) u is upper semicontinuous (u.s.c.), i.e. {X ew:u(X) < c} is open for any ceR;
(iiia) BX,)cw=u(X)<Mu;X,r).

A function u on w is called superharmonic if:

(ib) —o0o<u< + o on wuz%x + oo on any component of w];
(iib) u is lower semicontinuous, i.e. {X e w:u(X) > ¢} is open for any ceR;
(iiib) B(X,r) < o <= u(X) > M(u; X,r).
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Such functions have many applications. For example, if f is analyticin C and f % 0, then
log| f'| is subharmonic. Again, the gravitational potential energy due to a mass distribu-
tion is superharmonic on R>. The following observations are immediate:

(I) u is subharmonic if and only if — u is superharmonic;
(IT) u is harmonic if and only if both u and — u are subharmonic;
(I1I) if u and v are subharmonic and a,b > 0, then au + b v is subharmonic.

An equivalent formulation of the definition of a subharmonic function is obtained if we
replace (iiia) above by:

(iiia’) for any open set W with compact closure in w, and for any continuous function h
on W which is harmonic on W and satisfies & > u on OW, we have h > u on W.

It is this condition which accounts for the name subharmonic.

We conclude this section by interpreting the above definitions for functions of one real
variable. Laplace’s equation for the real line is simply d?u/dx* = 0, so that “harmonic”
functions are just linear functions of the form ax + b (a,be R). In view of (iiia’) above,
a function f on an interval is “subharmonic” if, whenever f(x) <ax + b for x = x,, x,,
the inequality remains valid for x between x,; and x,. In other words, “subharmonic”
means “convex” when applied to functions on the real line.

Thus subharmonic functions can be regarded as a generalization to higher dimensions of
convex functions. This explains (at least in part) why notions of convexity recur frequently
in the study of subharmonic functions.

2. Composition properties

If we begin with functions of one real variable, we can make the following simple
observations concerning compositions of functions:

[Convex]- [Linear] = [Convex]

[Increasing Convex] o [Convex] = [Convex].

(“Increasing” is to be interpreted in the wide sense, ie. non-decreasing). It is an easy
consequence of Jensen’s inequality that these properties carry across to higher dimen-
sions as follows:

[Convex]-[Harmonic] = [Subharmonic] 1)
[Increasing Convex] e [Subharmonic] = [Subharmonic]. (2)

However, much more can be said. In what follows we interpret ¢ (— o0) as lim ¢ (x).

X = — o0

Theorem 1. The function v ¢ (u/v) is subharmonic in each of the following cases.

(i) u is harmonic, v is positive and harmonic, ¢ is convex,
(ii) u is subharmonic, v is positive and harmonic, ¢ is convex and increasing;
(iii) u is subharmonic, v is positive and superharmonic, ¢ is convex, increasing, and
¢(x)=0 for x<O0.
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By taking v =1, it is clear that (i) and (ii) include (1) and (2) above. The proof relies on
a simple lemma.

Lemma 1. [f {u,} is a family of subharmonic functions on © and sup u, is u.s.c. and less than

a

+ 00, then sup u, is subharmonic on o.

a

Proof of Lemma.

B(X,r)c o = ug(X) < M (uz; X,r) < M(supu,; X, r)

= supu, < M(supu,; X,r).

a a

Thus sup u, satisfies the conditions (ia)—(iiia) of Section 1.

a

Proof of Theorem. Corresponding to each part of the theorem, ¢ can be written as:

(1) ¢(x) =sup{ax + b:a,be R such that at + b < ¢ (1) VteR};
(i) ¢(x) =sup{ax +b:a=0and beR such that at + b < ¢ (t) Vte R};
(iii) ¢ (x) =sup{ax +b:a>0and b <0 such that at + b < ¢ (t) VteR}.

