Zeitschrift: Elemente der Mathematik

Herausgeber: Schweizerische Mathematische Gesellschaft

Band: 44 (1989)

Heft: 5

Artikel: Eine weitere Lösung der Thébault'schen Aufgabe

Autor: Stärk, R.

DOI: https://doi.org/10.5169/seals-41621

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 11.12.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Korollar 1. Für festes n hat jedes Glied der Zahlenfolge (1) einen Primfaktor, der in keinem andern Glied der Folge aufgeht.

Beweis. Hat n! + k einen Primfaktor > n, so leistet dieser – wie man leicht einsieht – das Verlangte. Andernfalls übernimmt k diese Rolle.

Korollar 2. Es gibt unendlich viele Primzahlen.

Dies folgt unmittelbar aus dem Korollar 1; dieses garantiert zu jeder Zahl n > 1 die Existenz von n - 1 Primzahlen.

Nach Grundhöfer [1] weiss man, dass für n > 5 keine der Zahlen (1) eine Primzahlpotenz sein kann. Somit kann die zweite im Satz 1 erwähnte Möglichkeit in Wirklichkeit nicht eintreten. Also gilt

Satz 2. Für jedes $n \ge 6$ und $2 \le k \le n$ hat die Zahl n! + k mehr als einen Primteiler, und mindestens einer davon ist grösser als n.

M. R. Chowdhury, Dhaka University, Bangladesh

LITERATURVERZEICHNIS

1 Grundhöfer T.: Über die Zahlen der Form n! + k, Arch. Math. 33, 361-363 (1979).

© 1989 Birkhäuser Verlag, Basel

0013-6018/89/050129-02\$1.50+0.20/0

Didaktik und Elementarmathematik

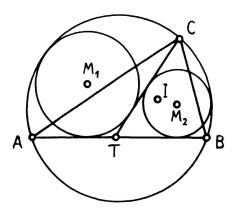
Eine weitere Lösung der Thébault'schen Aufgabe

In der Geometrie freut man sich immer, wenn bei einer Beweisaufgabe, die mit analytischen Mitteln gelöst werden kann, sich auch ein Lösungsweg findet, der ohne Gleichungen und trigonometrische Umformungen auskommt. Ein Beispiel liefert die vor fünfzig Jahren von V. Thébault gestellte Aufgabe:

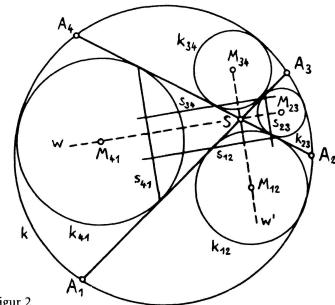
Gegeben ist ein Dreieck ABC. T sei ein Punkt der Seite AB, und M_1 , M_2 seien die Mittelpunkte der Füllkreise, welche die Seite AB, die Strecke CT und den Umkreis des Dreiecks berühren (Fig. 1). Man zeige, dass M_1 , M_2 und der Inkreismittelpunkt I des Dreiecks kollinear sind.

Die Aufgabe wurde von C. Stanley Ogilvy in seine bekannte Problemsammlung [1] aufgenommen mit der Bemerkung, diese Aufgabe sei elementar, aber schwierig und könne bei hinreichendem Scharfsinn ziemlich sicher unter Verwendung rein synthetischer Methoden gelöst werden.

Nachdem kürzlich G. Turnwald in dieser Zeitschrift einen interessanten trigonometrischen Beweis vorgeführt hat [2], der aber einige Umformungskunst verlangt, dürfte der folgende Beweis, der ganz ohne Formeln auskommt, vielleicht das Interesse des Lesers finden.



Figur 1



Figur 2

Wir betrachten die Fig. 2.

In einem Kreis k seien zwei sich in einem Punkt S schneidende Sehnen A_1A_3 und A_2A_4 gegeben. Es seien w und w' ihre Winkelhalbierenden. $M_{12}, M_{23}, M_{34}, M_{41}$ seien die Mittelpunkte der Füllkreise $k_{12}, k_{23}, k_{34}, k_{41}$, welche die beiden Sehnen und k berühren, und s_{12} , s_{23} , s_{34} , s_{41} seien die Polaren von S bez. dieser Kreise.

