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monotonicity theorems. The use of these in the proof of l'Höpital's rule was made by
Lettenmeyer [4]. Since monotonicity theorems are known to hold for Dini denvates, it is
clear from our exposition that the right-hand derivatives can be replaced in Theorem 1-2
without affecting their vahdity by Dini derivates. The following counterexample:

/ (x) x + sin x cos x, g(x) / (x) esmx

f'(x) f(x)lim 0 and no limit for —— as x -> oo was given already in 1879 by O. Stolz [6],
x-ooflf'M g(x)
who also showed that Theorem 3 (with ordinary rather than one-sided derivatives) can
be deduced from Theorem 2. A simple proof based on the Newton-Leibniz formula was
given by Boas [2] but one may conjeeture that the method was already known to
Huntington [3].

R. Vyborny and R. Nester
University of Queensland, St. Lucia (Austraha)
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An extension of the isoperimetric
inequality on the sphere

We shall consider the n-dimensional sphere Sn {xeR" + 1:|x| 1}, endowed with the

spherical distance function d(x,y) and the (normalized) Lebesgue measure p. For xeS"
and 0 < 6 < n, the spherical cap of centre x and radius 0 is C (x, 0) {y e Sn: d (x, y) < 6}.

It is well known that if A c Sn and p(A) p(C) for some spherical cap C, then the

diameter of A is at least as large as the diameter of C. This is usually considered to be

a variant of the isoperimetric inequality on the sphere Sn; it is, in fact, an immediate

consequence of the isoperimetric inequality. Our aim is to extend this inequality and

thereby answer a question raised by Paul Erdös [4].
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For k > 2, define the k-diameter dk (A) of a set A in a metnc space by

dk(A) sup{ mm d(xl9Xj) xl9 ,xkeA}
1<i<j<k

Thus dk (A) < d if and only if _4 does not contain k points, any two of which are at
distance greater than d, in particular, d2 (A) is precisely the diameter of A We shall show that
if A c Sn and 0 < p (A) p (C) for some spherical cap C then dk (A) > dk (C) for every
k>2
The proof we shall give makes use of compression Operators and closely follows
Benyamini's [2] proof ofthe classical isopenmetne inequahty on the sphere Benyamim's
proof, m turn, was inspired by Baernstein and Taylor [1] In spirit, the compression
Operators on the sphere are very close to the compression Operators frequently used in
the study of set Systems m combinatorics (see [3, Chapters 16 and 17 and [4])
Let A be a subset of Sn and zeSn The compression yz (A) ofA in the direction ofz is defined
as follows For x e Sn, let x + x — <x, z> z + | <x, z> | z and x x — <x, z> z — | <x, z> | z,
where < > denotes the inner product in IR"+ * Thus the line through x, in the direction
of z, meets Sn precisely in x+ and x~, where <x+,z> — <x~,z> > 0, furthermore,
x+ x~ if and only if <x,z> 0

The compression Operator yz pushes the points of An{x+,x~} towards x+ if
A n {x+,x~} {x~} then

y.(_4)n{x+,x-} {x + }

and if An {x + ,x~} + {x~} then

yz(A)n {x+,x~} An{x*,x~}

It is trivial that if A is measurable then so is yz(A) and we have p(yz(A)) u(A), furthermore,

if A is closed, so is yz(A) The compression Operators map caps into caps
yz(C(x,0)) C(x+,ö), furthermore, for any two measurable sets A and B,

p(AnB)<p(yz(A)ny2(B)) (1)

Thus yz not only compresses as much of a set A mto the hemisphere {x+ x e Sn]

{xeS" <x,z> >0} as possible, but it also compresses sets closer to each other In this
note, the most important property of compression Operators is that they do not increase
the /c-diameter

Lemma 1. If A c Sn, zeS" and k > 2 then dk(yz(A)) < dk(A)

Proof It suffices to show that if dk (yz (A)) > d then dk (A) > d Let then dk (y2 (A)) > d Then
there is a set X {x x, xk} c (A) with d (xl ,x)> d for i+j We claim that A contains
a fc-subset X' with minimal distance at least d, so dk (A) > d

In proving this claim we may assume that xx, 9xt are the points of X {xx, xk}
that do not belong to A Then xt x* for 1 <i<l and Xf {xx, ,xf,xl + x, ,xfc}c__4
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Furthermore, the minimal distance in this /c-subset X' of A is at least d. Indeed, for
1 <i<j<l, d(x~,x~) d(xf9xf) > d since xf,xfEX, and for l + 1 <i <j <k we
have d(xt,Xj)>d since x19XjEX. Let now 1 < z < / and l + 1 <j <k. If x x ~

then d(x~9x~) d(x~9x~) d(xf9xf)>d since xf9xfeX. Finally, if x, xf then
d (x ~ ,Xj) d (x~ 9xf)>d (xf ,xf)>d since x,+, xf el.