Thus v ¢ (u/v) can be written as

sup v[a(u/v) + b] =supau + bv]

a,b a,b

and au + b v is subharmonic for the appropriate values of a, b in each of the three cases.
Theorem 1 will follow from Lemma 1 if we can show that v ¢ (u/v) is u.s.c. This is clear
for (i) as u, v and ¢ are all continuous. For part (i1) u is u.s.c. and v is continuous, so

{(XuX)wX)<c} =) [{(XuX) <d}n{X:d<cv(X)}], (3)
deR

which is open for any c € R. Thus u/v is u.s.c. Since ¢ is continuous and increasing, we can
add that ¢ (u/v) 1s also u.s.c. Reasoning again as in (3) we see that v ¢ (u/v) is u.s.c. as
required. A similar argument disposes of (iii), so the Theorem is proved.

Theorem 1 and its proof transfer easily to the axiomatic setting of harmonic spaces and
so can be applied to subsolutions of a wide class of elliptic and parabolic p.d.e.’s (see [2]).
This is particularly interesting because (1) and (2) do not hold for harmonic spaces, the
reason being that the constant function 1 is not necessarily harmonic in the general
setting.

3. Spherical means

If we take a suitable summary of the values of a subharmonic function over a sphere of
fixed centre and radius r, convex functions reappear. The simplest example of this is the
following well known analogue of Hadamard’s Three Circles Theorem. Let O be the
origin of R", let Y, (x) = log x and ,(x) = x*""(n = 3).
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Theorem 2. If u is subharmonic in B (O, R), then the supremum of u over 0B (O, r), denoted
by N(u,r), is convex as a function of Y, (r) for 0 <r < R.

Proof. Let 0 <r, <r <r, <R, and choose a,b such that N(u,r) <aiy,(r,)+ b for
i =1,2. We want to deduce N (u,r) < ay,(r) + b. Now

u(X)<ay, (X)) +b (4)

on the boundary of the annulus {X :r, <|X| < r,}. Since (as is verified by direct differen-
tiation) ¥, (| X'|) is harmonic in R"\{0}, condition (iiia’) shows that (4) remains valid for
| X | =r. Thus N(u,r) < ay,(r) + b as required.

Riesz [4] proved the same convexity property for the integral mean M (u;0,r). In
fact, the conclusion of Theorem 2 holds for log M (e*;0,r) and (provided u > 0)
{M (u?;0,7)}''?, p > 1. Behind these results lies a form of Minkowski’s inequality which
is particularly relevant to subharmonic functions, as will become apparent below. In what
follows ¢ is a continuous function on an interval I =< [— oo, + o0), twice continuously
differentiable on the interior I° of I, and u takes values only in 1.

Theorem 3. Let u be subharmonic in B(O,R), let ¢’ > 0, ¢" > 0 and let ¢'/¢p" be concave
on I°. Then ¢ ' {M(p-u;0,r)} is convex as a function of ,(r) for 0 <r < R.

This result is due to Solomentsev [5] but we will give a different argument. Observe that
e* on [— 00, + o), x?(p > 1) and cosh x on [0, + o0) satisfy the hypotheses of the theo-
rem.

Proof. To simplify notation, we give the proof for R? which we identify with C. If f is
an u.s.c. function on [0, 2 n]* taking values only in I, and ¢ satisfies the hypotheses of the
theorem, then

_ d6,7 do, _ de,) do,
¢ { f ¢[ | 76:.0) 2n]2n}:sm£ﬂ¢ { | $or0:.0)5" }zn g

[0,27] [0, 2] [0,2x]