Nun denke man sich noch die Inkreismittelpunkte I_{123} , I_{234} , I_{341} , I_{412} der vier Dreiecke $A_1A_2A_3$, $A_2A_3A_4$, $A_3A_4A_1$, $A_4A_1A_2$ in die Figur eingezeichnet.

Die folgenden drei Tatsachen sollen bewiesen werden:

- (1) Die Inkreismittelpunkte I_{123} , I_{234} , ... bilden ein Rechteck, dessen Seiten parallel sind zu den Winkelhalbierenden w und w'.
- (2) Die Inkreismittelpunkte I_{123} , I_{234} , ... liegen auf den Geraden s_{12} , s_{23} , s_{34} , s_{41} , nämlich I_{412} und I_{123} auf s_{12} etc.
- (3) Die Inkreismittelpunkte I_{123} , I_{234} , ... liegen auf den Seiten des Vierecks $M_{12}M_{23}M_{34}M_{41}$, nämlich I_{412} auf $M_{41}M_{12}$ etc.

Die Aussage (3) ist – man betrachte die halbe Figur – die Behauptung der Thébault'schen Aufgabe.

Beweis von (1):

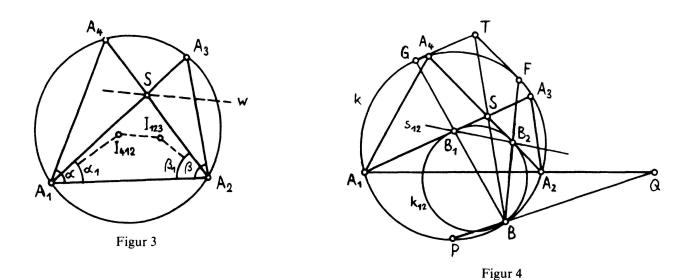
Unter wiederholter Bezugnahme auf die Kreiswinkelsätze kann man etwa wie folgt schliessen. Da in einem Dreieck der Winkel, unter dem man eine Seite vom Inkreismittelpunkt aus sieht, gleich dem um 90° vermehrten halben Gegenwinkel der Seite ist, liegt in $A_1 A_2 I_{123} I_{412}$ ein Sehnenviereck vor (Fig. 3). Wir bezeichnen die Winkel $A_2 A_1 A_4$, $A_2A_1A_3$, $A_3A_2A_1$, $A_4A_2A_1$ mit α , α_1 , β , β_1 . Für den Winkel zwischen den Geraden

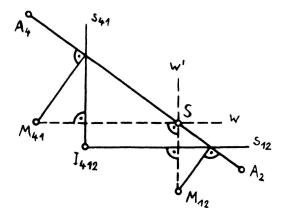
 $I_{412}I_{123}$ und A_1A_2 ergibt sich $\left|\frac{\beta}{2} - \frac{\alpha}{2}\right|$. Der Winkel zwischen w und SA_2 ist $\frac{1}{2}(\alpha_1 + \beta_1)$, der Winkel zwischen w und der Geraden A_1A_2 somit $|\beta_1 - \frac{1}{2}(\alpha_1 + \beta_1)| = \frac{1}{2}|\beta_1 - \alpha_1|$, das ist aber, wegen $\alpha - \alpha_1 = \beta - \beta_1$, auch $\frac{1}{2}|\beta - \alpha|$. Somit verläuft $I_{412}I_{123}$ parallel zu w.