Loosely speaking, our aim is to show that ifA is a closed subset of 5" then A can gradually
be transformed into a spherical cap of measure at least p (A) and /c-diameter at most dk (A).
Lemma 1 teils us that A can transformed into yz (A) for every z e S". The next lemma,
which is essentially trivial, shows that we can take limits in the Hausdorff metric: the
/c-diameter is continuous in this metric and, in fact, every Borel measure on Sn is Upper
semi-continuous. Let H be the metric space of closed non-empty subsets of Sn with the
Hausdorff metric d(A,B) sup{d(a,B), d(b,A):aEA,bEB}. Since Sn is compact, H is

also a compact metric space.

Lemma 2. Let v be a Borel measure on 5" and let A,AX,A2, ...eH, AS-^A. Then

v (A) > lim v (As) and dk (A) lim dk (As).
s-+ 00 s -» 00

Proof. (i) Given e > 0, let ö > 0 be such that v (Aö) < v (A) + e, where Aö

{xESn:d(x,A) < S}. If s is large enough then As c _4d so v(_4s) < v(A) + s, showing that
v is upper semi-continuous.
(ii) Suppose d(A,B) < ö where A,BeH, and xl9...9xkeA. Then for each xt there is a

ytEB such that ^(xI?yt) < ö. Clearly d(yl9y) > d(xl,xJ)-2d so dk(B) > dk(A) - 2 J/ln-
terchanging A and _3 we see that dk (A) > dk (B) — 23. Hence, given s > 0, if s is large
enough to guarantee that d(As9A) < e/2 then we have \dk(As) — dk(A)\ <e.

We are ready to prove the main result of this note. As usual, we shall write //* for the outer
measure defined by p.

Theorem 3. Let Ahea non-empty subset of Sn and let C be a cap of measure p* (A). Then

dk(A) > dk(C) for every k > 2.

Proof. The assertion is trivial if p* (A) 0 or /i* (A) u (Sn). Furthermore, since

dk (A) dk (Ä), we may assume that A is a closed set of measure m, 0 < m < u (Sn).

Let K be the minimal closed subset of H containing A and closed under yz for every z g Sn.

By Lemmas 1 and 2, every set in K has measure at least m and /c-diameter at most dk (A).
For a Borel subset of M of Sn, define v (M) /i (M n C), where C is our spherical cap of
measure m. Then v is a Borel measure on Sn; by Lemma 2, this measure v is upper
semicontinuous so its supremum on K is attained on some set MeK.To complete the proof,
we shall show that M contains the cap C.

Suppose that this is not the case. Then there is a cap C (x, 6), 6 > 0, such that D c C\M.
Since p (M) > p (C), this implies that p (M\C) > 0 so there is a cap E C (y, u), 0 < p < 0,

such that E n C 0 and p (M n E) > 0. By replacing 0 by p, we may assume that p 0.
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Let z (x - y)/||x - y ||. Then yz(E) D,yz(C) C and yz(C\D) C\D. Hence, by (1),

p (yz (M) nC) p (yz (M) n (C\D)) + p (yz (M) n D)

> u(M n (C\D)) + p(MnE) p(MnC) + p(MnE)>p(MnC).

Since yz (M) e K, this contradicts the choice of M, so the proof is complete.

Let us remark that a slight variant of the proof above gives the following assertion. Let
K be a non-empty closed subset of H which is also closed under the Operators yz, i.e.

which is such that yz (A) e K for all A e K and z e Sn. Then K contains all caps of measure
m sup{/i(_4):_4GX}.

Also, it is easily seen that the proof above implies various extensions of Theorem 3. For
example, given finite sets X, Y aSn with |X| | Y\9 let us write X < Yif for every d > 0,

the number of pairs in X at distance at least d is not more than the number of pairs in
Yat distance at least d. Furthermore, for sets A,B cz Sn, let us write A < B for the assertion
that for every finite set X a A there is a finite set Y cz B with | Y\ |Z| and X < Y. Then
the following assertion holds. Let A be a non-empty closed subset of Sn and let C be a

cap of measure p (A). Then C < A.

Bela Bollobäs

Department of Pure Mathematics and Mathematicai Statistics

University of Cambridge, England

REFERENCES

1 Baernstein A Taylor B A Spherical rearrangements, subharmonic functions and *-functions in «-space,
Duke Math J 43, 245-268 (1976)

2 Benyamini Y Two point symmetnzation, the isoperimetric inequahty on the sphere and some apphcations,
Longhorn Notes, The University of Texas, Texas Functional Analysis Seminar, pp 53-76, 1983-1984

3 Bollobäs B Combinatorics, Cambridge University Press, xn + 177, Cambridge, England, 1986

4 Frankl P The shifting technique in extremal set theory, in «Surveys in Combmatoncs 1987» (Whitehead C
ed LMS Lecture Note Series 123, Cambridge University Press, pp 81-110, Cambridge, 1987

© 1989 Birkhauser Verlag, Basel 0013-6018/89/050121-04$! 50 + 0 20/0

Wineh curves
A taut rope connects a point in the origin of a rectangular coordinate system with a point
in R (a, 0). If the latter Starts moving along the line x a, it will trail the point in the

origin. For each point P of the curve that is created in this way we have PQ a, where

Q is the intersection ofthe tangent to the curve in P with the line x a. This curve, known
as the tractrix, is represented by an equation that can be found as follows.
In the rectangular triangle PSQ (see fig. 1) we have

PQ a, PS~a-x9 SQ (a-x)dy/dx.
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