(This is an integral form of an inequality in Hardy, Littlewood and Pélya [3; § 3.16].) Let
srey=¢ ' {M(¢pou;0,r)} (0<r<R),

and 0 < 9 < R — r. Using (iiia) (applied to u) and then (5) we have
. : do
ﬂmﬂ=¢”{s ¢wuw““r¢}
27

do, |do,
¢—1{ j’ ¢ j u(reu(G-H),) + Qe|(02+01)) }
[0,27] [0,2n] 2n

) d)-l{ | ¢0u([rei”+ge'92]e'91)‘;9 }d@

{0, 2] [0.27] 2n

IA

IA

) . . do
= | s(re®+ ge“’z)‘—i—E
[0.27] 2

=M (s;ré', o).
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Thus s satisfies property (itia). It is straightforward to check that a function f on w is
u.s.c. (as defined in (i1a)) if and only if limsup f(Y) < f (X) for any X e w. Now
Y-X

o do o do
limsup | ¢ou(re®)y—< | limsupPou(re®)—
rore  [0,2n] 27 (02m roro 2n

by Fatou’s Lemma (u.s.c. functions which do not take the value + oo are readily seen to
be locally bounded above), so the u.s. continuity of ¢ o u gives

. d6
limsupM(¢pou;0,r) < | ¢ou(r0e‘9)2—=M(¢ou;0,r0).
n

r-rg [0,2x]

Thus M (¢ ou;0,|X]) is u.s.c., and the same must be true of s since ¢ is increasing. It is
now clear that s is subharmonic in B(O, R). Since it depends only on | X |, the proof is
completed by appealing to Theorem 2.

4. Convex domains

Let Q + R" be a domain (non-empty connected open set) in R", and let u be the distance
function given by u(X) = — dist (X, 0Q) for X e Q. The following elegant result is due to
Armitage and Kuran [1].

Theorem 4. The function u is subharmonic in Q = R? if and only if the domain Q is a
convex set.

Proof. The “if” part of the argument is straightforward. Let L denote an arbitrary straight
line a; x; + by x, = ¢, in R*\Q, (ai + b7 = 1), and let u, be the signed distance function
from L given by

u, = t(agx; +b.x, —cy),

the sign being chosen so that u; < 0in Q. Since each u, is harmonic, u = sup u; on Q and
L

u is finite and continuous, it follows from Lemma 1 that u is subharmonic on Q.

To prove the “only if” part, suppose € is not convex. Then it is known [6; Theorem 4.8]
that there is a point Ye 0 Q of “strong local concavity”. What this means is that, choosing
suitable new axes centred at Y, there exists ¢ > 0 such that

{X =(x;,x;):0<]|X|<8¢and x, >0} = Q.
Then d(X) < — x, for XeD = B((0,2¢),¢) with x; £ 0, so

[{d(X) + 2¢e}dx dx, < [(2e — x,)dx, dx, =0.
D D
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It now follows that d(X) is not subharmonic in Q for, if it were, then the subharmonic
function s(X) = d(X) + 2 ¢ would satisfy property (iiia) giving

[{d(X)+2¢e}dx dx,=[2nM(s;(0,2¢),r)rdr >mne*s(0,2¢) = 0.
D 0

The same paper gives a counterexample to show that Theorem 4 fails in higher dimen-
sions. For example, when n = 3, let Q be the torus obtained by rotating the disc

{(0,x,,x3):(x, — 2)* + x3 < 1}

about the x;-axis. Then it can be shown that u is subharmonic in Q, yet Q is clearly not
convex. What can be said in higher dimensions is that, if we set u(X) = dist(X,0Q) for
X € R"\Q, then the function u is subharmonic in the whole of R" if and only if the domain
Q is a convex set (see [1] for details).

Stephen J. Gardiner, Department of Mathematics, University College, Dublin
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A note on L’Hopital’s rule

1. Introduction

Recently the classical L’Hopital’s rule, lim f/g = lim f'/¢’, has come again to the centre
of interest. Referring to the basic article of Stolz [4], Boas [2] offered a general construction
of counterexamples to the rule with non-monotonic g’s. He pointed out that not the
mere presence of zeros of g, but the infinite number of its sign changes may cause trouble
with the rule. Clearly, by the intermediate value property of the derivative, g’ can not
change sign without having zeros. This is not the case for one-sided derivatives. Starting
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