Beweis von (2):

Man sollte sich zuerst überlegen, wie der Füllkreis k_{12} konstruiert werden kann. Ein elegantes Verfahren geht so (Fig. 4): Man verschiebt die Geraden A_1A_3 und A_2A_4 an die Peripherie von k. G und F seien die Berührungspunkte der verschobenen Geraden, T ihr Schnittpunkt. Die Gerade TS liefert dann den Berührungspunkt B von k_{12} mit k, die Geraden GB und FB liefern die Berührungspunkte B_1 und B_2 von k_{12} mit den Geraden SA_1 und SA_2 . Hinter dieser Konstruktion steht einfach die Streckung mit dem Zentrum B, welche k_{12} in k überführt.

Bekanntlich halbieren bei einem Dreieck die Winkelhalbierenden den gegenüberliegenden Umkreisbogen. Die Gerade A_1I_{412} geht darum durch F, die Gerade A_2I_{123} geht durch G und die Geraden A_4I_{412} und A_3I_{123} treffen sich in der Mitte P des Bogens A_1 A_2 . Q sei der Schnittpunkt von PB mit A_1 A_2 .





Figur 5

Nun wende man beim Kreissehnensechseck $A_1FBPA_4A_2$ den Pascal'schen Satz an. Er sagt, dass die Punkte I_{412} , B_2 und Q kollinear sind. Und ebenso ergibt sich mit dem Sechseck $A_2GBPA_3A_1$, dass B_1 , I_{123} und Q kollinear sind. I_{123} liegt zwischen B_1 und Q, wenn B_2 zwischen I_{412} und Q liegt. Da die Geraden $I_{412}I_{123}$ und B_1B_2 nach (1) parallel sind, bleibt den fünf Punkten I_{412} , I_{123} , B_1 , B_2 , Q nichts anderes übrig, als insgesamt kollinear zu sein.

Beweis von (3):

Nach (2) ist I_{412} der Schnittpunkt der Geraden s_{41} und s_{12} . Dass I_{412} auf der Geraden $M_{41}M_{12}$ liegt, ist wegen der auftretenden ähnlichen Dreiecke (Fig. 5) leicht einzusehen. Man könnte aber auch hier den Pascal'schen Kreuzliniensatz anwenden auf das Geradenpaar, gebildet durch A_2A_4 und die Ferngerade, mit den Punkten: S, Fernpunkt von w, Schnittpunkt von s_{12} mit A_2A_4 , Fernspunkt senkrecht A_2A_4 , Schnittpunkt von s_{41} mit A_2A_4 , Fernpunkt von w'.

Aus der Fig. 5 lässt sich auch leicht das (nur vom Winkel zwischen A_1A_3 und A_2A_4 abhängige) Verhältnis ablesen, in welchem die Inkreismittelpunkte die Seiten des Füllkreismittelpunktvierecks teilen. Siehe dazu [2].

Es bleibe dem Leser überlassen, zu untersuchen, welche Rolle die Ankreismittelpunkte der Dreiecke $A_1 A_2 A_3$,... bei der Fig. 2 spielen, zusammen mit den vier den Kreis k und die Geraden $A_1 A_3$, $A_2 A_4$ berührenden Kreisen, welche ausserhalb von k liegen.

R. Stärk, Kantonsschule Schaffhausen

LITERATUR

- 1 Ogilvy C. S.: Mathematische Leckerbissen. Vieweg Paperback, Braunschweig 1969.
- 2 Turnwald G.: Über eine Vermutung von Thébault. El. Math., Vol. 41, 11-13 (1986).
- © 1989 Birkhäuser Verlag, Basel

0013-6018/89/050130-04\$1.50+0.20/0

Neue Fassung einer Verallgemeinerung des Satzes von Napoleon

Als Satz von Napoleon wird ein elementargeometrischer Satz bezeichnet, der besagt, dass die Mittelpunkte der gleichseitigen Bereiche, die außen an die Seiten eines beliebigen Dreiecks angelegt sind, ein gleichseitiges Dreieck bilden.

In [1] wurde eine Verallgemeinerung dieses Satzes bewiesen. Im folgenden wird für diesen verallgemeinerten Satz von Napoleon eine zwar äquivalente, aber einfachere Fassung formuliert und hierfür ein Beweis gegeben, der einfacher und direkter als der in [1] durchgeführte Beweis ist.