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monotonicity theorems. The use of these in the proof of I'Hopital’s rule was made by
Lettenmeyer [4]. Since monotonicity theorems are known to hold for Dini derivates, it is
clear from our exposition that the right-hand derivatives can be replaced in Theorem 1-2
without affecting their validity by Dini derivates. The following counterexample:

f(x) = x + sin x Cos X, g(x) = f(x) esinx

. f'(x) e J(X) , :
lim " = 0 and no limit for T as x — oo was given already in 1879 by O. Stolz [6],
x=w g (X g\x

who also showed that Theorem 3 (with ordinary rather than one-sided derivatives) can
be deduced from Theorem 2. A simple proof based on the Newton-Leibniz formula was

given by Boas [2] but one may conjecture that the method was already known to
Huntington [3].

R. Vyborny and R. Nester
University of Queensland, St. Lucia (Australia)
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An extension of the isoperimetric
inequality on the sphere

We shall consider the n-dimensional sphere $" = {xe R"*!:|x| = 1}, endowed with the
spherical distance function d (x, y) and the (normalized) Lebesgue measure u. For xe §"
and 0 < 6 <, the spherical cap of centre x and radius 6 is C(x,0) = {yeS":d(x,y) < 0}.
It is well known that if 4 = $" and u(A4) = u(C) for some spherical cap C, then the
diameter of A is at least as large as the diameter of C. This is usually considered to be
a variant of the isoperimetric inequality on the sphere S”; it is, in fact, an immediate
consequence of the isoperimetric inequality. Our aim is to extend this inequality and
thereby answer a question raised by Paul Erdos [4].
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For k > 2, define the k-diameter d, (A) of a set A in a metric space by

di(A)y=sup{ min d(x;,x;):x,...,x€A}.

1<i<j<k

Thus d, (A) < d if and only if 4 does not contain k points, any two of which are at dis-
tance greater than d; in particular, d, (A4) is precisely the diameter of A. We shall show that
if A < §" and 0 < u(A) = u(C) for some spherical cap C then d,(4) > d,(C) for every
k> 2.

The proof we shall give makes use of compression operators and closely follows
Benyamini’s [2] proof of the classical isoperimetric inequality on the sphere. Benyamini’s
proof, in turn, was inspired by Baernstein and Taylor [1]. In spirit, the compression
operators on the sphere are very close to the compression operators frequently used in
the study of set systems in combinatorics (see [3; Chapters 16 and 17 and [4]).

Let A be a subset of S” and z € S". The compression y_(A) of A in the direction of z is defined
as follows. For xe 8" let x* = x — (x,z)z + |{x,z)|zand x™ = x — {x,z) z — |{x,2)] z,
where <.,.> denotes the inner product in R"* !, Thus the line through x, in the direction
of z, meets S" precisely in x* and x~, where {(x*,z) = — (x7,z)> > 0; furthermore,
x* =x" if and only if {(x,z) = 0.

The compression operator 7y, pushes the points of An{x*,x"} towards x*: if
An{x*,x"} ={x"} then

P (A {xT,x7} = {x"}
and if An{x¥,x7} + {x7} then
P, (AN {xTx"}=A4An{x",x7}.

It is trivial that if 4 is measurable then so is y,(4) and we have u(y,(A4)) = u(A4); further-
more, if 4 is closed, so is y,(A4). The compression operators map caps into caps:
v,(C(x,0)) = C(x™, 0); furthermore, for any two measurable sets 4 and B,

u(AnB)<p(y,(4) Ny, (B). (1)

Thus y, not only compresses as much of a set 4 into the hemisphere {x*:xe$"} =
{xeS":{x,z) >0} as possible, but it also compresses sets closer to each other. In this
note, the most important property of compression operators is that they do not increase
the k-diameter.

Lemma l. If A = $" zeS$" and k > 2 then d, (y,(A4)) < d,(4).

Proof. It suffices to show that if d, (y, (4)) > d then d, (4) > d. Let then d, (y,(A4)) > d. Then
there is a set X = {x,, ..., x,} < (4) with d(x;,x;) > d for i # j. We claim that 4 contains
a k-subset X’ with minimal distance at least d, so d,(4) > d.

