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124 ElL Math., Vol. 44, 1989
Letz=(x —y)/|lx — y|l. Then y,(E) = D, y,(C) = C and y,(C\D) = C\D. Hence, by (1),

p@. (M) C) = u(y, (M) n(C\D)) + u(y, (M)~ D)
> u(MA(C\D) + uMAE)=pu(M~C)+ p(MAE)>uMnC).

Since y,(M)e K, this contradicts the choice of M, so the proof is complete. O

Let us remark that a slight variant of the proof above gives the following assertion. Let
K be a non-empty closed subset of H which is also closed under the operators y,, i.e.
which is such that y,(4)e K for all A€ K and ze€ §". Then K contains all caps of measure
m =sup {u(4):Ae K}.

Also, it is easily seen that the proof above implies various extensions of Theorem 3. For
example, given finite sets X, Y < §" with | X| =|Y|, let us write X < Y if for every d > 0,
the number of pairs in X at distance at least d is not more than the number of pairs in
Yat distance at least d. Furthermore, for sets A, B = §", let us write A < B for the assertion
that for every finite set X < A there is a finite set Y <« Bwith |Y|=|X|and X < Y. Then
the following assertion holds. Let A be a non-empty closed subset of S” and let C be a
cap of measure u(A). Then C < A.

Béla Bollobas
Department of Pure Mathematics and Mathematical Statistics
University of Cambridge, England
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Winch curves

A taut rope connects a point in the origin of a rectangular coordinate system with a point
in R(a,0). If the latter starts moving along the line x = a, it will trail the point in the
origin. For each point P of the curve that is created in this way we have PQ = a, where
Q is the intersection of the tangent to the curve in P with the line x = a. This curve, known
as the tractrix, is represented by an equation that can be found as follows.

In the rectangular triangle PSQ (sce fig. 1) we have

PQ=a, PS=a—x, SQ=(a—x)dy/dx.
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Figure 1. Winch curve.

Pythagoras’ theorem leads to
a*? = (a — x)*[1 + (dy/dx)?].

Solving this differential equation for positive a we obtain

I BT
y=—./a"'—-(a—x)z+alnC1a+ @’ —la—x)

a—Xx

as a solution in the first quadrant.
As the curve passes through the origin we have y = 0 for x = 0. This gives C, = 1, so the
equation can be written

2— - 2
yz—‘/az—(a—x)2+alna+ @ —(@a=-x (1)

a—Xx

In literature the tractrix is usually described as above.

In this article however we treat the trailing problem in a more general way. It will then
turn out that the tractrix can be considered as a special case of a new family of curves.
In order to achieve this we assume that the length of the rope PQ will be changed during
trailing. In practice one could think of a vehicle Q trailing a load P and being equipped
with a winch so that PQ can be shortened or lengthened during the trailing process.
Usually Q@ will be moving at constant velocity and the length of PQ will be varied
uniformly in time as well. We then have

RQ=y+(a—x)dy/dx =c,t (2)
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where t represents the time and ¢, stands for the velocity of Q along x = a. Furthermore
we can write

PQ=a—c,t 3)

where c, is the velocity with which the winch is wound up (¢, > 0) or eased off (¢, < 0).
Elimination of ¢t between equations (2) and (3) gives

PQ =a—bly+(a —x)dy/dx]
With b = C2/C1.
It should be noted that the same result is obtained if the variation of the length of PQ
and the velocity of Q are not constant in time on condition that the time dependencies

in equations (2) and (3) are of the same form.
Writing p = dy/dx and applying Pythagoras’ theorem in the triangle PSQ we have

{a—bly+(a—x)pl}*=(@—x>1+p?

or in the first quadrant

a—bly+@—xp=@-x1+p. )

This equation can be written in the form y = g(p) x + f(p) and is called the differential
equation of d’Alembert.
Differentiating with respect to x we obtain

P
—bp—>bla—x)dp/dx +bp= — /1 +p* +(a — x)————dp/dx
p—>b( ) dp/ P V1+p7+( )mp/

or

dpjdx = —— ””21) | )
—olp+s —F
@ X)[ +\/1+p2]

Integration of (5) leads to

—In(a—x)=bln(p+/1+p>)+1iln(1+p»)+C,.