In proving this claim we may assume that x,, ..., x; are the points of X = {x, ..., x;}
that do not belong to A. Then x;=x;' for1 <i<land X'={x{,..., X, X;41,--., X} € A.
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Furthermore, the minimal distance in this k-subset X’ of A is at least d. Indeed, for
1<i<j<l, d(x7,x;)=d(x;",x;)>d since x;,x/ €X, and for I+1<i<j<k we
have d(x;,x;)>d since x;,x;eX. Let now 1<i<! and I+1<j<k If x;=x;
then d(x;,x;)=d(x;,x;)=d(x;,x]) > d since x;",x; € X. Finally, if x;=x; then
d(x7,x)=d(x;7,x;) =d(x;,x]) > d since x;,x; € X. O

Loosely speaking, our aim is to show that if 4 is a closed subset of §” then A can gradually
be transformed into a spherical cap of measure at least u(A4) and k-diameter at most d, (A4).
Lemma 1 tells us that A can transformed into y,(A) for every ze S". The next lemma,
which is essentially trivial, shows that we can take limits in the Hausdorff metric: the
k-diameter is continuous in this metric and, in fact, every Borel measure on S” is upper
semi-continuous. Let H be the metric space of closed non-empty subsets of S" with the
Hausdorff metric d(4, B) = sup {d (a, B), d(b, A):a€ A,be B}. Since S" is compact, H is
also a compact metric space.

Lemma 2. Let v be a Borel measure on S” and let 4,4,,4,,...€e H, A, > A. Then

v(4)> lim v(4,) and d,(4)= lim d,(4,).

8§ 0 § > o

Proof. (i) Given ¢>0, let 6>0 be such that v(4;) <v(4)+¢e where A;=
{xe S":d(x, A) < }. If s is large enough then A, = A; so v(4,) < v(A) + &, showing that
v 1S upper semi-continuous.

(1) Suppose d (A, B) < 6 where A,BeH, and x,, ..., x, € A. Then for each x; there is a
;€ B such that d(x;,y;) <. Clearly d(y;,y;) > d(x;,x;) — 26 so d,(B) > d, (A) — 26."In-
terchanging A and B we see that d,(4) > d,(B) — 2. Hence, given ¢ > 0, if s is large
enough to guarantee that d(4,, 4) < ¢/2 then we have |d, (4, — d,(A)| <. O

We are ready to prove the main result of this note. As usual, we shall write u* for the outer
measure defined by pu.

Theorem 3. Let A be a non-empty subset of $” and let C be a cap of measure u* (4). Then
d,(A) = d,(C) for every k > 2.

Proof. The assertion is trivial if u*(4)=0 or u*(A)= u(S"). Furthermore, since
d, (A) = d, (A), we may assume that A4 is a closed set of measure m, 0 <m < u(S").

Let K be the minimal closed subset of H containing 4 and closed under y, for every ze S".
By Lemmas 1 and 2, every set in K has measure at least m and k-diameter at most d, (A).
For a Borel subset of M of S", define v(M) = u(M n C), where C is our spherical cap of
measure m. Then v is a Borel measure on §"; by Lemma 2, this measure v is upper semi-
continuous so its supremum on K is attained on some set M € K. To complete the proof,
we shall show that M contains the cap C.

Suppose that this is not the case. Then there is a cap = C(x, 0), 8 > 0, such that D <« C\ M.
Since u (M) > u(C), this implies that u(M\C) > 0so thereisacap E = C(y,u),0 < u <6,
such that En C = 0and u(M n E) > 0. By replacing 0 by u, we may assume that y = 6.
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Letz=(x —y)/|lx — y|l. Then y,(E) = D, y,(C) = C and y,(C\D) = C\D. Hence, by (1),

p@. (M) C) = u(y, (M) n(C\D)) + u(y, (M)~ D)
> u(MA(C\D) + uMAE)=pu(M~C)+ p(MAE)>uMnC).

Since y,(M)e K, this contradicts the choice of M, so the proof is complete. O

Let us remark that a slight variant of the proof above gives the following assertion. Let
K be a non-empty closed subset of H which is also closed under the operators y,, i.e.
which is such that y,(4)e K for all A€ K and ze€ §". Then K contains all caps of measure
m =sup {u(4):Ae K}.

Also, it is easily seen that the proof above implies various extensions of Theorem 3. For
example, given finite sets X, Y < §" with | X| =|Y|, let us write X < Y if for every d > 0,
the number of pairs in X at distance at least d is not more than the number of pairs in
Yat distance at least d. Furthermore, for sets A, B = §", let us write A < B for the assertion
that for every finite set X < A there is a finite set Y <« Bwith |Y|=|X|and X < Y. Then
the following assertion holds. Let A be a non-empty closed subset of S” and let C be a
cap of measure u(A). Then C < A.

Béla Bollobas
Department of Pure Mathematics and Mathematical Statistics
University of Cambridge, England
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Winch curves

A taut rope connects a point in the origin of a rectangular coordinate system with a point
in R(a,0). If the latter starts moving along the line x = a, it will trail the point in the
origin. For each point P of the curve that is created in this way we have PQ = a, where
Q is the intersection of the tangent to the curve in P with the line x = a. This curve, known
as the tractrix, is represented by an equation that can be found as follows.

In the rectangular triangle PSQ (sce fig. 1) we have

PQ=a, PS=a—x, SQ=(a—x)dy/dx.
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