Now p =0 for x =0, yielding C, = — Ina, so we can write
a
lna " =In/1+p*{p+ /1 +p*}®
or

(6)

1
x=al|l-—
[ J1+p{p+ /1 +p2}”]
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Figure 2. Winch curves for different values of b. The numbers along the framework are given in units a.

and from equation (4) we find for b + 0

_a[l_ pb+ /1 + p? ] ™
J1+p*{p+J1+p*}P '

Equations (6) and (7) may be considered as a parameter representation of the new family
of winch curves with parameter p = dy/dx.

We will now check that equations (6) and (7) yield the tractrix for b - 0. For b -0
equation (6) leads to

a
\/I +p® .
As equation (7) is of indeterminate form for b — 0 we rewrite it as

[\/Hp {p+/1+p*)"—pb- ./1+p]
b/1+p*{p+J1+p*}

Now De I’'Hopital’s rule gives

y=lima[ m{l"*'m}bln(P'*'\/l-%-pz)—p :|
ST+ p+ 1+ + b1+ (p+ /14 P In(p+ /1 +p)

—a|:ln(p+\/1+p) \/—T]
p’

(8)

X=a-—

b-0

()
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Figure 3. Cusped winch curves.

Eliminating p between (8) and (9) we arrive at equation (1). So the tractrix may indeed
be considered as a winch curve with b = 0.

Figures 2 and 3 show a number of winch curves for different b.

It is assumed that the rope PQ remains tight even if it is eased off. As a consequence the
curves will not or not exclusively be found in the first quadrant for b < 0.

In some of the curves a cusp A4 is shown. The coordinates of such a point can be found
as follows.

Equation (6) shows that x is a continuous function of p. In A we have dx/dp = 0 so dp/dx
goes to infinity. From equation (5) we then obtain

V1+p%

or

(10)

PA=““““‘“‘r—~————1 Yy

giving — 1 < b <0 for curves with a cusp since p, is positive, real and finite.
Equation (10) substituted in (6) and (7) leads to the coordinates of A:

xg=all — /(1 —b)' 21 +b)'*?

f

va=-[1 -/ —b>(1 +b)>*?].
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For b - — 1 point 4 approaches (— a, — a) and P moves, after it has passed A, along a
line that approaches the line x = — a.

For b = — 1 the curve passes through (— a, — a), here p is infinite.

For b < — 1 the winch is eased off so quickly that P cannot be trailed anymore.

It will be clear that P and Q only meet each other for positive b. From (6) and (7) it can
be derived that this will happen at point (a, a/b).

Thanks are due to Mr H. J. de Vries for performing many calculations.

R. Sanders, Zuidwolde, The Netherlands
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Kleine Mitteilung

Uber die Zahlenfolge n! + k, 2<k<n

Fast jedes Buch iiber Zahlentheorie erwahnt die Tatsache, dass keine der Zahlen
nl+k mit 2<k<n (1)

eine Primzahl ist (es gibt also in der Folge der Primzahlen beliebig lange Liicken). Es

scheint aber nicht allgemein bekannt zu sein, dass dieselbe Zahlenfolge auch die Unend-

lichkeit der Primzahl-Menge beherbergt. Dies entnimmt man dem folgenden

Satz 1. Fiir jedes n > 1 und 2 < k < n hat n! + k entweder einen Primfaktor > n, oder
aber k ist prim und grosser als n/2 und n! + k ist eine Potenz von k.

Beweis. Sei 2 £ k < n. Fir alle Primzahlen p < n, welche n! + k teilen, ist p|k. Falls p < k,
also pe{2,..., k — 1} ist, gilt

pinl/k und damit pi(n!/k) +1 =(n! + k)/k.
Die Zahl (n! + k)/k und mit ihr n! + k besitzt somit Primteiler > n. Hat also n! + k nur
Primteiler < n, so ist k prim und dies ist der einzige Primteiler von n! + k.
Aus

nl+k=%k, s=2

folgt

ktk:~! —1 =n!/k, also k>n/2.
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